Analyse Numérique

Série d'exercices n°: 6

Exercice 1

Illustrer graphiquement la méthode du point fixe pour résoudre l'équation x = g(x), dans les 4 cas suivants : $g'(\alpha) < -1, -1 < g'(\alpha) < 0, 0 \le g'(\alpha) < 1$ et $g'(\alpha) > 1$, où α est un point fixe de g.

Exercice 2

Soit A > 0. Montrer que x_0 donné, $x_{n+1} = \frac{1}{2}(x_n + \frac{A}{x_n})$, pour $n \ge 0$, est une méthode de Newton permettant de calculer \sqrt{A} . L'utiliser pour A = 3 avec $x_0 = 1$ (5itérations). Remarque?

Exercice 3

Soit $g:[a,b] \to [a,b]$ $(a,b \in \mathbb{R})$ une fonction de classe C^1 telle que $M \equiv \max_{x \in [a,b]} |g'(x)| < 1$.

1– On considère la suite $(x_n)_{n\geq 0}$ définie par :

$$x_0 \in [a, b], \quad x_{n+1} = g(x_n), \quad n \ge 0$$

Montrer que la suite $(x_n)_{n\geq 0}$ converge vers l'unique point fixe α de g.

2– Montrer que pour tout $n \in \mathbb{N}$, il existe ε_n tel que

$$e_{n+1} = (g'(\alpha) + \varepsilon_n)e_n$$
 avec $\lim_{n \to +\infty} \varepsilon_n = 0$

où $e_n = x_n - \alpha$.

3– On considère la suite $(y_n)_{n\geq 0}$ définie par :

$$y_n = x_n - \frac{(x_{n+1} - x_n)^2}{x_{n+2} - 2x_{n+1} + x_n}, \quad n \ge 0$$

Montrer que $\lim_{n\to+\infty} \frac{y_n-\alpha}{x_n-\alpha}=0$

4- Comparer la vitesse de convergence des deux suites $(x_n)_{n\geq 0}$ et $(y_n)_{n\geq 0}$.

Exercice 4

Soit $P(x) = (x - \alpha_1)(x - \alpha_2) \cdots (x - \alpha_n)$, où $\alpha_1 < \alpha_2 < \cdots < \alpha_n$ sont des réels donnés.

Soit x_o donné dans \mathbb{R} tel que $x_o > \alpha_n$ et soit $(x_k)_{k \ge 0}$ la suite générée par la méthode de Newton pour la résolution de l'équation P(x) = 0.

- **1** Montrer que $x_k > \alpha_n$, pour $k \ge 1$, et que la suite $(x_k)_{k \ge 0}$ est décroissante.
- **2** En déduire que la suite $(x_k)_{k>0}$ est convergente et que sa limite est α_n .

Exercice 5

On suppose que l'équation

$$(1) f(x) = g(x)$$

admet une unique solution simple α sur [a,b], où f et g sont monotones et dérivables.

1) Démontrer que si $\left|\frac{g'(\alpha)}{f'(\alpha)}\right| < 1$, alors la méthode itérative

$$x_0 \text{ donn\'e}, f(x_{n+1}) = g(x_n), n \ge 0$$

est convergente.

2) Si la condition précédente n'est pas satisfaite, proposer une méthode itérative convergente.

Exercice 6

On considère l'équation : f(x) = 0, où f est une fonction de classe C^3 au voisinage d'une racine double r de f (i.e. f(r) = f'(r) = 0 et $f''(r) \neq 0$).

- 1- Montrer que la méthode de Newton pour la recherche de r est localement convergente et est d'ordre 1.
- **2** On propose alors de "modifier" la méthode de Newton, en considérant la suite (x_k) définie par :

$$x_{k+1} = x_k - 2\frac{f(x_k)}{f'(x_k)}$$

Montrer que la méthode de Newton ainsi "modifiée" est localement convergente et est d'ordre 2.

Exercice 7 Accélération de Aitken

Pour résoudre f(x) = 0, on dispose d'une méthode d'approximations successives qu'on suppose convergente et d'ordre p.

(1)
$$x_0 \text{ donn\'e}; x_{n+1} = F(x_n) \qquad n \ge 0$$

On considère la suite (y_n) définie par la méthode d'approximations successives

(2)
$$\begin{cases} y_0 = x_0 & y_{n+1} = \Phi(y_n) & n \ge 0 \\ \text{avec} & \Phi(y) = \frac{yF(F(y)) - (F(y))^2}{F(F(y) - 2F(y) + y} \end{cases}$$

Démontrer que la méthode (2) est d'ordre 2p-1 au moins.