Département de Mathématiques

Option B pour l'agrégation

TD/TP 8 :

Equations aux dérivées partielles: Equations de transport

Rule \#1: "Never change the deal".

Exercice 1 ("Tranquille Maurice, tranquille..."). For $u^{0} \in \mathcal{C}^{1}(\mathbb{R}, \mathbb{R})$, solve the following transport equations:

$$
\begin{aligned}
& \left\{\begin{array}{l}
u_{t}(t, x)+c u_{x}(t, x)=-u(t, x), \\
u(0, \cdot)=u_{0}
\end{array}\right. \\
& \left\{\begin{array}{l}
u_{t}(t, x)+x u_{x}(t, x)=u(t, x), \\
u(0, \cdot)=\mathbb{R}^{+} \times \mathbb{R}
\end{array}\right. \\
& u(t, x) \in \mathbb{R}^{+} \times \mathbb{R}
\end{aligned}
$$

Exercice 2 (Burgers with source term). We consider the Burgers equation with a source term

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial t}+\frac{\partial}{\partial x}\left(\frac{u^{2}}{2}\right)=\alpha u, \quad(t, x) \in \mathbb{R}^{+} \times \mathbb{R} \\
u(0, x)=\frac{1}{1+|x|} \text { and then } \frac{1}{1+x^{2}}, \quad x \in \mathbb{R}
\end{array}\right.
$$

Solve this equation for sufficiently small times $(:=$ to be precised $)$.

Exercice 3 (Characteristics for the Vlasov equation). We consider the following kinetic Vlasov equation on $\Omega \subset \mathbb{R}^{n}$ with a space confining potential $\mathcal{V}_{\varepsilon}$:

$$
\left\{\begin{array}{l}
\partial_{t} f+v \cdot \nabla_{x} f-\nabla_{x} \mathcal{V}_{\varepsilon} \cdot \nabla_{v} f=0, \quad(t, x, v) \in \mathbb{R}^{+} \times \Omega \times \mathbb{R}^{n}, \\
f(0, x, v):=f_{0}(x, v)
\end{array}\right.
$$

1. Write the characteristic ODE satisfied by $\left(X_{\varepsilon}(x, v), V_{\varepsilon}(x, v)\right)$.
2. Prove that the trajectories are Hamiltonian (in the phase space).
3. We consider the special case where $\Omega:=\mathbb{R}^{2}$ and $\mathcal{V}_{\varepsilon}(x):=C(\varepsilon)\left(1-\min \left(\frac{x_{1}}{\varepsilon}, 1\right)\right) e_{1}$. Write the characteristics and study the convergence when $\varepsilon \rightarrow 0$.
4. What do you deduce for f^{ε}, at least formally, when $\varepsilon \rightarrow 0$.

Exercice 4 (Finite speed of propagation). Consider a scalar conservation law with flux, $f \in$ C^{2} :

$$
\frac{\partial u}{\partial t}+\frac{\partial f(u)}{\partial x}=0
$$

with initial data $u^{i n}$. Show that if $u^{i n}$ is compactly supported with, $\operatorname{say}, \operatorname{Supp}\left(u^{i n}\right) \subset[-B,+B]$ for some $B \in \mathbb{R}$, then

$$
\operatorname{Supp}(u(t, \cdot)) \subset\left[-B+t \min _{x \in \mathbb{R}} f^{\prime}\left(u^{i n}(x)\right),+B+t \min _{x \in \mathbb{R}} f^{\prime}\left(u^{i n}(x)\right)\right] .
$$

*

Rule \#2: "No names"

Exercice 5 (Wonderwall). We consider the transport problem in the half space:

$$
\begin{cases}\partial_{t} u+c \partial_{x} u=0, & (t, x) \in] 0,+\infty[\times] 0,+\infty[\\ u(t=0, x)=f(x), & \forall x \geq 0 \\ u(t, x=0)=g(t), & \forall t \geq 0\end{cases}
$$

where f and $g \in \mathcal{C}^{1}\left(\mathbb{R}^{+}, \mathbb{R}\right)$ and $c>0$. Give some compatibility conditions that ensure the existence of a classical solution. What happens in the case $c<0$?

Exercice 6 (Not in the full space). For $u^{0} \in \mathcal{C}^{1}\left(\mathbb{R}^{+}, \mathbb{R}\right)$, solve:

$$
\left\{\begin{array}{l}
x \partial_{t} u+t \partial_{x} u=0, \quad(t, x) \in \Omega=\left\{(t, x) \in \mathbb{R}^{2} \mid x>t>0\right\} \\
u(0, \cdot)=u_{0}
\end{array}\right.
$$

Exercice 7 (Vanishing viscosity). Consider the following Burgers equation with a viscosity term:

$$
\begin{cases}\frac{\partial u_{\varepsilon}}{\partial t}+u_{\varepsilon} \frac{\partial u_{\varepsilon}}{\partial x}-\varepsilon \frac{\partial^{2} u_{\varepsilon}}{\partial x^{2}}=0 & \text { in } \mathbb{R}^{+} \times \mathbb{R} \tag{1}\\ u_{\varepsilon}(0, x)=u^{i n}(x) & x \in \mathbb{R},\end{cases}
$$

where $\varepsilon>0$ is a small viscosity constant.

1. Make the following so-called Hopf-Cole transform:

$$
u_{\varepsilon}=\frac{-2 \varepsilon}{\omega_{\varepsilon}} \frac{\partial \omega_{\varepsilon}}{\partial x}
$$

and compute the solution to the initial value problem (1).
2. Let $\left\{u_{\varepsilon}\right\}$ be a sequence of solutions associated with (1) for different values of ε.
(a) Prove that the sequence u_{ε} converges almost everywhere to a limit u when $\varepsilon \rightarrow 0$.
(b) Suppose that $u^{i n} \in C_{b}(\mathbb{R})$. Show that the limit u thus obtained solves the following Burgers equation:

$$
\begin{cases}\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}=0 & \text { in }(0, T] \times \mathbb{R} \tag{2}\\ u(0, x)=u^{i n}(x) & x \in \mathbb{R}\end{cases}
$$

Exercice 8 (Two phase flow in (porous) media). Find the solution of the Riemann problem for the following scalar conservation law:

$$
\frac{\partial u}{\partial t}+\frac{\partial}{\partial x}\left(\frac{u^{2}}{u^{2}+(1-u)^{2}}\right)=0 \text { in }(0, \infty) \times \mathbb{R}
$$

with initial condition

$$
u(0, x)= \begin{cases}0 & \text { for } x<0 \\ 1 & \text { for } x>0\end{cases}
$$

and then

$$
u(0, x)= \begin{cases}1 & \text { for } x<0 \\ 0 & \text { for } x>0\end{cases}
$$

Rule \#3: "Never open the package."

Exercice 9 (Back to basics: the transport equation). Enjoy solving the standard free transport equation

$$
\begin{equation*}
\frac{\partial u}{\partial t}+c \frac{\partial u}{\partial x}=0 \quad \text { in }(0, \infty) \times \mathbb{R} \tag{3}
\end{equation*}
$$

with the following numerical schemes:

- Schéma décentré:

$$
\frac{u_{j}^{n+1}-u_{j}^{n}}{d t}+c \frac{u_{j}^{n}-u_{j-1}^{n}}{d x}=0
$$

- Schéma centré:

$$
\frac{u_{j}^{n+1}-u_{j}^{n}}{d t}+c \frac{u_{j+1}^{n}-u_{j-1}^{n}}{2 d x}=0
$$

- Schéma de Lax-Friedrichs:

$$
\frac{u_{j}^{n+1}-\frac{u_{j+1}^{n}+u_{j}^{n}}{2}}{d t}+c \frac{u_{j+1}^{n}-u_{j-1}^{n}}{2 d x}=0
$$

- Schéma de Lax-Wendroff:

$$
\frac{u_{j}^{n+1}-u_{j}^{n}}{d t}+c \frac{u_{j+1}^{n}-u_{j-1}^{n}}{2 d x}-c^{2} d t \frac{u_{j+1}^{n}-2 u_{j}^{n}+u_{j-1}^{n}}{2 d x^{2}}=0
$$

* One implicit scheme:

$$
\frac{u_{j}^{n+1}-u_{j}^{n}}{d t}+c \frac{u_{j+1}^{n+1}-u_{j-1}^{n+1}}{2 d x}=0
$$

For each scheme, you will wonder about the stability and convergence (namely the order in $d t$ and $d x$), and plot the l^{∞} and L^{2} norms of the numerical solution. For simplicity, one can rewrite the schemes with the parameter $\alpha:=\frac{c d t}{d x}$.

Exercice 10 (Conservation laws). Solve numerically:

1. The two-fluids flow equation

$$
\frac{\partial u}{\partial t}+\frac{\partial}{\partial x}\left(\frac{u^{2}}{u^{2}+(1-u)^{2}}\right)=0 \text { in }(0, \infty) \times \mathbb{R}
$$

2. The standard Burgers equation
3. The equation of road traffic $(f(u):=u(1-u))$
with a decreasing step initial condition. You are allowed (if it is relevant) to use (and study) the following Lax-Friedrichs scheme

$$
\frac{u_{j}^{n+1}-\frac{u_{j+1}^{n}+u_{j}^{n}}{2}}{d t}+\frac{\Phi_{j+\frac{1}{2}}^{n}-\Phi_{j-\frac{1}{2}}^{n}}{d x}=0,
$$

where the numerical flux is given by

$$
\Phi_{j}^{n}:=\frac{f\left(u_{j}^{n}\right)+f\left(u_{j+1}^{n}\right)}{2} .
$$

Exercice 11 (Hamilton-Jacobi equation). Solve the eikonal equation

$$
\partial_{t} u+\left|\partial_{x} u\right|^{2}=0
$$

Exercice 12 (Numerical diffusivity). We consider the transport equation with $c(x)=1-$ $\mathbf{1}_{(-a, a)}(x)$, where a is a small parameter. What is the theoretical behavior of $u_{0}(x)=\mathbf{1}_{]-\infty,-10]}$? What do you see numerically observe? To see more clearly the effect you can put a growth term on] $a,+\infty[$.

Exercice 13 (Kinetic travelling waves*). Solve the following kinetic reaction transport equation

$$
\begin{equation*}
\partial_{t} f+v \cdot \partial_{x} f=\frac{1}{2} \int_{-1}^{1} f(v) d v-f+\left(\int_{-1}^{1} f(v) d v\right)\left(\frac{1}{2}-f\right), \tag{4}
\end{equation*}
$$

with $x \in \mathbb{R}$ and $v \in[-1,1]$. Take a decreasing step initial condition. Be careful of the boundaries!

