Lundi 10 décembre 2012. Durée : 1 h 30.

Test n° 2

- 1) Soit *u* la fonction définie sur \mathbb{R}^2 par $u(x; y) = x^2 + y^2 4x 2y + 4$.
 - a) Montrer que u est convexe.
 - b) Montrer que *u* possède un extremum global et le déterminer.
 - c) Déterminer C_8 , la courbe de niveau 8 de la fonction u.
- 2) Soit *v* la fonction définie sur $\wp = \{(x; y) \in \mathbb{R}^2 \mid x > 0, y > 0\}$ par $v(x; y) = e^{\frac{x+y}{xy}}$.
 - a) Montrer que v est de classe C^2 sur \wp .
 - b) Montrer que v est convexe.
 - c) La fonction ν possède-t-elle un extremum sur \wp ?
- 3) Soit f la fonction définie par $f(x; y) = u(x; y) \times v(x; y) = (x^2 + y^2 4x 2y + 4)e^{\frac{x+y}{xy}}$. L'objectif de cette question est de prouver que la fonction f, produit de deux fonctions convexes sur \mathcal{O} n'est pas convexe sur \mathcal{O} .
 - a) Montrer que f est de classe C^1 sur \wp .
 - b) Déterminer les dérivées partielles d'ordre 1 de f.
 - c) Déterminer l'équation de $\Pi_{(2:1)}$, plan tangent à la surface représentative de f au point (2;1).
 - d) On note k la fonction affine qui admet pour représentation graphique $\Pi_{(2;1)}$. Calculer f(1;1), k(1;1).
 - e) Sachant que $f(2; \frac{3}{2}) = -\frac{3}{4}e^{\frac{7}{6}} \approx -2, 4$, $k(2; \frac{3}{2}) = -\frac{1}{2}e^{\frac{3}{2}} \approx -2, 2$, que peut-on déduire de la question précédente? *Justifier soigneusement*.

Dans la suite du problème on suppose que x et y représentent des quantités économiques et que f est une fonction économique définie sur \wp .

- 4) On note $e_{f/x}$ la fonction élasticité de f par rapport à x et $e_{f/y}$ la fonction élasticité de f par rapport à y .
 - a) Déterminer, pour tout $x, y \in \mathcal{O}$, $e_{f/x}(x; y)$ et $e_{f/y}(x; y)$.
 - b) En déduire une approximation de l'accroissement relatif de f au voisinage de (2;1) lorsque x croît de 2 % et y diminue de 3 %.
- 5) On suppose à présent qu'une contrainte économique se traduit par x = 1.
 - a) Déterminer l'expression de la fonction φ définie sur $]0;+\infty[$ par $\varphi(y)=f(1;y)$.
 - b) Prouver que φ est de classe C^1 sur $]0; +\infty[$.
 - c) Calculer une approximation de l'accroissement relatif de φ au voisinage de y=2 si y augmente de 1,2 %.