Soit $f: \mathbb{R} \to \mathbb{R}$. Traduire avec des quantificateurs les propriétés suivantes :

- (1) La fonction f prend des valeurs arbitrairement grandes :
- (2) La fonction f n'a pas de point de maximum :

A-t-on $(1) \Rightarrow (2)$? A-t-on $(2) \Rightarrow (1)$? Dans chaque cas, le démontrer ou trouver un contre-exemple.

Donner la définition en français (avec une phrase courte) des deux propriétés suivantes :

 $\exists M > 0, \forall x \in \mathbb{R}, |f(x)| \leq M$:

 $\exists \varepsilon > 0, \forall y \in \mathbb{R}, \exists x > y, |f(x)| > \varepsilon :$

Pour $n \in \mathbb{N}^*$, on pose $u_n = \sqrt{1 + \ln(1 + \frac{1}{n})} - 1 - \frac{1}{2n}$. Déterminer un équivalent de u_n lorsque $n \to \infty$.

Calculer et factoriser le polynôme caractéristique de $A = \begin{pmatrix} 0 & 1 & 2 \\ 0 & -3 & 4 \\ 0 & 1 & -3 \end{pmatrix}$

En déduire une matrice P et une matrice D diagonale telles que $A = PDP^{-1}$ (on ne demande pas de calculer P^{-1}).