Département de Mathématiques

Option B pour l'agrégation

SUR SOBOLEV.

EXERCICE 1 (Non-completeness). We define $\Omega := B(0,1)$. Prove that the space

$$V := \left\{ v \in \mathcal{C}^1(\overline{\Omega}), v = 0 \text{ sur } \partial \Omega \right\}$$

is not complete for the scalar product of $\mathrm{H}_{0}^{1}(\Omega)$, $\langle u, v \rangle = \int_{\Omega} \nabla u \cdot \nabla v \, dx$. For this purpose, you may consider the following sequences:

If n = 1, the following regularized absolute value

$$u_n(x) := \begin{cases} -x - 1, & x \le -\frac{1}{n}, \\ \frac{n}{2}x^2 - 1 + \frac{1}{2n}, & -\frac{1}{n} \le x \le \frac{1}{n}, \\ x - 1, & x \ge \frac{1}{n}. \end{cases}$$

If n = 2,

$$u_n(x) := \left| \ln \left(\frac{|x|^2}{4} + n^{-1} \right) \right|^{\frac{\alpha}{2}} - \left| \ln \left(\frac{1}{4} + n^{-1} \right) \right|^{\frac{\alpha}{2}}$$

If n > 2,

$$u_n(x) := \frac{1}{(|x|^2 + n^{-1})^{\beta/2}} - \frac{1}{(1+n^{-1})^{\beta/2}}.$$

EXERCICE 2 (Poincaré-Wirtinger). Let $\Omega \in \mathbb{R}^d$ be an open, bounded domain. Show that there exists a constant $C(\Omega)$, depending on the domain, such that

$$\forall u \in \mathrm{H}^{1}(\Omega), \quad \int_{\Omega} |u - \bar{u}|^{2} \,\mathrm{d}x \leq C(\Omega) \int_{\Omega} |\nabla u|^{2} \,\mathrm{d}x,$$

where $\bar{u} = \frac{1}{|\Omega|} \int_{\Omega} u(x) \, \mathrm{d}x.$

*

EXERCICE 3 (Rellich). Let $\Omega \in \mathbb{R}^d$ be open and bounded. Prove that any uniformly bounded sequence in $\mathrm{H}^1_0(\Omega)$ is relatively compact in $\mathrm{L}^2(\Omega)$.

Hint 1: This means that if $\{u_n\} \subset H^1_0(\Omega)$ is a sequence such that $||u_n||_{H^1(\Omega)} \leq C$ for some constant C independent of n, then there exists a subsequence $\{u_{\varphi(n)}\}$ (with $\varphi : \mathbb{N} \to \mathbb{N}$ strictly increasing) and a limit $u \in L^2(\Omega)$ such that

$$\left\| u_{\varphi(n)} - u \right\|_{L^2(\Omega)} \to 0 \quad as \quad n \to \infty.$$

Hint 2: Show that $u \in H^1(\mathbb{R}^d)$ *iff* $u \in L^2(\mathbb{R}^d)$ *and*

 $\exists M \ge 0, \ \forall h \in \mathbb{R}^d, \quad \|u(\cdot + h) - u\|_{\mathcal{L}^2} \le M \|h\|.$

Hint 3: We recall the Riesz-Fréchet-Kolmogorov theorem:

Let $\Omega \in \mathbb{R}^d$ be open. First consider $\omega \subset \subset \Omega$, i.e. ω open with $\bar{\omega} \subset \Omega$. Consider $G \subset L^2(\Omega)$. Suppose

$$\forall \varepsilon > 0, \ \exists \delta > 0, \ \delta < d(\omega, \partial \Omega), \ \forall h \in \mathbb{R}^d, \ |h| < \delta, \ \forall u \in \mathcal{G}, \ \|u(\cdot + h) - u(\cdot)\|^2_{\mathcal{L}^2(\omega)} \le \varepsilon.$$
(1)

Then $G|_{\omega}$ is relatively compact in $L^2(\omega)$. Second, assume in addition to (1) that

 $\forall \varepsilon > 0, \exists \, \omega \subset \subset \Omega, \ \forall \, u \in \mathbf{G}, \qquad \|u\|_{\mathbf{L}^2(\Omega \setminus \omega)} < \varepsilon.$

*

Then G is relatively compact in $L^2(\Omega)$.

DU LAX-MILGRAM EN VEUX-TU EN VOILÀ!

EXERCICE 4. Let $u \in H^1(\Omega)$ be a weak solution of the following Neumann problem:

$$\begin{cases} -\nabla \cdot (A(x)\nabla u) + b(x) \cdot \nabla u = f & \text{in } \Omega, \\ -A(x)\nabla u \cdot n = g & \text{on } \partial\Omega. \end{cases}$$
(2)

where $f \in L^2(\Omega)$, $g \in H^1(\Omega)$. The coefficient A is elliptic and $b \in L^{\infty}(\Omega)$ satisfies $\nabla \cdot b = 0$ in Ω and $b \cdot n = 0$ on $\partial \Omega$. Prove that (2) has a unique weak solution up to addition of a constant if and only if the source terms satisfy the following compatibility condition:

$$\int_{\Omega} f(x) \, \mathrm{d}x = \int_{\partial\Omega} g(x) \, \mathrm{d}\sigma(x). \tag{3}$$

EXERCICE 5 (Robin). Let $\sigma \geq 0$ and $f \in L^2(\mathbb{R}^n_+), g \in L^2(\mathbb{R}^{n-1})$. We study the following problem with *so-called* Robin boundary conditions:

$$\begin{cases} -\Delta u(x) + u(x) = f(x), & x \in \mathbb{R}^{n}_{+}, \\ -\partial_{1}u(0, y) + \sigma u(0, y) = g(y), & y \in \mathbb{R}^{n-1}. \end{cases}$$
(4)

1. Give a definition of strong solution of (4) and of weak solution of (4).

- 2. Show existence and uniqueness of a weak solution of (4).
- 3. Prove that is g = 0 a.e., the weak solution of (4) is in $\mathrm{H}^2(\mathbb{R}^n_+)$.
- 4. Assuming that g = 0 a.e., we denote by u_n the strong solution associated to $\sigma = n$. Prove that u_n converges in $\mathrm{H}^1(\Omega)$ towards a weak solution of the Dirichlet problem

$$\begin{cases} -\Delta u(x) + u(x) = f(x), & x \in \mathbb{R}^{n}_{+}, \\ u(0, y) = 0, & y \in \mathbb{R}^{n-1}. \end{cases}$$
(5)

Régularité et rigidité elliptique.

EXERCICE 6 (Cacciopoli - Interior regularity). Suppose $\Omega \in \mathbb{R}^d$ be open. Let $x_0 \in \Omega$ and $0 < \rho < \bar{\rho}$ such that $B(x_0, \bar{\rho}) \subset \Omega$. Suppose $u \in \mathrm{H}^1(\Omega)$ satisfies

*

$$-\Delta u + b \cdot \nabla u + a \, u = 0 \text{ in } \Omega,$$

where $a, b_i \in \mathbb{R}$ for $1 \leq i \leq d$. Show that there exists a constant C such that

$$\int_{B(x_0,\rho)} |\nabla u|^2 \,\mathrm{d}x \le \frac{C}{(\bar{\rho}-\rho)^2} \int_{B(x_0,\bar{\rho})} |u|^2 \,\mathrm{d}x.$$

Take $a = b_i = 0$. Deduce that

$$\forall k \in \mathbb{N}, \quad \|u\|_{\mathrm{H}^{k}(B(x_{0},\rho))}^{2} \leq C(\rho,\bar{\rho},k)\|u\|_{\mathrm{L}^{2}(B(x_{0},\bar{\rho}))}^{2}, \quad \|u\|_{C^{k}(B(x_{0},\rho))}^{2} \leq C(\rho,\bar{\rho},k)\|u\|_{\mathrm{L}^{2}(B(x_{0},\bar{\rho}))}^{2}$$

What do you conclude?

EXERCICE 7 (Maximum Principle - Divergence Form). Also, let $c(x) \in L^{\infty}(\Omega)$ and $c(x) \geq -\lambda$ with

*

$$\lambda := \inf \left\{ \int_{\Omega} |\nabla v(x)|^2 \, \mathrm{d}x \; ; \; v \in \mathrm{H}_0^1(\Omega), \, \|v\|_{\mathrm{L}^2(\Omega)} = 1 \right\}.$$

Suppose $u \in H^1(\Omega)$ verifies in the weak sense

$$-\Delta u + c(x)u \ge 0$$

on Ω , which means in an explicit way we have:

$$\forall \phi \in C_0^{\infty}(\Omega), \phi \ge 0, \qquad \int_{\Omega} \nabla u \cdot \nabla \phi \, \mathrm{d}x + \int_{\Omega} c \, u\phi \, \mathrm{d}x \ge 0.$$
(6)

Show that $\inf_{x\in\Omega} u(x) = \inf_{x\in\partial\Omega} u(x)$. Hint: Use the density of $C_0^{\infty}(\Omega)$ in $\mathrm{H}_0^1(\Omega)$. Take $-(u - \inf_{x\in\partial\Omega} u(x))^-$ as test function.

3

EXERCICE 8 (Strong Maximum Principle). Let $\Omega \in \mathbb{R}^d$ be a connected open domain. Suppose $u \in C^2(\Omega) \cap C(\overline{\Omega})$ and a_{ij}, b_i, c are smooth enough, a is uniformly elliptic and $c(x) \ge 0$ in Ω .

- 1. (*Preliminary*) Prove that if (α_{ij}) and (β_{ij}) are two positive definite matrices then we have $\sum_{i,j} \alpha_{ij} \beta_{ij} \ge 0.$
- 2. Show that if u is a subsolution of the elliptic operator:

$$-\sum_{i,j=1}^{d} a_{ij}(x) \frac{\partial^2 u}{\partial x_i \partial x_j} + \sum_{i=1}^{d} b_i(x) \frac{\partial u}{\partial x_i} + c(x)u \le 0 \quad \text{in } \Omega,$$

such that

$$u(x_0) = \max_{x \in \bar{\Omega}} u(x) \ge 0,$$

then u is constant in Ω .

3. Write (and prove \odot) a similar statement for a supersolution.

*

EXERCICE 9 (Harnack's inequality for harmonic functions). Suppose that u solves

$$-\Delta u = 0, \qquad \forall x \in D(0, R).$$

for some R > 0. We recall that u is thus analytic.

1. Prove the following Poisson representation formula:

$$\forall z \in D(0, R), \qquad u(z) = \frac{1}{2\pi} \int_0^{2\pi} \frac{R^2 - |z|^2}{|Re^{i\theta} - z|^2} u(Re^{i\theta}) d\theta.$$

2. Prove that for $\theta \in [0, 2\pi]$, $z \in B(0, R)$, |z| = r, we have

$$\frac{R-r}{R+r} \leq \frac{R^2-|z|^2}{|Re^{i\theta}-z|^2} \leq \frac{R+r}{R-r}$$

3. Deduce from the above the following so-called Harnack inequality when u is nonnegative:

$$\forall z \in B(0,R), |z| = r, \qquad \left(\frac{R-r}{R+r}\right)u(0) \le u(z) \le \left(\frac{R+r}{R-r}\right)u(0).$$

This can be generalized (with pain) to a nonnegative solution u of

 $-\nabla\cdot (A\nabla u)+b\cdot\nabla u+cu=0 \quad in \ \Omega,$

on any connected $\omega \subset \subset \Omega$. The Harnack inequality writes

$$\sup_{x \in \omega} u(x) \le C(\omega) \inf_{x \in \omega} u(x).$$

SIMULATIONS NUMÉRIQUES D'ÉQUATIONS ELLIPTIQUES.

EXERCICE 10 (Batman begins). We consider the following Laplace equation

$$\begin{cases} -u'' + c(x)u = f, & x \in (0,1) \\ u(0) = \alpha, & u(1) = \beta. \end{cases}$$

,

1. Solve numerically our problem.

- 2. When we prescribe $f(x) = (1 + 2x x^2) e^x$ and c(x) = x, what is the solution u?
- 3. Compare numerically both solutions and plot the error curves in a 'loglog' scale.

*

EXERCICE 11 (Batman returns). Redo the previous exercise with the following Laplace equation

$$\begin{cases} -u^{"}(x) = f(x), & x \in (0,1), \\ u(0) = 0, & u'(1) = 0, \end{cases}$$

where the Neumann boundary condition should be discretized as follows:

$$u_{N+1} = u_N$$
, and then $u_{N+1} - u_N = \frac{h^2}{2}f(1)$.

How would you generalize this two schemes to the full system

$$\begin{cases} -u'' + c(x)u = 0, & x \in (0, 1), \\ u(0) = \alpha, & u'(1) = \beta \end{cases}$$

EXERCICE 12 (Batman & Robin). We now consider Robin (\odot) boundary conditions:

$$\begin{cases} -u^{"} + u = f(x), & x \in (0,1), \\ u'(0) + \alpha u(0) = 0, & u'(1) + \alpha u(1) = 0, \end{cases}$$

How do you discretize the boundaries? What is the order of the scheme?

*

EXERCICE 13 (Spectral problem). Solve numerically the following spectral problem

$$\begin{cases} -Q_{\theta\theta} + g(\theta)Q = \lambda Q, & \theta \in (0,1), \\ Q_{\theta}(0) = Q_{\theta}(1) = 0 \end{cases}$$

with a shooting method. Choose your favorite function g.

5

7

EXERCICE 14 (Batman Forever). We consider the following Laplace equation with a drift term

$$\begin{cases} -u'' + c(x)u' = f, & x \in (0, 1), \\ u(0) = 0, & u(1) = 1. \end{cases}$$

1. Solve numerically our problem with a very naive scheme.

2. We want to get an order 2 scheme. What should we do?

*

EXERCICE 15 (Laplace equation $2D^*$). We consider the following Laplace equation

$$\begin{cases}
-u_{xx} - u_{yy} + c(x, y)u = 0, & x \in (0, 1)^2, \\
u(0, y) = 1, & u(1, y) = 0, \\
u_y(x, 0) = 0, u_y(x, 1) = 0.
\end{cases}$$

 \star

1. Design the numerical matrix of the elliptic operator.

2. Go.