
Processus de Poisson et méthodes actuarielles (2015-2016)

Feuille d’exercices n

�
1 : Poisson processes

Exercise 1. Let (⌧n, n � 1) be a sequence of IID (independent and identically distribu-

ted) non-negative random variables. Set

Tn = ⌧1 + ...+ ⌧n, n � 1,

(T0 = 0) and

Nt = #{i � 1 : Ti  t}, t � 0.

1. Give a necessary and su�cient condition for having

P(N only makes jumps of size 1) > 0.

2. Show that under this condition

P(N only makes jumps of size 1) = 1.

3. Is it possible that (Tn, n � 0) converges to a finite limit with positive

1
probability ?

4. Compute the probability of the event {9t � 0 : N(t) = 1}.

Exercise 2. Let N be a Poisson process with intensity � > 0. Prove and give an

interpretation of the following properties

1. P(Nh = 1) = �h+ o(h) (h ! 0)

2. P(Nh � 2) = o(h) (h ! 0)

3. P(Nh = 0) = 1� �h+ o(h) (h ! 0).

4. 8t � 0, P(N jumps at time t) = 0.

5. Compute Cov(Ns, Nt), 8s, t � 0.

Exercise 3. Let N be a counting process with stationary and independent increments.

Assume that there exists � > 0 such that

P(Nh = 1) = �h+ o(h), P(Nh � 2) = o(h).

For u 2 R, let gt(u) = E[eiuNt
].

1. Prove that gt+h(u) = gt(u)gh(u) for every t, h � 0.

1. En anglais le mot positive signifie strictement positif. Pour dire positif au sens large on dit non-

negative. De même les termes negative, bigger, smaller sont à prendre au sens strict.
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2. Prove that

d
dtgt(u) = �(e

iu � 1)gt, g0(u) = 1.

3. Conclude.

Exercise 4. Let N be a Poisson process with intensity � > 0, modelling the arrival times

of the claims for an insurance company. Let T1 denote the arrival time of the first claim.

Show that the conditional law of T1 given Nt = 1 is uniformly distributed over [0, t].

Exercise 5. Let (Tn, n � 0) (T0 = 0) be a renewal process and N its associated counting

process. Assume that N has independent and stationary increments.

1. Show that

P(T1 > s+ t) = P(T1 > t)P(T1 > s), 8s, t � 0.

2. Derive that N is a Poisson process.

Exercise 6.

1. Show that two independent Poisson processes cannot jump simultaneously a.s.

2. Let N

1
and N

2
be two independent Poisson processes with parameters �1 > 0

and �2 respectively. Show that the process

Nt = N

1
t +N

2
t , t � 0

is a Poisson process and give its intensity.

3. Derive that the sum of n independent Poisson processes with respective intensities

�1 > 0, ...,�n > 0 is a Poisson process and give its intensity.

Exercise 7. Insects fall into a soup bowl according to a Poisson process N with intensity

� > 0 (the event {Nt = n} means that there are n insects in the bowl at time t). Assume

that every insect is green with probability p 2 (0, 1) and that its colour is independent

of the colour of the other insects. Show that the number of green insects that fall into

the bowl, as a function of time, is a Poisson process with intensity �p.

Exercise 8. Liver transplants arrive at an operating block following a Poisson process N

with intensity � > 0. Two patients wait for a transplant. The first patient has lifetime T

(before the transplant) according to an exponential distribution with parameter µ1. The

second one has lifetime T

0
(before the transplant) according to an exponential distribution

wity parameter µ2. The rule is that the first transplant arrival to the hospital is given

to the first patient if still alive, and to the second patient otherwise. Assume that T, T

0

and N are independent.

1. Compute the probability that the second patient is transplanted.

2. Compute the probability that the first patient is transplanted.

3. Let X denote the number of transplants arrived at the hospital during [0, T ].

Compute the law of X.
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Exercise 9. The Bus paradox. Buses arrive at a given bus stop according to a Poisson

process with intensity � > 0. You arrive at the bus stop at time t.

1. Give a first guess for the value of the average waiting time before the following

bus arrives ?

2. Let At = TNt+1 � t be the waiting time before the next bus, and let Bt = t� TNt

denote the elapsed time since the last bus arrival. Compute the joint distribution

of (At, Bt) (hint : compute first P(At � x1, Bt � x2) for x1, x2 � 0).

3. Derive that the random variables At and Bt are independent. What are their

distributions ?

4. In particular, compute E[At]. Compare with your initial first guess.

Exercise 10. Law of large numbers and central limit theorem.

1. Recall and prove a law of large numbers for a Poisson process with intensity � > 0.

2. Prove that N satisfies the following central limit theorem

Nt � �tp
�t

law�! N (0, 1) as t ! 1,

(a) by using characteristic functions

(b) by showing first that (Nn � �n) /

p
�n converges in distribution as n ! 1 and

then maxt2[n,n+1) (Nt �Nn) /
p
n ! 0 in probability.

Exercise 11.

1. Give an expression for the density function of the conditional distribution of

(T1, ..., Tn) given Nt = n

when N is a Poisson process with intensity � and 0 < T1 < ... < Tn < ... are its

jump times.

2. Derive an expression for the density of Ti given Nt = n, 81  i  n and similarly

for (Ti, Tj) given Nt = n, 81  i < j  n.

3. Set Ui,j = Tj � Ti, 1  i < j  n. Give an expression for the density of Ui,j given

Nt = n. Derive an expression for the density of Tn � Tn�1 given Nt = n.
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Exercise 12. Martingales. Let X = (Xt, t � 0) be a continuous time process and

F = (Ft, t � 0) a filtration, i.e. a nested family of sigma-fields Fs ⇢ Ft ⇢ A 8s  t,

where A is the sigma-field on the probability space (⌦,A,P) over which X is defined.

The process X is a martingale with respect to the filtration F if Xt is Ft-measurable

and integrable 8t and
E[Xt|Fs] = Xs, 80  s  t.

Let N = (Nt, t � 0) be a Poisson process with intensity � > 0. Show that the three

processes

1. (Nt � �t, t � 0) ;

2. ((Nt � �t)

2 � �t) , t � 0) ;

3. (exp(uNt + �t(1� e

u
)), t � 0) (for a given real number u) ;

are martingales with respect to the filtration generated by N , i.e. FN
t = �(Ns, s  t).

Exercise 13. Let N be a Poisson process with intensity � > 0 and let 0 < T1 < ... <

Tn < ... denote its jump times.

1. Show that Tn/n converges almost surely as n ! 1 and identify its limit.

2. Show that

P
i�1 T

�2
i converges almost surely. Let X denote its limit.

3. Show that XNt =

PN(t)
i=1 T

�2
i ! X a.s. as t ! 1.

4. Let (Ui, i � 1) denote a sequence of independent uniform random variables on

[0, 1]. We admit the following result

n

�2
nX

i=1

U

�2
i

law!
n�!1

Z,

where Z is a positive random variable, whose Laplace transform is given by

E[exp(�sZ)] = exp(�c

p
s), 8s � 0, for some c > 0. The goal is to show that

X and c

0
Z have same law for some c

0
that we will explicitly compute.

We asssume moreover that (Ui, i � 1) is independent of N .

(a) Show that for every n � 1 and every t > 0, the law of XNt given Nt = n is the

same as the law of t

�2
Pn

i=1 U
�2
i .

(b) Derive that XN(t) has same distribution as t

�2
PN(t)

i=1 U

�2
i .

(c) Prove that

N(t)

�2

N(t)X

i=1

U

�2
i

law�! Z as t ! 1.

(d) Recall the law of large numbers for Poisson processes and conclude.

5. Derive E[X] = 1.
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Processus de Poisson et méthodes actuarielles (2015-2016)

Feuille d’exercices n

�
2 : Mixed Poisson process,

total claim amount, renewal theory.

Exercise 1. Let

˜N be a mixed Poisson process and denote by

0 < ˜T1 < ... < ˜Tn < ...

its jumps times. Prove that the conditional distribution of (

˜T1, ..., ˜Tn) given

˜N(t) = n
(n 2 N \ {0}) coincides with the distribution of the order statistic of n independent

random variables with common uniform distribution on [0, t].

Exercise 2. A random variable X follows a negative binomial distribution on {0, 1, 2, ...}
with parameters r > 0 and p 2 (0, 1) if

P(X = k) =
�(r + k)

�(r)k!
pr(1� p)k, 8k � 0.

Let

˜N be a mixed Poisson process with mixture distribution ⇥ ⇠ �(�, �). What is the

distribution of

˜N(t) ? The process

˜N is called a negative binomial process. The negative

binomial law is also called mixed Poisson or mixed Gamma-Poisson distribution.

Exercise 3. Let N = (Nt, t � 0) be a standard Poisson process with intensity � > 0.

Let f : [0,1) ! [0,1) be a locally bounded Borel function. Set

N(f)t =
X

i�1

f(Ti)1{Tit} for t � 0,

where the (Ti)i�1 are the jump times of N .

1. Show that for all t � 0, we have N(f)t < 1 almost-surely.

2. If f(s) = 1(a,b](s) where [a, b] ⇢ [0, t], what is the distribution of N(1(a,b])t ?

3. Show that for u � 0, we have

E
⇥
e�uN(f)t

��Nt = n
⇤
=

1

tn

⇣Z t

0

e�uf(s)ds
⌘n

.

4. Derive E
⇥
e�uN(f)t

⇤
ad find back the result of Question 2.

5. Compute E
⇥
N(f)t

⇤
and Var[N(f)t].

6. Prove that N(f)t � �
R t

0 f(s)ds is a martingale.
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Exercise 4. The total claim amount of a portfolio for a year is modelled by

X =

NX

j=1

Cj

where N is the number of claims in the year and Cj is the cost of the j-th claim.

Assume that N follows a mixed Poisson distribution with random parameter ⇤, i.e.

the conditional distribution of N given ⇤ = � is Poisson(�). Assume moreover that

⇤ is distributed according to a �(b, b) distribution, for some b > 0. Assume that the

cost of the claims (Cj)j�1 are independent and identically distributed random variables,

independent of N .

1. Compute E(⇤) and Var(⇤).

2. Compute E(N) and Var(N).

3. We assume that C1 ⇠ Exponential (↵) for some ↵ > 0. Show that the conditional

law of X given N is a Gamma distribution and identify its parameters. What is

the pure premium?

4. Show that the conditional law of ⇤ given (X,N) is independent of X and that it

is a Gamma distribution. Identify its parameters.

Exercise 5. Let (⇠i, i � 1) be a sequence of i.i.d. real-valued random variables, with

second-order moments, independent of the Poisson processN = (Nt, t � 0) with intensity

� > 0. For t � 0, we set

1

Xt =

NtX

i=1

⇠i.

1. Show that t�1Xt converges almost surely as t ! 1 and identify its limit.

We set

2
, for t � 0

Mt =

p
Nt

⇣Xt

Nt
� µ

⌘
.

3. Compute E
⇥
eiuMt

⇤
. and derive that Mt converges in distribution as t ! 1. Iden-

tify its limit.

5. Show that p
t
�Xt

t
� µ

Nt

t

�

converges in distribution as t ! 1 and identify its limit.

Exercise 6. Let (Tn)n�1 be a renewal process and let Nt denote its counting function.

We assume that the common law of the interarrival times admits a density function f
on R (with value 0 on (�1, 0]). For n � 1, we denote by fn the density function of Tn

and Fn its cumulative distribution function.

1. Putting Xt = 0 on {Nt = 0}.
2. Putting Mt = 0 on {Nt = 0}.

2



1. Check that f1(t) = f(t) and show that

fn+1(t) =

Z

R
fn(t� s)f(s)ds.

Define r(t) = E[Nt] if t � 0 and r(t) = 0 for t < 0.

2. Show that r(t) =

P
n�1 Fn(t) and that for n � 2, we have P(Tn  t |T1) =

Fn�1(t� T1).

3. Show that r satisfies the renewal equation

r(t) = F (t) +

Z t

0

r(t� s)f(s)ds, t � 0

wher F denotes the cumulative distribution fcuntion of the common interarrival

times.
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Processus de Poisson et méthodes actuarielles (2015-2016)

Feuille d’exercices n

�3 : Compound Poisson processes,

renewal processes.

Exercise 1. Give a necessary and su�cient condition for a compound Poisson process
to be a standard Poisson process.

Exercise 2. Find the renewal function and the renewal measure of a renewal process
when the interarrival times are distributed according to a Gamma distribution with
parameters 2, � > 0. Find back the renewal theorem and the key renewal theorem in
that case.

Exercise 3. An appliance has repeated failures in time and is repaired after each failure.
Denote by (Xi, i � 1) the successive durations when the appliance is functioning, and
(Yi, i � 1) the successive durations when the appliance is being repaired. In other words,
the appliance is in order in the time interval [0, X1), it is being repaired in the time in-
terval [X1, X1+Y1), then it is in order again in the time interval [X1+Y1, X1+Y1+X2)
and so on. Assume that the X

0
is are i.i.d. and that their common law has no atom and

satisfies P(X1 > 0) = 1 and E[X1] < 1. Assume that the Y

0
i s have the same properties

and that they are moreover independent of the X

0
is.

Denote by p(t) the probability that the appliance is functioning at time t.

1. Let Z1 = X1 + Y1 and let F be the cumulative distribution function of Z1. Show
that p(t) satisfies the renewal equation

p(t) = P(X1 > t) +

Z t

0

p(t� s)dF (s), 8t � 0.

2. Derive

lim
t!1

p(t) =
E[X1]

E[X1 + Y1]
.

Exercise 4. Let N be a renewal process and let F (t) = TN(t)+1 � t denote the time
elapsed between t and the time of the N(t) + 1-th renewal, for t � 0. We denote by PT1

the duration of the interarrival times and FT1 its cumulative distribution function.

1. Show that for every x � 0, the function P(F (t) > x) satifies the renewal equation

P(F (t) > x) = 1� FT1(t+ x) +

Z t

0

P(F (t� u) > x)dPT1(u), t � 0.

(Hint : start by decomposing P(F (t) > x) in two terms, according to the event
{T1 > t} or {T1  t}.)
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2. Solve this equation when the interarrival times follow an exponential distribution.

Exercise 5. In the same setting as Exercise 4, we consider a renewal process with
interarrival times distributed according to a Pareto distribution

P(⌧1 > x) =
1

(1 + x)↵
, x � 0.

1. Let X be a nonnegative random variable. Show that for all r > 0,

Z 1

0

rx

r�1P(X > x)dx = E[Xr].

2. Use the previous identity and the renewal equation satisfied by F (t) to show that

E[F (t)2] =

Z t

0

⇣Z 1

0

2x

(1 + t� u+ x)↵
dx

⌘
dm(u),

where m(t) = E[N(t)] is the renewal measure of N .

3. Derive that for ↵ > 3, we have

E[F (t)2] �! 2

Z 1

0

x(1 + x)1�↵
dx as t ! 1

and compute this limit explicitly.
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Processus de Poisson et méthodes actuarielles (2015-2016)

Feuille d’exercices n

�
4 : Ruin theory

In all exercises that use the Cramer-Lundberg model, we denote by c > 0 the pre-

mimum rate, we denote by � > 0 the intensity of the Poisson process that models the

number of claims and we denote by u � 0 the initial wealth of the insurer.

Exercise 1.

1. Show that the following distribution are thin tailed :

(a) the distribution of a nonnegative bounded random variable.

(b) the Gamma distribution.

(c) the Weibull distribution, with parameters C > 0, � � 1. The density function

of a Weibull distribution with parameters C, � is

f(x) = C�x

��1
exp(�Cx

�

)1{x>0}.

2. Show that the following distributions are sub-exponential :

(a) the Pareto distribution with parameters ↵ > 0, � > 0 (f(x) = ↵�

↵

/(� +

x)

↵+1
, x > 0).

(b) the Weibull distribution with parameters C > 0, � < 1.

Exercise 2. The parameters c > 0, � > 0 et � > 0 are fixed throughout. For every

integer k 2 N⇤
, we consider the Cramer-Lundberg model, where the costs of the claims

are distributed according to a �(k, �) distribution. Set  

(k)
(u) for the ruin probability

of this model. Show that for every u > 0 and every k 2 N⇤
,

 

(k)
(u)   

(k+1)
(u).

Exercise 3. We condider the Cramér-Lundberg model, where the costs of the claims

follow an exponential distribution with parameter � > 0. The safety loading ⇢ is positive.

We wish to give en explicit formula for the ruin probability  (u).

1. Show that the exponential distribution is thin tailed and compute the correspon-

ding adjustment coe�cient R.

2. Derive a “good” upper bound for the ruin probability thanks to Lundberg inequa-

lity.

3. Write the renewal equation satisfied by u 7! e

Ru

 (u).

4. Using the renewal theorem, solve the equation and compute  (u) as a function of

�, ⇢ and u.
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Exercise 4. We consider the setting of the Cramer-Lundberg model, where the costs

X

i

, i � 1 follow a Pareto distribution with index ↵ > 1, � = 1, i.e.

F

X1(x) = (1 + x)

�↵

, x � 0.

1. Compute µ = E[X1] and the associated safety loading ⇢. For which values c do

we have ⇢ > 0 ?

2. Show that

R1
0 e

ux

F

X1,I(dx) = 1 for every u > 0. Derive that F

X1,I is not thin

tailed.

3. Show that F

X1,I is subexponential. What can we say about the ruin probability

 (u) as u ! 1 ?

Exercise 5. We work in the Cramer-Lundberg setting.

Partie A. The r.v. X

i

, i � 1 that model the cost claims have a density

f(x) =

1

2

p
x

e

�
p
x

1{x>0}.

1. Compute µ = E[X1] and F

X1(x), x � 0.

2. For every x � 0, set F

X1,I(x) = µ

�1
R
x

0 F

X1(y)dy and

q(x) =

F

X1(x)/µ

F

X1,I(x)

.

(a) Show that Z 1

x

e

�p
y

dy = 2e

�
p
x

(

p
x+ 1), 8x � 0,

and derive a simple expression for q(x).

(b) Derive that F

X1,I is the cumulative distribution function of a subexponential

distribution.

3. Give an equivalent of the ruin probability  (u) as u ! 1. Express this equivalent

as a function of f and the parameters c,�.

Partie B. We now assume that the X

i

, i � 1 have density

g(x) = 2xe

�x

2
1{x>0}.

1. Show that µ =

p
⇡/2.

2. Show that X1 is thin tailed.

3. Prove the existence of the adjustment coe�cient R.

4. Express the integral

R1
0 ye

Ry�y

2
dy as a function of c,� and R. Derive an expression

for

R1
0 e

Ry�y

2
dy as a function of c,� and R.

5. Compute dF

X1,I and give the renewal equation satisfied by the function

u 7! e

Ru

 (u), and check that the required conditions are satisfied here.
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6. Give the asymptotic behaviour of the ruin probability  (u) as u ! 1 as a function

of c,�, R and ⇡.

Exercise 6.

1. Part 1

An insurer has a risky portfolio with risks which are partitioned into two classes :

the big claims, denoted by X

1
i

, i � 1 and the small claims, denoted by X

2
i

, i � 1.

It is moreover assumed that the two kind of risks are independent. The total claim

amount of the insurer at time t is denoted by

S

t

= S

1
t

+ S

2
t

where S

1
t

=

P
N

1
t

i=1 X
1
i

is the total claim amount of the first kind (big claims) and

S

2
t

=

P
N

2
t

i=1 X
2
i

is the total claim amount of the second kind (small claims).

The processes (N

i

)

i=1,2 are independent Poisson processes with intensities �

i

,

and they are independent of the di↵erent costs X

1
i

, X

2
i

, i � 1. We assume that

(X

1
i

, i � 1) are i.i.d. with distribution F

1
and that the (X

2
i

, i � 1) are i.i.d. with

distribution F

2
.

(a) Compute the value of the moment generating function M

S

1
t
, of S

1
t

, the moment

generating function of S

2
t

and derive the moment generating function of S

t

.

(b) Check that S is a compound Poisson process that will be written in the form

S

t

=

NtX

i=1

Y

i

, t � 0,

where N is a Poisson process with intensity � = �

1
+�

2
and Y

i

, i � 1 are i.i.d.

with distribution F being a mixture of of F

1
and F

2
. Compute the mixture

coe�cients explicitly.

(c) We now assume that F

1
= E(�) is the exponential distribution with parameter

� > 0 and F

2
= Par(↵, 1) is the Pareto distribution with parameters ↵, 1,

with ↵ > 1. Compute in that case the density function f

Y1,I(y), the function

¯

F

Y1,I(y), the expectation E[Y1] and the coe�cient q(y) =

fY1,I(y)

F̄Y1,I(y)
.

(d) Consider the Cramer-Lundberg model

U

t

= u+ ct� S

t

, t � 0

where u � 0 is the initial wealth of the company. We assume that the safety

loading coe�cient ⇢ is the same for each class and we take as premimu rate

c := (1 + ⇢)E[Y1]; with ⇢ > 0.

Under the assumption of Question (c), compute c as a function of the model

parameters and compute an asymptotic equivalent  (u).
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2. Part 2.

The insurer decides to mix the two groups adding an insurance excess a > 0. This

means that the insurer only pays for claims with a cost greater than a threshold

a > 0, and for a claim with cost Z > a, the insurer only covers the amount (Z�a)

We consider the Cramer -Lundberg model

U

t

= u+ ct� S

t

where S

t

=

NtX

i=1

Y

a

i

and Y

a

i

= (Z

i

� a)

+

N being a Poisson process with intensity �.

(a) Compute µ = E[Y a

1 ] = E[(Z1 � a)

+
]. when the claims have a cost Z following

a E(�) distribution.
(b) Compute M

Y

a
1
, the moment generating function of Y

a

1 , and derive the moment

generating function of S

t

.

(c) Show that M

St(u) = M

S

0
t
(u) where

S

0
t

=

N

0
tX

i=1

Z

i

N

0
t

being a Poisson process with intensity � exp(��a) indepenent of the Z

i

’s.

(d) Derive that the processes S and S

0
have the same distribution.

(e) Derive that the risk process U has the same distribution as U

0
defined as

U

0
t

= u+ ct� S

0
t

, t � 0.

Show that  (u) = P[inf
t�0 Ut

< 0] = P[inf
t�0 U

0
t

< 0] and compute an asymp-

totic equivalent for  (u).
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