Département de Mathématiques

Option B pour l'agrégation

TD/TP 7 :

Equations aux dérivées partielles: Equations elliptiques

Sur Sobolev.

Exercice 1 (Non-completeness). We define $\Omega:=\mathrm{B}(0,1)$. Prove that the space

$$
V:=\left\{v \in \mathcal{C}^{1}(\bar{\Omega}), v=0 \text { sur } \partial \Omega\right\}
$$

is not complete for the scalar product of $\mathrm{H}_{0}^{1}(\Omega),\langle u, v\rangle=\int_{\Omega} \nabla u \cdot \nabla v d x$. For this purpose, you may consider the following sequences:

If $n=1$, the following regularized absolute value

$$
u_{n}(x):=\left\{\begin{array}{l}
-x-1, \quad x \leq-\frac{1}{n} \\
\frac{n}{2} x^{2}-1+\frac{1}{2 n}, \quad-\frac{1}{n} \leq x \leq \frac{1}{n} \\
x-1, \quad x \geq \frac{1}{n}
\end{array}\right.
$$

If $n=2$,

$$
u_{n}(x):=\left|\ln \left(\frac{|x|^{2}}{4}+n^{-1}\right)\right|^{\frac{\alpha}{2}}-\left|\ln \left(\frac{1}{4}+n^{-1}\right)\right|^{\frac{\alpha}{2}}
$$

If $n>2$,

$$
u_{n}(x):=\frac{1}{\left(|x|^{2}+n^{-1}\right)^{\beta / 2}}-\frac{1}{\left(1+n^{-1}\right)^{\beta / 2}} .
$$

Exercice 2 (Poincaré-Wirtinger). Let $\Omega \in \mathbb{R}^{d}$ be an open, bounded domain. Show that there exists a constant $C(\Omega)$, depending on the domain, such that

$$
\forall u \in \mathrm{H}^{1}(\Omega), \quad \int_{\Omega}|u-\bar{u}|^{2} \mathrm{~d} x \leq C(\Omega) \int_{\Omega}|\nabla u|^{2} \mathrm{~d} x,
$$

where $\bar{u}=\frac{1}{|\Omega|} \int_{\Omega} u(x) \mathrm{d} x$.

Exercice 3 (Rellich). Let $\Omega \in \mathbb{R}^{d}$ be open and bounded. Prove that any uniformly bounded sequence in $\mathrm{H}_{0}^{1}(\Omega)$ is relatively compact in $\mathrm{L}^{2}(\Omega)$.
Hint 1: This means that if $\left\{u_{n}\right\} \subset \mathrm{H}_{0}^{1}(\Omega)$ is a sequence such that $\left\|u_{n}\right\|_{\mathrm{H}^{1}(\Omega)} \leq C$ for some constant C independant of n, then there exists a subsequence $\left\{u_{\varphi(n)}\right\}$ (with $\varphi: \mathbb{N} \rightarrow \mathbb{N}$ strictly increasing) and a limit $u \in \mathrm{~L}^{2}(\Omega)$ such that

$$
\left\|u_{\varphi(n)}-u\right\|_{\mathrm{L}^{2}(\Omega)} \rightarrow 0 \quad \text { as } n \rightarrow \infty .
$$

Hint 2: Show that $u \in \mathrm{H}^{1}\left(\mathbb{R}^{d}\right)$ iff $u \in \mathrm{~L}^{2}\left(\mathbb{R}^{d}\right)$ and

$$
\exists M \geq 0, \forall h \in \mathbb{R}^{d}, \quad\|u(\cdot+h)-u\|_{L^{2}} \leq M\|h\|
$$

Hint 3: We recall the Riesz-Fréchet-Kolmogorov theorem:
Let $\Omega \in \mathbb{R}^{d}$ be open. First consider $\omega \subset \subset \Omega$, i.e. ω open with $\bar{\omega} \subset \Omega$. Consider $\mathrm{G} \subset \mathrm{L}^{2}(\Omega)$. Suppose

$$
\begin{equation*}
\forall \varepsilon>0, \exists \delta>0, \delta<d(\omega, \partial \Omega), \forall h \in \mathbb{R}^{d},|h|<\delta, \quad \forall u \in \mathrm{G}, \quad\|u(\cdot+h)-u(\cdot)\|_{\mathrm{L}^{2}(\omega)}^{2} \leq \varepsilon \tag{1}
\end{equation*}
$$

Then $\left.\mathrm{G}\right|_{\omega}$ is relatively compact in $\mathrm{L}^{2}(\omega)$. Second, assume in addition to (1) that

$$
\forall \varepsilon>0, \exists \omega \subset \subset \Omega, \quad \forall u \in \mathrm{G}, \quad\|u\|_{\mathrm{L}^{2}(\Omega \backslash \omega)}<\varepsilon
$$

Then G is relatively compact in $\mathrm{L}^{2}(\Omega)$.

Du Lax-Milgram en veux-tu en voilà!

Exercice 4. Let $u \in \mathrm{H}^{1}(\Omega)$ be a weak solution of the following Neumann problem:

$$
\begin{cases}-\nabla \cdot(A(x) \nabla u)+b(x) \cdot \nabla u=f & \text { in } \Omega, \tag{2}\\ -A(x) \nabla u \cdot n=g & \text { on } \partial \Omega .\end{cases}
$$

where $f \in \mathrm{~L}^{2}(\Omega), g \in \mathrm{H}^{1}(\Omega)$. The coefficient A is elliptic and $b \in L^{\infty}(\Omega)$ satisfies $\nabla \cdot b=0$ in Ω and $b \cdot n=0$ on $\partial \Omega$. Prove that (2) has a unique weak solution up to addition of a constant if and only if the source terms satisfy the following compatibility condition:

$$
\begin{gather*}
\int_{\Omega} f(x) \mathrm{d} x=\int_{\partial \Omega} g(x) \mathrm{d} \sigma(x) . \tag{3}\\
\star
\end{gather*}
$$

Exercice 5 (Robin). Let $\sigma \geq 0$ and $f \in \mathrm{~L}^{2}\left(\mathbb{R}_{+}^{n}\right), g \in \mathrm{~L}^{2}\left(\mathbb{R}^{n-1}\right)$. We study the following problem with so-called Robin boundary conditions:

$$
\left\{\begin{array}{l}
-\Delta u(x)+u(x)=f(x), \quad x \in \mathbb{R}_{+}^{n}, \tag{4}\\
-\partial_{1} u(0, y)+\sigma u(0, y)=g(y), \quad y \in \mathbb{R}^{n-1} .
\end{array}\right.
$$

1. Give a definition of strong solution of (4) and of weak solution of (4).
2. Show existence and uniqueness of a weak solution of (4).
3. Prove that is $g=0$ a.e., the weak solution of $(\mathbb{4})$ is in $\mathrm{H}^{2}\left(\mathbb{R}_{+}^{n}\right)$.
4. Assuming that $g=0$ a.e., we denote by u_{n} the strong solution associated to $\sigma=n$. Prove that u_{n} converges in $\mathrm{H}^{1}(\Omega)$ towards a weak solution of the Dirichlet problem

$$
\left\{\begin{array}{l}
-\Delta u(x)+u(x)=f(x), \quad x \in \mathbb{R}_{+}^{n}, \tag{5}\\
u(0, y)=0, \quad y \in \mathbb{R}^{n-1} .
\end{array}\right.
$$

Régularité et rigidité elliptique.

Exercice 6 (Cacciopoli - Interior regularity). Suppose $\Omega \in \mathbb{R}^{d}$ be open. Let $x_{0} \in \Omega$ and $0<\rho<\bar{\rho}$ such that $B\left(x_{0}, \bar{\rho}\right) \subset \Omega$. Suppose $u \in \mathrm{H}^{1}(\Omega)$ satisfies

$$
-\Delta u+b \cdot \nabla u+a u=0 \text { in } \Omega,
$$

where $a, b_{i} \in \mathbb{R}$ for $1 \leq i \leq d$. Show that there exists a constant C such that

$$
\int_{B\left(x_{0}, \rho\right)}|\nabla u|^{2} \mathrm{~d} x \leq \frac{C}{(\bar{\rho}-\rho)^{2}} \int_{B\left(x_{0}, \bar{\rho}\right)}|u|^{2} \mathrm{~d} x .
$$

Take $a=b_{i}=0$. Deduce that

$$
\forall k \in \mathbb{N}, \quad\|u\|_{\mathrm{H}^{k}\left(B\left(x_{0}, \rho\right)\right)}^{2} \leq C(\rho, \bar{\rho}, k)\|u\|_{\mathrm{L}^{2}\left(B\left(x_{0}, \bar{\rho}\right)\right)}^{2}, \quad\|u\|_{C^{k}\left(B\left(x_{0}, \rho\right)\right)}^{2} \leq C(\rho, \bar{\rho}, k)\|u\|_{\mathrm{L}^{2}\left(B\left(x_{0}, \bar{\rho}\right)\right)}^{2} .
$$

What do you conclude?

Exercice 7 (Maximum Principle - Divergence Form). Also, let $c(x) \in L^{\infty}(\Omega)$ and $c(x) \geq-\lambda$ with

$$
\lambda:=\inf \left\{\int_{\Omega}|\nabla v(x)|^{2} \mathrm{~d} x ; v \in \mathrm{H}_{0}^{1}(\Omega),\|v\|_{\mathrm{L}^{2}(\Omega)}=1\right\} .
$$

Suppose $u \in H^{1}(\Omega)$ verifies in the weak sense

$$
-\Delta u+c(x) u \geq 0
$$

on Ω, which means in an explicit way we have:

$$
\begin{equation*}
\forall \phi \in C_{0}^{\infty}(\Omega), \phi \geq 0, \quad \int_{\Omega} \nabla u \cdot \nabla \phi \mathrm{~d} x+\int_{\Omega} c u \phi \mathrm{~d} x \geq 0 . \tag{6}
\end{equation*}
$$

Show that $\inf _{x \in \Omega} u(x)=\inf _{x \in \partial \Omega} u(x)$.
Hint: Use the density of $C_{0}^{\infty}(\Omega)$ in $\mathrm{H}_{0}^{1}(\Omega)$. Take $-\left(u-\inf _{x \in \partial \Omega} u(x)\right)^{-}$as test function.

Exercice 8 (Strong Maximum Principle). Let $\Omega \in \mathbb{R}^{d}$ be a connected open domain. Suppose $u \in C^{2}(\Omega) \cap C(\bar{\Omega})$ and $a_{i j}, b_{i}, c$ are smooth enough, a is uniformly elliptic and $c(x) \geq 0$ in Ω.

1. (Preliminary) Prove that if $\left(\alpha_{i j}\right)$ and $\left(\beta_{i j}\right)$ are two positive definite matrices then we have $\sum_{i, j} \alpha_{i j} \beta_{i j} \geq 0$.
2. Show that if u is a subsolution of the elliptic operator:

$$
-\sum_{i, j=1}^{d} a_{i j}(x) \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}+\sum_{i=1}^{d} b_{i}(x) \frac{\partial u}{\partial x_{i}}+c(x) u \leq 0 \quad \text { in } \Omega,
$$

such that

$$
u\left(x_{0}\right)=\max _{x \in \bar{\Omega}} u(x) \geq 0,
$$

then u is constant in Ω.
3. Write (and prove ©) a similar statement for a supersolution.

Exercice 9 (Harnack's inequality for harmonic functions). Suppose that u solves

$$
-\Delta u=0, \quad \forall x \in D(0, R) .
$$

for some $R>0$. We recall that u is thus analytic.

1. Prove the following Poisson representation formula:

$$
\forall z \in D(0, R), \quad u(z)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{R^{2}-|z|^{2}}{\left|R e^{i \theta}-z\right|^{2}} u\left(R e^{i \theta}\right) d \theta .
$$

2. Prove that for $\theta \in[0,2 \pi], z \in B(0, R),|z|=r$, we have

$$
\frac{R-r}{R+r} \leq \frac{R^{2}-|z|^{2}}{\left|R e^{i \theta}-z\right|^{2}} \leq \frac{R+r}{R-r}
$$

3. Deduce from the above the following so-called Harnack inequality when u is nonnegative:

$$
\forall z \in B(0, R),|z|=r, \quad\left(\frac{R-r}{R+r}\right) u(0) \leq u(z) \leq\left(\frac{R+r}{R-r}\right) u(0) .
$$

This can be generalized (with pain) to a nonnegative solution u of

$$
-\nabla \cdot(A \nabla u)+b \cdot \nabla u+c u=0 \quad \text { in } \Omega,
$$

on any connected $\omega \subset \subset \Omega$. The Harnack inequality writes

$$
\sup _{x \in \omega} u(x) \leq C(\omega) \inf _{x \in \omega} u(x) .
$$

Simulations numériques D'Équations elliptiques.

Exercice 10 (Batman begins). We consider the following Laplace equation

$$
\left\{\begin{array}{l}
-u "+c(x) u=f, \quad x \in(0,1) \\
u(0)=\alpha, \quad u(1)=\beta
\end{array}\right.
$$

1. Solve numerically our problem.
2. When we prescribe $f(x)=\left(1+2 x-x^{2}\right) e^{x}$ and $c(x)=x$, what is the solution u ?
3. Compare numerically both solutions and plot the error curves in a 'loglog' scale.

Exercice 11 (Batman returns). Redo the previous exercise with the following Laplace equation

$$
\left\{\begin{array}{l}
-u "(x)=f(x), \quad x \in(0,1) \\
u(0)=0, \quad u^{\prime}(1)=0
\end{array}\right.
$$

where the Neumann boundary condition should be discretized as follows:

$$
u_{N+1}=u_{N}, \quad \text { and then } \quad u_{N+1}-u_{N}=\frac{h^{2}}{2} f(1) .
$$

How would you generalize this two schemes to the full system

$$
\left\{\begin{array}{l}
-u "+c(x) u=0, \quad x \in(0,1), \quad ? \\
u(0)=\alpha, \quad u^{\prime}(1)=\beta
\end{array}\right.
$$

Exercice 12 (Batman \& Robin). We now consider Robin (©) boundary conditions:

$$
\left\{\begin{array}{l}
-u^{\prime \prime}+u=f(x), \quad x \in(0,1) \\
u^{\prime}(0)+\alpha u(0)=0, \quad u^{\prime}(1)+\alpha u(1)=0
\end{array}\right.
$$

How do you discretize the boundaries? What is the order of the scheme?

Exercice 13 (Spectral problem). Solve numerically the following spectral problem

$$
\left\{\begin{array}{l}
-Q_{\theta \theta}+g(\theta) Q=\lambda Q, \quad \theta \in(0,1) \\
Q_{\theta}(0)=Q_{\theta}(1)=0
\end{array}\right.
$$

with a shooting method. Choose your favorite function g.

Exercice 14 (Batman Forever). We consider the following Laplace equation with a drift term

$$
\left\{\begin{array}{l}
-u^{\prime \prime}+c(x) u^{\prime}=f, \quad x \in(0,1) \\
u(0)=0, \quad u(1)=1
\end{array}\right.
$$

1. Solve numerically our problem with a very naive scheme.
2. We want to get an order 2 scheme. What should we do?

Exercice 15 (Laplace equation 2D*). We consider the following Laplace equation

$$
\left\{\begin{array}{l}
-u_{x x}-u_{y y}+c(x, y) u=0, \quad x \in(0,1)^{2}, \\
u(0, y)=1, \quad u(1, y)=0 \\
u_{y}(x, 0)=0, u_{y}(x, 1)=0
\end{array}\right.
$$

1. Design the numerical matrix of the elliptic operator.
2. Go.
