Chapitre 2

THÉORIE DE L'INTERPOLATION

2.1 Introduction

Soit F une fonction dont on connait les valeurs $y_i = F(x_i)$ en un nombre fini de points (x_i) , i = 0, 1, ..., n.

L'interpolation consiste à déterminer une fonction P(x), dans un ensemble donné de fonctions, telle que le graphe de la fonction y = P(x) passe par les points données $(x_i, y_i), i = 0, 1,, n$. Dans ce chapitre, nous nous limiterons au cas où P est une fonction polynômiale. Les applications de la théorie de l'interpolation sont multiples. Dans ce cours, nous insisterons sur les aspects qui fourniront les outils mathématiques essentiels pour le développement des méthodes des chapitres suivants (intégration numérique, résolution numérique des équations différentielles....). Nous donnerons aussi différentes formes du polynôme d'interpolation adaptées à l'interpolation dans les tables de données et nous analyserons l'erreur d'interpolation correspondante.

2.2 Interpolation polynômiale : forme de Lagrange

Soient $x_0, x_1,x_n, (n+1)$ nombres distincts deux à deux. Soient $y_0 = f(x_0), y_1 = f(x_1),, y_n = f(x_n)$, les valeurs d'une fonction f en ces points.

Problème:

Existe-t-il un polynôme P tel que $P(x_i) = y_i, i = 0, 1,n$.

Si oui, quel est son degré? Est-il unique? Quelle est l'expression de P(x) en fonction des données (x_i) et (y_i) ?

Un polynôme $P(x) = a_0 + a_1 x + + a_m x^m$ est entièrement déterminé par la connaissance des (m+1) coefficients $(a_i), i = 0, 1, ..., m$.

Les équations $P(x_i) = y_i$, i = 0, 1, ..., n imposent (n + 1) conditions sur P(x). Il est donc

raisonnable de considérer le cas m=n et de chercher P dans \mathbb{P}_n où \mathbb{P}_n est l'espace vectoriel des polynômes de degré inférieur ou égal à n.

Théorème 2.2.1

Il existe un polynôme unique $P \in \mathbb{P}_n$ tel que $P_n(x_i) = y_i \ \forall i \in \{0, 1, ..., n\}$.

De plus

$$P_n(x) = \sum_{k=0}^{n} y_k L_k(x)$$

où

$$L_k(x) = \prod_{\substack{i=0\\i\neq k}}^n \frac{x-x_i}{x_k-x_i}$$

Démonstration

1/Unicité : Supposons qu'il existe deux polynômes $P_n \in \mathbb{P}_n$ et $Q_n \in \mathbb{P}_n$ tels que

$$P_n(x_i) = y_i$$
, et $Q_n(x_i) = y_i$, $i = 0, 1, ..., n$.

Posons $R_n = P_n - Q_n$. On a : $R_n \in \mathbb{P}_n$, $R_n(x_i) = 0$, pour i = 0, 1, ..., n. Le polynôme R_n dont le degré est au plus n, a donc (n+1) zéros distincts deux à deux. Il est donc identiquement nul. $R_n \equiv 0$ d'où $P_n \equiv Q_n$.

2/Existence:

*1ère démonstration:

posons $P_n(x) = a_0 + a_1x + \dots + a_nx^n$, où les coefficients a_i $(i = 0, \dots n)$ sont à déterminer. En écrivant les n + 1 équations $P(x_i) = y_i$, $i = 0, 1 \dots n$, on obtient un système linéaire de n + 1 équations à n + 1 inconnues :

$$\begin{cases} a_0 + a_1 x_0 + \dots + a_n x_0^n = y_0 \\ a_0 + a_1 x_1 + \dots + a_n x_1^n = y_1 \\ a_0 + a_1 x_n + \dots + a_n x_n^n = y_n \end{cases}$$

qui s'écrit sous forme matricielle MA=Y en posant :

$$A = \begin{pmatrix} a_0 \\ a_1 \\ \vdots \\ a_n \end{pmatrix} , Y = \begin{pmatrix} y_0 \\ y_1 \\ \vdots \\ y_n \end{pmatrix}$$
 et $M = \begin{pmatrix} 1 & x_0 & \vdots & x_0^n \\ 1 & x_1 & \vdots & x_1^n \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & \vdots & x_n^n \end{pmatrix}$

D'après l'unicité (si Y = 0 alors A = 0), la matrice M est donc injective. Comme elle est d'un espace de dimension fini dans un espace de même dimension, M est donc inversible et le système MA = Y admet une solution d'où l'existence du polynôme P_n .

Seulement cette démonstration ne nous permet pas la construction du polynôme P_n .

*2ème démonstration : considèrons le polynôme :

$$L_k(x) = \prod_{i=0}^{n} \frac{x - x_i}{x_k - x_i} pour \quad k = 0, 1, \dots, n$$

$$i = 0$$

$$i \neq k$$

et posons

$$P_n(x) = \sum_{k=0}^n y_k L_k(x).$$

On a $L_k \in \mathbb{P}_n$, pour k = 0, 1,, n (deg $L_k = n$). De plus

$$L_k(x_j) = 0$$
 si $j \neq k$ et $L_k(x_k) = 1$.

D'où $P_n \in \mathbb{P}_n$, et $P_n(x_i) = y_i, i = 0, 1..., n$.

Exemples

1/ Interpolation linéaire (n=1)

Soient x_0 et x_1 deux réels donnés distincts $x_0 \neq x_1$ et f une fonction définie dans un voisinage contenant ces deux réels.

$$P_1(x) = f(x_0) \frac{x - x_1}{x_0 - x_1} + f(x_1) \frac{x - x_0}{x_1 - x_0} = \frac{(x - x_0)f(x_1) - (x - x_1)f(x_0)}{(x_1 - x_0)}$$

ou encore

$$P_1(x) = \frac{f(x_1) - f(x_0)}{x_0 - x_1} x + \frac{x_1 f(x_0) - x_0 f(x_1)}{x_1 - x_0}$$

2/ Interpolation quadratique (n=2)

Soient x_0 , x_1 et x_2 trois réels donnés distincts $x_0 \neq x_1, x_1 \neq x_2$ et f une fonction définie dans un voisinage contenant ces trois réels.

$$P_2(x) = f(x_0) \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} + f(x_1) \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)} + f(x_2) \frac{(x - x_0)(x - x_1)}{(x_2 - x_1)(x_2 - x_0)}$$

ou encore

$$P_2(x) = f(x_0) + \frac{f(x_1) - f(x_0)}{(x_1 - x_0)} (x - x_0) + \frac{1}{x_2 - x_0} \left[\frac{f(x_2) - f(x_1)}{(x_2 - x_1)} - \frac{f(x_1) - f(x_0)}{(x_1 - x_0)} \right] (x - x_0)(x - x_1)$$

Définition 2.2.1

L'expression $P_n = \sum_{k=0}^n y_k L_k(x)$ s'appelle la forme de Lagrange du polynôme d'interpolation de la fonction f relatif aux points $x_0, x_1, ..., x_n$.

Les polynômes L_k sont les polynômes de base de Lagrange associés aux points $x_0, x_1, ..., x_n$.

2.3 Forme de Newton : différences divisées

Avec les mêmes hypothèses et notations que le paragraphe 2.2, notons P_k le polynôme d'interpolation de Lagrange de la fonction f relatif aux points $x_0, x_1,, x_k$.

Considérons le polynôme :

$$Q_k(x) = P_k(x) - P_{k-1}(x)$$
 pour $k \in \{1, ..., n\}$.

Alors Q_k est un polynôme de degré k et $Q_k(x_i) = P_k(x_i) - P_{k-1}(x_i) = 0$ pour $i \in \{0, ..., k-1\}$, donc Q_k peut s'écrire sous la forme

$$Q_k(x) = \alpha_k(x - x_0)(x - x_1)\dots(x - x_{k-1}) = \alpha_k \prod_{i=0}^{k-1} (x - x_i)$$

où α est une constante.

Comme les polynômes Q_k et P_k sont de même de degré k et P_{k-1} est de degré k-1, alors le coefficient a_k de x^k dans P_k est le même que le coefficient α_k de x^k dans Q_k d'où $a_k = \alpha_k$.

Posons
$$\prod_k = \prod_{i=0}^{k-1} (x - x_i)$$

Alors $P_k(x) = a_k \prod_k + P_{k-1}(x)$

Définition 2.3.1

Le coefficient $\alpha_k(a_k = \alpha_k)$ s'appelle différence divisée de f d'ordre k aux points $x_0, x_1,, x_k$ et l'on note

$$a_k = f[x_0, x_1,, x_k]$$

et

$$f[x_i] = f(x_i) \text{ pour } i = 0, 1, ..., n$$

Lemme 2.3.1

La différence divisée de f d'ordre k aux points x_0, x_1, \ldots, x_k est donnée par la formule

$$f[x_0, x_1,, x_k] = \sum_{i=0}^k \frac{f(x_i)}{\prod_{j=0}^k (x_i - x_j)}$$

$$j = 0$$

$$j \neq i$$

Démonstration

En utilisant les polynômes de Lagrange L_i , le polynôme d'interpolation de Lagrange P_k de la fonction f relatif aux points $x_0, x_1,, x_k$ s'écrit :

$$P_k(x) = \sum_{i=0}^k f(x_i) L_i(x)$$

Ou encore

$$P_{k}(x) = \sum_{i=0}^{k} f(x_{i}) \prod_{\substack{j=0\\j \neq i}}^{k} \frac{(x-x_{j})}{(x_{i}-x_{j})} = \sum_{i=0}^{k} \frac{f(x_{i})}{\prod_{\substack{k=0\\j \neq i}}^{k} (x_{i}-x_{j})} \prod_{\substack{j=0\\j \neq i}}^{k} (x-x_{j})$$

On tire donc le coefficient a_k de x_k dans P_k

$$a_k = \sum_{i=0}^k \frac{f(x_i)}{\prod_{j=0}^k (x_i - x_j)}$$
$$j = 0$$
$$j \neq i$$

Remarque 2.1

En posant
$$\prod_{k+1}(x) = \prod_{j=0}^{k}(x - x_j)$$
 on a pour $i = 0, 1, ..., k$

$$\prod_{k+1}'(x_i) = \prod_{j=0}^k (x_i - x_j) \text{ où } \prod_{k+1}' \text{ désigne la dérivée de } \prod_{k+1}'$$

$$j = 0$$

$$j \neq i$$

Le coefficient a_k s'écrit donc :

$$a_k = f[x_0, x_1,, x_k] = \sum_{i=0}^k \frac{f(x_i)}{\prod_{k=1}^i (x_i)}$$

En particulier, pour k = n, on obtient :

$$a_n = f[x_0, x_1,, x_n] = \sum_{i=0}^n \frac{f(x_i)}{\prod'_{n+1}(x_i)}$$

On peut démontrer très facilement que la différence divisée est indépendante de l'ordre des x_i .

Remarque 2.2

Comme conséquence immédiate de la remarque 2.1, on a :

$$a_k = f[x_0, x_1,, x_k] = f[x_{\sigma(0)}, x_{\sigma(1)},, x_{\sigma(k)}]$$

pour toute permutation σ de 0, 1, ..., k.

Proposition 2.3.1

1/

$$f[x_i] = f(x_i) \quad \forall i \in \{0, 1, ..., n\}$$

2/ $f[x_0, x_1,, x_k] = \frac{f[x_1,, x_k] - f[x_0, x_1,, x_{k-1}]}{x_k - x_0} \ \forall k \in \{1, ..., n\}$

Exemple

1/

$$f[x_0, x_1] = \frac{f[x_1] - f[x_0]}{x_1 - x_0} = \frac{f(x_1) - f(x_0)}{x_1 - x_0}$$

$$f[x_1, x_2] = \frac{f[x_2] - f[x_1]}{x_2 - x_1} = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$

2/

$$f[x_0, x_{1,1}x_{2}] = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0}$$

Démonstration de la proposition 2.1

1/Evident

2/D'après la remarque 2.1 on a

$$f[x_0, x_1,, x_k] = \sum_{i=1}^k \frac{f(x_i)}{\prod_{i=1}^k (x_i - x_j)} = \sum_{i=1}^k \frac{f(x_i)}{\prod_{i=1}^k (x_i)}$$

$$j = 0$$

$$j \neq i$$

d'où

$$f[x_1, \dots, x_k] = \sum_{i=1}^k \frac{f(x_i)}{\prod_{j=1}^k (x_i - x_j)}$$

$$j = 1$$

$$j \neq i$$

en multipliant le terme de la somme en haut et en bas par $(x_i - x_0)$ on obtient :

$$f[x_1,, x_k] = \sum_{i=0}^k \frac{(x_i - x_0)f(x_i)}{\prod_{i=0}^k (x_i - x_j)} = \sum_{i=0}^k \frac{(x_i - x_0)f(x_i)}{\prod_{i=0}^k (x_i)}$$

$$j = 0$$

$$j \neq i$$

De la même manière mais en multipliant par $(x_i - x_k)$ on a

$$f[x_0,, x_{k-1}] = \sum_{i=0}^k \frac{(x_i - x_k)f(x_i)}{\prod_{i=0}^k (x_i - x_j)} = \sum_{i=0}^k \frac{(x_i - x_k)f(x_i)}{\prod_{i=0}^k (x_i)}$$
$$j = 0$$
$$j \neq i$$

d'où

$$f[x_1,, x_k] - f[x_0,, x_{k-1}] = \sum_{i=0}^k \frac{(x_k - x_i + x_i - x_0) f(x_i)}{\prod_{k+1}' (x_i)}$$

$$= (x_k - x_0) \sum_{i=0}^k \frac{f(x_i)}{\prod_{k+1}' (x_i)} = (x_k - x_0) f[x_0,, x_k]$$
d'où
$$f[x_0, x_1,, x_k] = \frac{f[x_1,, x_k] - f[x_0, x_1,, x_{k-1}]}{x_k - x_0}$$

Remarque 2.3

Comme généralisation immédiate de la formule précédente, on a :

$$f[x_i, x_{i+1},, x_{i+k}] = \frac{f[x_{i+1},, x_{i+k}] - f[x_i, x_{i+1},, x_{i+k-1}]}{x_{i+k} - x_i} \quad \forall i \in \{0, 1, ..., n-1\}$$
$$\forall k \in \{0, 1, ..., n-i\}$$

Cette formule nous permet donc de calculer les différences divisées d'ordre k à partir des différences divisées d'ordre k-1.

On peut donc dresser le tableau suivant :

On peut également écrire un algorithme qui permet de calculer ces différences divisées : posons : $D_{i,k} = f[x_i, x_{i+1}, ..., x_{i+k}]$ et $D_{i,0} = f(x_i)$ pour $i \in \{0, 1, ..., n\}$ et $k \in \{0, 1, ..., n-i\}$ D'après la remarque 2.3 on a $D_{i,k} = \frac{D_{i+1,k-1} - D_{i,k-1}}{x_{i+k} - x_i}$ d'où l'algorithme suivant :

Algorithme 2.1

Soient x_0, x_1, \dots, x_n n+1 réels connus et

 y_0, y_1, \dots, y_n les valeurs respectives de la fonction f en ces points.

Pour i = 0 jusqu'à n faire

$$D_{i,0} = y_i$$

 $\sin i$

Pour k = 0 jusqu'à n faire

Pour i = 0 jusqu'à n - k faire

$$D_{i,k} = \frac{D_{i+1,k-1} - D_{i,k-1}}{x_{i+k} - x_i}$$
 fin i

Proposition 2.3.2 (forme de Newton du polynôme d'interpolation)

Soit f une fonction définie sur [a,b] et $x_0, x_1, ..., x_n$ n+1 points de [a,b] où on connait les valeurs de la fonctions f.

Alors le polynôme d'interpolation de Lagrange s'écrit :

$$P_n(x) = f(x_0) + \sum_{k=1}^{n} f[x_0, x_1,, x_k] \prod_{k=1}^{n} f[x_0, x_1,, x_k]$$

$$où \prod_{k}(x) = \prod_{j=0}^{k-1} (x - x_j)$$

Cette écriture s'appelle la forme de Newton du polynôme d'interpolation.

Démonstration

Ecrivons le polynôme $P_n(x)$ sous la forme :

$$P_n(x) = P_0(x) + P_1(x) - P_0(x) + \dots + P_n(x) - P_{n-1}(x)$$

= $P_0(x) + \sum_{k=1}^{n} P_k(x) - P_{k-1}(x)$

où $P_k(x)$ est le polynôme d'interpolation de la Lagrange aux points x_0, x_1, \ldots, x_k .

On a déjà vu que
$$P_k(x) - P_{k-1}(x) = a_k Q_k(x) = a_k \prod_{j=0}^{k-1} (x - x_j) = f[x_0, x_1,, x_k] \prod_k (x)$$

Et comme $P_0(x) = f(x_0)$, on obtient :

$$P_n(x) = f(x_0) + \sum_{k=1}^{n} f[x_0, x_1, \dots, x_k] \prod_{k=1}^{n} f(x_0, x_1, \dots, x_k]$$

Remarque 2.4

La forme de Newton du polynôme d'interpolation P_n donne un moyen commode pour le calcul de la valeur $P_n(x)$ en tout point donné x. En effet supposons connues les différences divisées $f[x_0, ..., x_k] = D_{0,k} = a_k$, pour k = 0, ..., n.

On peut écrire :

$$\begin{split} P_n(x) &= a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1)...... + a_n(x - x_0)....(x - x_{n-1}) \\ &= a_0 + (x - x_0)[a_n(x - x_1)....(x - x_{n-1}) + a_{n-1}(x - x_1)....(x - x_{n-2}) + + a_1] \\ &= a_0 + (x - x_0)[a_1 + (x - x_1)\left[.\left[a_{n-3} + (x - x_{n-3})\left[a_{n-2} + (x - x_{n-2})\left[a_{n-1} + a_n(x - x_{n-1})\right]\right].\right]] \end{split}$$

On peut écrire donc l'algorithme suivant pour le calcul de $P_n(x)$, x donné.

Algorithme 2.2

On se donne
$$x, x_0,, x_n, a_0,, a_n$$

faire $t_0 = a_n$
Pour $k = 1$ jusqu'à n

faire
$$t_k = a_{n-k} + (x - x_{n-k})t_{k-1}$$

fin
$$t_n = \text{la valeur de } P_n(x)$$

2.4 Interpolation en des points équidistants. Différences finies.

Soient $x_0, ..., x_n$ n+1 points équidistants tels que $x_i = x_0 + ih$ où h est un réel, $h \neq 0$.

Et soit f une fonction telle qu'on connait ses valeurs aux points $x_0, ..., x_n$.

Posons
$$f_i = f(x_i)$$
 pour $i = 0, \dots, n$.

On définit l'opérateur des différences finies progressives par :

$$\nabla f(x) = f(x+h) - f(x)$$

et notons:

$$\nabla f_i = f_{i+1} - f_i$$

Plus généralement, définissons l'opérateur des différences finies progressives d'ordre $k \geq 1$ par :

$$\nabla^k f_i = \nabla^{k-1} f_{i+1} - \nabla^{k-1} f_i$$

et

$$\nabla^0 f_i = f_i$$

Les différences finies $\nabla^k f_i$ peuvent être calculées par l'algorithme 2.3 suivant :

Algorithme 2.3:

Supposons qu'on connait les x_i et les f_i (i = 0, ..n)Pour i = 0 jusqu'à n faire $\nabla^0 f_i = f_i$ fin iPour k = 1 jusqu'à n faire Pour i = 0 jusqu'à n - k faire $\nabla^k f_i = \nabla^{k-1} f_{i+1} - \nabla^{k-1} f_i$ fin ifin k

Lemme 2.4.1

Pour tout $i \in \{0,, n\}$ on a

$$\nabla^k f_i = f[x_i, ..., x_{i+k}] h^k k! \quad \forall k \in \{0, ..., n-i\}$$

Démonstration

On va faire la démonstration par récurrence sur l'ordre k.

*Pour
$$k = 0$$
, on a : $\nabla^0 f_i = f_i = f(x_i) = f[x_i] = f[x_i] h^0 0!$

*Supposons que la relation soit vraie jusqu'à l'ordre k. On a donc

$$\nabla^k f_i = f[x_i, ..., x_{i+k}] \ h^k \ k!$$
 et $\nabla^k f_{i+1} = f[x_{i+1}, ..., x_{i+1+k}] \ h^k \ k!$
D'où:

$$\begin{split} \nabla^{k+1}f_i &= \nabla^k f_{i+1} - \nabla^k f_i \\ &= f[x_i,....,x_{i+k}] \ h^k \ k! - f[x_{i+1},....,x_{i+1+k}] \ h^k \ k! \\ &= h^k \ k! \ (f[x_i,....,x_{i+k}] - f[x_{i+1},....,x_{i+1+k}] \) \qquad \text{(D'après le lemme1)} \\ &= h^k \ k! \ (x_{i+1+k} - x_i) f[x_i,....,x_{i+1+k}] \\ &= h^k \ k! \ (k+1) h \ f[x_i,....,x_{i+1+k}] \qquad \qquad car \ x_{i+1+k} - x_i = (k+1) h \) \\ &= h^{k+1} \ (k+1)! f[x_i,....,x_{i+1+k}] \end{split}$$

Remarque 2.5

On a
$$f[x_0, x_1,, x_k] = \frac{\nabla^k f_0}{h^k k!}$$

Le polynôme d'interpolation $P_n(x) = f(x_0) + \sum_{k=1}^n f[x_0, x_1, ..., x_k] \prod_k (x)$ peut s'écrire alors :

$$P_n(x) = f(x_0) + \sum_{k=1}^{n} \frac{\nabla^k f_0}{h^k k!} \prod_{k=1}^{n} f_k(x)$$

Proposition 2.4.1

Le polynôme d'interpolation $P_n(x)$ peut s'écrire :

$$P_n(x) = \sum_{k=0}^{n} \nabla^k f_0\left(\begin{smallmatrix} t \\ k \end{smallmatrix}\right)$$

$$\begin{array}{l} où \quad {t \choose k} = \frac{t(t-1)(t-2).....(t-k+1)}{k!} \quad (coefficient \ du \ bin\^{o}me \ g\'{e}n\'{e}ralis\'{e} \) \\ avec \quad {t \choose 0} = 1 \ et \ t = \frac{x-x_0}{h} \end{array}$$

Démonstration

On sait que :
$$P_n(x) = f(x_0) + \sum_{k=1}^n \frac{\nabla^k f_0}{h^k k!} \prod_k f(x)$$

Or *
$$f(x_0) = {t \choose 0} \nabla^0 f_0$$

*
$$\prod_{k}(x) = \prod_{j=0}^{k-1} (x - x_j)$$

*
$$x = ht + x_0$$
, $x_j = hj + x_0$ d'où $x - x_j = h(t - j)$ et alors $\prod_{j=0}^{k-1} (x - x_j) = \prod_{j=0}^{k-1} h(t - j)$

et donc
$$\prod_k(x) = h^k t(t-1)(t-2)....(t-k+1)$$

d'où
$$P_n(x) = f(x_0) + \sum_{k=1}^n \frac{\nabla^k f_0}{k!} t(t-1)(t-2)....(t-k+1)$$
 et par suite :

$$P_n(x) = \sum_{k=0}^{n} \nabla^k f_0\left(\begin{smallmatrix} t \\ k \end{smallmatrix}\right)$$

Remarque 2.4

Etant donné un nombre x, on peut calculer la valeur $P_n(x)$ du polynôme d'interpolation au point x par un algorithme analogue à l'algorithme 2.2:

Algorithme 2.4

Supposons connus $:x, x_0, n, h, \nabla^1 f_0, \dots, \nabla^n f_0$ faire $t = \frac{x - x_0}{h}$ $q_0 = \nabla^n f_0$ Pour $k = 1, \dots, n$ faire $q_k = \nabla^{n-k} f_0 + \frac{t - n + k}{n - k + 1} q_{k-1}$ fin k q_n la valeur de $P_n(x)$.

Remarque 2.5

On peut définir les différences finies régressives par $\triangle^k f(x) = f(x) - f(x-h)$ et $\triangle^k f(x) = \triangle^{k-1} f(x) - \triangle^{k-1} f(x-h)$

On peut montrer que

$$P_n(x) = \sum_{k=0}^{n} \triangle^k f_n \begin{pmatrix} -t+k-1 \\ k \end{pmatrix} \text{ où } t = \frac{x_n - x}{h}$$

2.5 Interpolation d'Hermite

Soient $x_0, ..., x_n$ n+1 nombres distincts et $\alpha_0, ..., \alpha_n$ n+1 entiers naturels donnés. On suppose connues les valeurs $f^{(l)}(x_i) = y_{i,l}$ pour $i \in \{0, 1, ..., n\}$ et $l \in \{0, ..., \alpha_i\}$ ($f^{(l)}$ désigne la dérivée $l^{i \`{e} m e}$ de la fonction f).

Problème:

Existe-t-il un polynôme P tel que :

$$P^{(l)}(x_i) = y_{i,l}$$
, pour $i \in \{0, 1, ..., n\}$ et $l \in \{0,, \alpha_i\}$?

Si oui quel est son degré? Est-il unique?

Si on écrit $P(x) = a_0 + a_1x + \dots + a_mx^m$, on aura (m+1) inconnues (a_0, a_1, \dots, a_m) .

Pour chaque i fixé, on a $\alpha_i + 1$ équations linéaires :

$$P^{(l)}(x_i) = y_{i,l} \text{ pour } l \in \{0,, \alpha_i\}$$

Au total , on a donc :
$$\sum_{i=0}^{n} (\alpha_i + 1) = n + 1 + \sum_{i=0}^{n} \alpha_i \text{ équations.}$$

Il est donc raisonnable de considérer le cas où $P \in \mathbb{P}_m$ avec $m = n + \sum_{i=0}^n \alpha_i$

Théorème 2.5.1

Etant donnés (n+1) points distincts $x_0, ..., x_n$ et n+1 entiers naturels $\alpha_0, ..., \alpha_n$ et soit $m=n+\sum_{i=0}^n \alpha_i$

Soit f une fonction admettant des dérivées d'ordre α_i aux points x_i qu'on notera $y_{i,l} = f^{(l)}(x_i)$. Alors il existe un polynôme $P_m \in \mathbb{P}_m$ unique tel que :

$$P_m^{(l)}(x_i) = y_{i,l} \ pour \ i \in \{0, 1, ...n\} \ et \ l \in \{0,\alpha_i\}$$

Ce polynôme s'appelle polynôme d'interpolation d'Hermite de la fonction f relativement aux points $x_0,, x_n$ et aux entiers $\alpha_0,, \alpha_n$.

Démonstration

Posons $P_m(x) = a_0 + a_1 x + a_m x^m$, alors trouver le polynôme P_m équivaut à déterminer les (m+1) coefficients a_0, a_1, a_m. Comme on a (m+1) équations linéaires $P_m^{(l)}(x_i) = y_{i,l}$. On obtient un système linéaire de (m+1) équations à (m+1) inconnus.

Pour démontrer l'existence de la solution, il suffit de démontrer l'unicité.

Unicité:

supposons qu'il existe deux polynômes d'interpolation d'Hermite $P_m(x)$ et $Q_m(x)$ de degré $\leq m$ tels que : $P_m^{(l)}(x_i) = y_{i,l}$ pour $i \in \{0, 1, ..., n\}$ et $l \in \{0,, \alpha_i\}$

$$Q_m^{(l)}(x_i) = y_{i,l} \text{ pour } i \in \{0, 1, ..., n\} \text{ et } l \in \{0,, \alpha_i\}$$

Posons alors $R_m = P_m - Q_m$, alors le degré de $R_m \le m$ et

$$R_m^{(l)}(x_i) = 0 \text{ pour } i \in \{0, 1, ..., n\} \text{ et } l \in \{0,, \alpha_i\}$$

D'où x_i est un zéro d'ordre $\alpha_i + 1$ (au moins) du polynôme R_m pour $i \in \{0, 1, ..., n\}$ et donc il existe un polynôme S(x) tel que $R_m(x) = S(x) \prod_{i=0}^n (x-x_i)^{1+\alpha_i}$ d'où si $S(x) \neq 0$

 $deg(R_m) = \deg(S) + (n+1) + \sum_{i=0}^n \alpha_i = m+1 + \deg(S) \text{ et comme } \deg(R_m) \leq m \text{ alors } S \text{ est n\'ecessairement nul d'où } R_m \equiv 0 \text{ et donc } P_m = Q_m.$

Remarque 2.6

La détermination du polynôme P_m d'Hermite exige uniquement la connaissance des valeurs de la fonction f et de ses dérivées d'ordre α_i aux points $x_0, x_1, ..., x_n$.

Le problème général d'interpolation revient à la résolution du problème suivant :

$$\begin{cases} Trouver P_m \in \mathbb{P}_m & v\'{e}rifiant \\ P_m^{(l)}(x_i) = b_{i,l} & pour \ i \in \{0,1,...,n\}, l \in \{0,....,\alpha_i\} \end{cases}$$

où les $b_{i,l}$ sont des constantes données. On sait que ce problème admet une solution unique dans $I\!\!P_m$.

Détermination explicite du polynôme d'Hermite

Pour déterminer le polynôme d'interpolation d'Hermite de la fonction f relativement aux points $x_0,, x_n$ et aux entiers $\alpha_0,, \alpha_n$, il suffit de construire une base particulière \mathbb{P}_m , et d'expliciter \mathbb{P}_m dans cette base.

Construction de la base :

soit, pour $i \in \{0, 1, ..., n\}$ et $l \in \{0, ..., \alpha_i\}$, $P_{i,l}$ le polynôme solution du problème suivant :

$$\left\{ \begin{array}{l} Trouver \ P_m \in I\!\!P_m \ \ v\acute{e}rifiant \\ P_m^{(r)}(x_j) = b_{j,r} \ \ avec \ \left\{ \begin{array}{l} b_{j,r} = 1 \ si \ (j,r) = (i,l) \\ b_{j,r} = 0 \ si(j,r) \neq (i,l) \end{array} \right. \end{array} \right.$$

Alors les polynômes $P_{i,l}$ forment une base de \mathbb{P}_m . En effet, on a (m+1) polynômes $P_{i,l}$ et ces polynômes forment une famille libre. Il suffit de considèrer l'équation suivante :

$$\sum_{i,l} \beta_{i,l} P_{i,l}(x) = 0$$

et de l'écrire, ainsi que les dérivées d'ordre $k \leq \alpha_i$, pour chaque x_i et d'en déduire que $\beta_{i,l} = 0$. Alors, tout polynôme P(x) de \mathbb{P}_m s'écrit d'une manière unique sous la forme :

$$P(x) = \sum_{i=0}^{n} (\sum_{l=0}^{\alpha_i} \beta_{i,l} P_{i,l}(x))$$

Et, en particulier, $P_m(x)$ le polynôme d'interpolation d'Hermite de la fonction f:

$$P_m(x) = \sum_{i=0}^{n} (\sum_{l=0}^{\alpha_i} f^{(l)}(x_i) P_{i,l}(x))$$

Déterminons alors les polynômes $P_{i,l}(x)$: posons

$$q_{i}(x) = \prod_{\substack{j=0\\ j \neq i}}^{n} \left(\frac{x - x_{j}}{x_{i} - x_{j}}\right)^{\alpha_{j}+1}$$

Et on construit $P_{i,l}$ de la manière suivante :

$$P_{i,\alpha_i}(x) = \frac{(x - x_i)^{\alpha_i}}{\alpha_i!} q_i(x)$$

$$P_{i,l}(x) = \frac{(x - x_i)^l}{l!} q_i(x) - \sum_{i=l+1}^{\alpha_i} {l \choose j} q_i^{(j-l)}(x_i) P_{i,j}(x) \qquad l = \alpha_i - 1, \alpha_i - 2, \dots 1, 0$$

Il est très facile de vérifier que les $P_{i,l}$ sont solutions du problème posé au départ.

Remarque 2.7

Si $\alpha_i = 0$ pour $i \in \{0, 1, ..., n\}$, on se ramène au cas de l'interpolation de Lagrange.

Erreur d'interpolation 2.6

Sous les hypothèses du paragraphe précédent, soit P_m le polynôme d'interpolation d'Hermite relativement aux points $x_0, ..., x_n$ et aux entiers $\alpha_0, ..., \alpha_n$ tel que $P_m^{(l)}(x_i) = f^{(l)}(x_i) = y_{i,l}, \forall i \in$ $\{0,1,...,n\}$ et $l\in\{0,...,\alpha_i\}$ et soit un t nombre donné. On veut approcher la valeur de la fonction f au point t par la valeur du polynôme P_m en ce point et estimer l'erreur d'interpolation $E(t) = f(t) - P_m(t)$ commise.

Supposons que la fonction $f \in C^{m+1}(I_t)$ où I_t est le plus petit intervalle contenant $x_0,, x_n, t$ et $m=n+\sum \alpha_i.$ On a le théorème suivant :

Théorème 2.6.1

Il existe $\xi \in I_t$ tel que

$$E(t) = f(t) - P_m(t) = \frac{f^{(m+1)}(\xi)}{(m+1)!} \phi_{m+1}(t)$$

avec

$$\phi_{m+1}(t) = \prod_{i=0}^{n} (t - x_i)^{1+\alpha_i}$$

Démonstration

1er cas : $t \in \{x_0, ..., x_n\}$ alors $E(t) = \phi_{m+1}(t) = 0$ et ξ est quelconque.

2ème cas : $t \notin \{x_0,, x_n\}$

Considérons alors la fonction $F(x) = E(x) - \frac{E(t)}{\phi_{m+1}(t)}\phi_{m+1}(x)$ on a :

F est une fonction de classe C^{m+1} .

F(t) = 0 donc t est zéro de la fonction F.

 $F^{(l)}(x_i) = 0$ pour $i \in \{0, 1, ..., n\}$ et $l \in \{0, ..., \alpha_i\}$ donc x_i est un zéro d'ordre $1 + \alpha_i$ de F

D'après le lemme de Rolle, entre deux zéros distincts de F, il y a un zéro de F'.

D'où : F' admet n+1 zéros dans I_t autres que $x_0, ..., x_n$ et t.

De plus pour tout $i \in \{0,1,...,n\}$, x_i est un zéro d'ordre α_i de F' (si $\alpha_i \neq 0$). En conclusion :

F' admet $n+1+\sum_{i=0}^{\infty}\alpha_i=m+1$ zéros (égaux ou distincts) dans I_t .

En réitérant le raisonnement, F'' admet m zéros (égaux ou distincts) dans I_t et de proche en proche $F^{(m+1)}$ admet un zéro dans I_t . Soit ξ ce zéro. On a donc

$$F^{(m+1)}(\xi) = 0$$
, soit $E^{(m+1)}(\xi) - \frac{E(t)}{\phi_{m+1}(t)}\phi_{m+1}^{(m+1)}(\xi) = 0$

 $F^{(m+1)}(\xi) = 0, \text{ soit } E^{(m+1)}(\xi) - \frac{E(t)}{\phi_{m+1}(t)} \phi_{m+1}^{(m+1)}(\xi) = 0$ Or $E^{(m+1)}(\xi) = f^{(m+1)}(\xi) - P_m^{(m+1)}(\xi) = f^{(m+1)}(\xi)$ (Car deg $(P_m) \le m$ d'où $P_m^{(m+1)}(x) = 0$)

et
$$\deg(\phi_{m+1}) = m+1$$
 d'où $\phi_{m+1}^{(m+1)} = (m+1)!$
Enfin $E^{(m+1)}(\xi) - \frac{E(t)}{\phi_{m+1}(t)} \phi_{m+1}^{(m+1)}(\xi) = 0$ s'écrit : $f^{(m+1)}(\xi) - \frac{E(t)}{\phi_{m+1}(t)} (m+1)! = 0$ d'où

$$E(t) = \frac{f^{(m+1)}(\xi)\phi_{m+1}(t)}{(m+1)!}$$

Corollaire 2.6.1

Soit P_n le polynôme d'interpolation de Lagrange d'une fonction f relativement aux points $x_0, ..., x_n$. Soit t un réel donné. Supposons que $f \in C^{(n+1)}(I_t)$ où I_t est le plus petit segment contenant $x_0, ..., x_n$ et t.

Alors il existe $\xi \in I_t$ tel que

$$f(t) - P_n(t) = \frac{f^{(n+1)}(\xi)}{(n+1)!} \prod_{n+1} f(t)$$

avec
$$\prod_{n+1} (t) = \prod_{i=0}^{n} (t - x_i)$$

Démonstration

C'est un cas particulier du théorème précédent avec $\alpha_i=0$ pour i=0,1...n

Fin du chapitre 2.