
Introduction to Continuous optimization
Assessment

(6th January 2022)
Durée: 3h (It is not necessary to do all 4 exercises!)

Exercise I: non-linear forward-backward descent

We consider a space X (to simplify, finite-dimensional, yet everything below is dimension independent), with
a norm ∥ · ∥, and dual X∗ with dual norm, for all u ∈ X∗,

∥u∥∗ = sup
{
⟨u, x⟩X∗,X : ∥x∥ ≤ 1

}
and we recall (admit) that

∥x∥ = sup
{
⟨u, x⟩X∗,X : ∥u∥∗ ≤ 1

}
.

In particular, ⟨u, x⟩X∗,X ≤ ∥u∥∗∥x∥ for any x ∈ X, u ∈ X∗. Here, ⟨u, x⟩X∗,X denotes the linear form u ∈ X∗

evaluated at the vector x ∈ X. (In practice, one identifies X ∼ Rd, X∗ ∼ Rd, and ⟨u, x⟩X∗,X =
∑d

i=1 uixi,

where d ≥ 1 is the dimension. In this case, one can use the standard Euclidean stucture of Rd to define the
convex conjugate, etc.)

1. Let N (x) := ∥x∥2/2. Show that the conjugate

N ∗(u) = sup
x

⟨u, x⟩X∗,X −N (x)

is given by ∥u∥2∗/2.

One has, letting x = ty for t = ∥x∥:

N ∗(u) = sup
t≥0,∥y∥≤1

⟨u, ty⟩X∗,X − t

2

2

= sup
t≥0

t∥u∥∗ −
t

2

2

=
1

2
∥u∥2∗.

Important remark: We recall that u ∈ ∂N (x) ⇔ x ∈ ∂N ∗(u) ⇔ ⟨u, x⟩X∗,X = N (x) + N ∗(u), with
moreover, in that case, using that N and N ∗ are 2-homogeneous, ⟨u, x⟩X∗,X = 2N (x) = 2N ∗(u) (Legendre-
Fenchel’s identity plus Euler’s identity for homogeneous functions), therefore ∥x∥ = ∥u∥∗.

2. We consider a convex, lower-semicontinuous function F (x) = f(x) + g(x), where f, g are convex and
where f has L-Lipschitz differential df : X → X∗:

∥df(x)− df(y)∥∗ ≤ L∥x− y∥.

We introduce the “Bregman divergence” of f , defined by:

Df (y, x) := f(y)− f(x)− ⟨df(x), y − x⟩X∗,X .

Show that Df (y, x) ≤ L∥y − x∥2/2 = LN (y − x).

This is the classical Taylor expansion:

f(y) = f(x) +

∫ 1

0

⟨df(x+ s(y − x)), y − x⟩X∗,X ds

= f(x) + ⟨df(x), y − x⟩X∗,X +

∫ 1

0

⟨df(x+ s(y − x))− df(x), y − x⟩X∗,X ds,
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so that:

Df (y, x) =

∫ 1

0

⟨df(x+ s(y − x))− df(x), y − x⟩X∗,X ds.

Then, we use

⟨df(x+ s(y − x))− df(x), y − x⟩X∗,X ≤ ∥df(x+ s(y − x))− df(x)∥∗∥y − x∥ ≤ Ls∥y − x∥2,

and
∫ 1

0
sds = 1/2 to conclude.

3. (Implicit-explicit algorithm.) We define an iterative algorithm by choosing x0 ∈ X, τ > 0, and letting,
for k ≥ 0, xk+1 be a minimizer of:

min
x

g(x) +
〈
df(xk), x

〉
X∗,X

+
1

τ
N (x− xk).

We admit that it exists (it is not difficult), and assume that it can be computed (this is an assumption on g).
Write the equation satisfied by xk+1, and show that there is qk+1 ∈ ∂g(xk+1) such that:

∥xk+1 − xk∥ = τ∥qk+1 + df(xk)∥∗

Since
〈
df(xk), x

〉
+ 1

τN (x− xk) is continuous with full domain in E ∼ Rd, one can apply the results from the
lecture notes and one has at xk+1:

0 ∈ ∂g(xk+1) + df(xk) +
1

τ
∂N (xk+1 − xk)

which means that there exists qk+1 ∈ ∂g(xk+1) such that

−τ(qk+1 + df(xk)) ∈ ∂N (xk+1 − xk).

By the results in Question 1., it implies in particular that:

∥τ(qk+1 + df(xk))∥∗ = ∥xk+1 − xk∥.

4. Show that for all x ∈ X,

F (x) +
1

τ
N (x− xk) ≥ F (xk+1) +

1

τ
N (xk+1 − xk)−Df (x

k+1, xk).

Deduce that if τ = θ/L for some θ ∈]0, 1[, one has:

F (xk) ≥ F (xk+1) +
1− θ

2τ
∥xk+1 − xk∥2.

By definition, xk+1 satisfies that for all x ∈ X,

g(x) +
〈
df(xk), x

〉
X∗,X

+
1

τ
N (x− xk) ≥ g(xk+1) +

〈
df(xk), xk+1

〉
X∗,X

+
1

τ
N (xk+1 − xk).

Now, by convexity,

F (x) +
1

τ
N (x− xk) ≥ g(x) + f(xk) +

〈
df(xk), x− xk

〉
X∗,X

+
1

τ
N (x− xk),

and we deduce:

F (x) +
1

τ
N (x− xk) ≥ g(xk+1) + f(xk) +

〈
df(xk), xk+1 − xk

〉
X∗,X

+
1

τ
N (xk+1 − xk).

We conclude using that g(xk+1) + f(xk) +
〈
df(xk), xk+1 − xk

〉
X∗,X

= F (xk+1)−Df (x
k+1, xk). Then, using

Question 2., it follows, if we take x = xk:

F (xk) ≥ F (xk+1) +
1

τ
N (xk+1 − xk)− L

2
∥xk+1 − xk∥2 = F (xk+1) +

(
1

τ
− L

)
N (xk+1 − xk)

so that if τ ≤ θ/L ⇔ L ≤ θ/τ , we can show the required inequality.
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5. Using the convexity of g, f , show that, considering qk+1 ∈ ∂g(xk+1) with τ∥qk+1+df(xk)∥∗ = ∥xk+1−xk∥,
one has, for any x∗ ∈ X:

F (xk+1)− F (x∗) ≤
(
1

τ
+ L

)
∥xk+1 − xk∥∥x∗ − xk+1∥.

One has
F (x∗) = f(x∗) + g(x∗) ≥ f(xk+1) + g(xk+1) +

〈
df(xk+1) + qk+1, x∗ − xk+1

〉
X∗,X

Hence

F (xk+1)− F (x∗) ≤ −
〈
df(xk) + qk+1, x∗ − xk+1

〉
X∗,X

−
〈
df(xk+1)− df(xk), x∗ − xk+1

〉
X∗,X

≤ ∥df(xk) + qk+1∥∗∥x∗ − xk+1∥+ ∥df(xk+1)− df(xk)∥∗∥x∗ − xk+1∥

≤ 1

τ
∥xk+1 − xk∥∥x∗ − xk+1∥+ L∥xk+1 − xk∥∥x∗ − xk+1∥

6. We denote for k ≥ 0, ∆k := F (xk) − F (x∗), where x∗ is a minimizer of F . We now assume that there
exists D > 0 such that ∥xk − x∗∥ ≤ D for all k ≥ 0 (this is clear for instance if the domain of g is bounded).
Deduce from the Questions 5. and 4. (still using τ = θ/L) that for all k ≥ 0:

∆k+1 +
1

2

1− θ

(1 + θ)2
τ

D2
∆2

k+1 ≤ ∆k

We have from 5.:

∆k+1 ≤ 1 + θ

τ
D∥xk+1 − xk∥ ⇒ N (xk+1 − xk) ≥ 1

2

τ2

(1 + θ)2D2
∆2

k+1.

From 4.,

∆k+1 +
1− θ

τ
N (xk+1 − xk) ≤ ∆k.

Hence,

∆k+1 +
1− θ

2τ

τ2

(1 + θ)2D2
∆2

k+1 ≤ ∆k.

7. Letting ak := 1−θ
2(1+θ)2

τ
D2∆k, one has therefore ak+1 + a2k+1 ≤ ak, and ak ≥ 0 for all k (assuming x∗ is a

minimizer of F ).

i. show that if a0 ≥ 2 and k ≥ log2 log2 a0, then ak ≤ 2 (We recall log2 x = lnx/ ln 2, so that 2log2 x = x).
[Remark: it means for instance that a10 ≤ 2 if a0 ≈ 10300.]

ii. show that if ak0
≤ 2, for some k0 ≥ 1, then:

ak ≤ 2

k − k0 + 1
.

[Hint: introduce bk := 1/ak ≥ 1/2 and show that bk+1 ≥ bk+λ, considering the alternatives bk+1/bk ≥ λ
and bk+1/bk ≤ λ, for some λ ∈ (0, 1) to be determined.]

For the first point (i.), we use that ak+1 ≤ √
ak, that is, log2 ak+1 ≤ 1

2 log2 ak. By induction it follows log2 ak ≤
2−k log2 a0. In particular, log2 ak ≤ 1 as soon as 2−k log2 a0 ≤ 1, that is 2k ≥ log2 a0, or k ≥ log2 log2 a0.

For the second point, following the hint, we introduce bk = 1/ak and write that

1

bk+1

(
1 +

1

bk+1

)
≤ 1

bk
⇔ bk

(
1 +

1

bk+1

)
≤ bk+1 ⇔ bk+1 ≥ bk +

bk
bk+1

.
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We remark that ak ≤ 2 for any k ≥ k0 so that bk ≥ 1/2.
Let λ ∈ (0, 1): either bk ≥ λbk+1 and one has bk+1 ≥ bk + λ, or bk ≤ λbk+1 and one has bk+1 ≥

bk + ( 1λ − 1)bk ≥ bk + 1−λ
2λ . The best choice for λ is to choose λ = (1− λ)/(2λ), that is

2λ2 + λ− 1 = 0, λ ∈ (0, 1) ⇔ λ =
1

2
.

We deduce by induction that bk ≥ bk0
+ (k − k0)/2 ≥ (1 + k − k0)/2, hence the result.

8. Conclude by giving a convergence rate for the algorithm. Show that (with this analysis) the best choice
for θ is θ = 1/3 which gives the rate:

F (xk)− F (x∗) ≤ 32D2L

1 + k − k0
.

It follows that

F (xk)− F (x∗) ≤ 4D2

τ

(1 + θ)2

1− θ

1

1 + k − k0
≤ (1 + θ)2

θ(1− θ)

4D2L

1 + k − k0

for k0 ≥ log2 log2[(1− θ)τ/((1+ θ)2D2)(F (x0)−F (x∗))]. Minimizing this rate with respect to θ gives θ = 1/3
and (1 + θ)2/(θ(1− θ)) = 8.

Exercice II - conjugates

1. Let A ∈ Rn×n be invertible, and consider

f(x) =
1

2
∥Ax∥2, (x ∈ Rn)

Evaluate ∇f(x). Deduce that f∗(y) =
〈
(A∗A)−1y, y

〉
/2 = ∥(A∗)−1y∥2/2.

Observe that

f(x+ ty) =
1

2
∥A(x+ ty)∥2 = f(x) + t ⟨Ax,Ay⟩+ t2f(y) = f(x) + t ⟨A∗Ax, y⟩+ o(t)

which shows that ∇f(x) = A∗Ax.
Then, to compute supx ⟨x, y⟩ − ∥Ax∥2/2, one sees that at the maximum,

y −A∗Ax = 0

Since A is invertible, one has x = (A∗A)−1y. One deduces that

⟨x, y⟩ − 1

2
∥Ax∥2 =

〈
(A∗A)−1y, y

〉
− 1

2
∥A(A−1(A∗)−1y∥2 =

1

2
∥(A∗)−1y∥2

2. For x ∈ R, let f(x) = − ln(1−|x|) if |x| < 1, +∞ if |x| ≥ 1. Show that f(x) ≥ |x|. Deduce that f∗(y) = 0
if |y| ≤ 1. Show then that f∗(y) = (|y| − 1)+ − ln(1 + (|y| − 1)+), where t+ = max{t, 0}.

One has − ln(1 + t) ≥ − ln(1) − t = −t by convexity hence f(x) ≥ |x|. In particular f∗(y) ≤ δ[−1,1](y) and
f∗ ≤ 0 on [−1, 1]. Since f∗(y) ≥ 0 · y − f(0) = 0 we find that f∗(y) = 0 if |y| ≤ 1.

Now for |y| > 1, we compute supx xy+ln(1−|x|): one has y− ∂|·|(x)
1−|x| = 0 (or one can easily check that the

sup is not at x = 0, so that |x|′ = ±1), i.e., for |y| > 1, y = sign (x)/(1− |x|) for some |x| < 1. In particular
|y| = 1/(1−|x|) and |x| = (|y|−1)/|y| so that x = (|y|−1)/y. Then, xy+ln(1−|x|) = |y|−1− ln |y| = f∗(y).

All-in-all, f∗(y) = (|y| − 1)+ − ln(1 + (|y| − 1)+).
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Exercice III - prox and conjugate of entropy and max functions

Let Σ = {x ∈ Rn :
∑n

i=1 xi = 1, xi ≥ 0 ∀ i = 1, . . . , n} be the unit simplex in Rn.

1. Compute the convex conjugate of g : x 7→
∑n

i=1 xi lnxi if x ∈ Σ, and +∞ else, where 0 ln 0 = 0.

One has to compute

sup∑
i xi=1

n∑
i=1

xiyi − xi lnxi.

At the maximum, one has yi − lnxi − 1 = λ where λ is the multiplier for
∑

i xi = 1. In addition, one has∑
i xiyi − xi lnxi = (λ+ 1)

∑
i xi = λ+ 1. One has

xi = e−1−λeyi , e−1−λ
n∑

i=1

eyi = 1

so that

g∗(y) = λ+ 1 = ln

n∑
i=1

eyi .

2. For ε > 0 one considers the “soft-max” function ε−max(y), y ∈ Rn, given by

ε−max(y) = ε ln

n∑
i=1

eyi/ε.

Show that max{y1, . . . , yn} ≤ ε−max(y) ≤ max{y1, . . . , yn}+ ε lnn.

If ȳ = maxi yi, one has
∑

i=1 e
yi/ε ≥ eȳ/ε, and

∑
i=1 e

yi/ε ≤ neȳ/ε. The result follows.

3. Show that (ε−max)∗(x) = εg(x) (with g defined in Question 1.).

One sees that
(εg)∗(y) = sup

x
x · y − εg(x) = ε

∑
x

x · (y/ε)− g(x) = εg∗(y/ε)

and the results follows from the first question, and the fact (εg)∗∗ = εg.

4. If max(y) denotes the function max{y1, . . . , yn}, deduce that

max∗(x) =

{
0 if

∑n
i=1 xi = 1, xi ≥ 0 ∀ i = 1, . . . , n ,

+∞ else
= δΣ(x)

the characteristic function of the set Σ.

In fact it is easy to see that the conjugate of the right-hand side is the max function. But one also has, from
question 2.,

max∗(x) ≥ (ε−max)∗(x) = εg(x) ≥ max∗(x)− ε lnn,

so that max∗(x) = limε→0 εg(x) = 0 for x ∈ dom g = Σ, +∞ else.
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5. One wishes to compute proxτ max(x̄) for τ > 0, x̄ ∈ Rn, that is:

argmin
x

1

2τ

n∑
i=1

(xi − x̄i)
2 +

n
max
i=1

xi

Show first that it is equivalent to solve:

min
t∈R

min
xi≤t ∀i

t+
1

2τ

n∑
i=1

(xi − x̄i)
2

and then to solve:

min
t∈R

t+
1

2τ

n∑
i=1

[(x̄i − t)+]2

where z+ := max{z, 0} denotes the “positive part” of z ∈ R.

The first statement is obvious, since maxni=1 xi = mint:xi≤t ∀i t by definition. Then, solving minxi≤t(xi − x̄i)
2

yields xi = x̄i if x̄i ≤ t, xi = t else. In particular, x̄i − xi = 0 if x̄i ≤ t, and x̄i − xi = x̄i − t if x̄i ≥ t, that is:
x̄i − xi = (x̄i − t)+.

6. Show that the optimal t exists and satisfies:

n∑
i=1

(x̄i − t)+ = τ.

Deduce that t < maxni=1 x̄i.

In fact the function in the min in the previous question is C1, goes to ∞ as t → +∞, and if t ≤ x̄i for all i, it
is t+

∑
i(xi − t)2/(2τ) which also goes to +∞ as t → −∞. Hence it reaches a minimum at some t ∈ R where

the derivative vanishes.
The derivative is 1−

∑n
i=1(x̄i − t)+/τ , hence the equation. In addition, the left-hand side of the equation

can be positive only if t < maxi x̄i.

7. Can you imagine an algorithm to compute t?

To compute t, the best method is to first sort the values (x̄i) by a sorting algorithm. Then, we assume
x̄1 ≥ x̄2 ≥ · ≥ x̄n, and we have to guess k ≥ 1 such that t ≥ x̄i for i ≥ k+1, t < x̄k. If k = 1, then one should
have

(x̄1 − t) = τ ⇔ t = x̄1 − τ.

If x̄1 − τ ≥ x̄2 then the value is admissible and the problem is solved, otherwise we try k = 2. In general, for
a given k, one should have

t =
1

k

k∑
i=1

x̄i −
τ

k

which is admissible if x̄i ≥ t for i = 1, . . . , k and x̄k ≤ t. Note that (denoting tk the value of t for a guess k)

tk =
1

k
x̄k +

k − 1

k
tk−1

so computing the successive value of tk does not need more than one additional operation, hence the overall
complexity is the time for sorting, plus O(n).

8. Assuming the previous question is solved, deduce an algorithm for projecting onto the unit simplex Σ.

We have max∗ = δΣ the characteristic of Σ, and ΠΣ(x) = proxδΣ(x). Hence, one has by Moreau’s identity:

ΠΣ(x) = x− proxmax(x)

which is computed in the previous question.
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Exercice IV: epi-convergence

Let (Cn)n be a sequence of closed, convex subsets of Rd, C ⊂ Rd. Rd is equipped with the Euclidean norm.

We say that Cn
K→ C (convergence in the sense of Kuratowski) if and only if:

i. for all x ∈ C, there exists a sequence (xn)n with xn ∈ Cn for all n and such that xn
n→∞−→ x;

ii. if xnk
∈ Cnk

(for a subsequence) and if xnk

k→∞−→ x, then x ∈ C.

1. Distance function We introduce dn(x) = dist (x,Cn) = miny∈Cn
∥x − y∥ ≥ 0. Why is there a unique

y ∈ C with dn(x) = ∥x− y∥? Show that for each n, dn is 1-Lipschitz, and convex.

The projection theorem says there is a unique y = ΠCn(x), projection of x onto the closed convex set Cn. Now,
let x, x′ ∈ Rd and y ∈ Cn such that ∥x− y∥ = dn(x). One has dn(x

′)− dn(x) ≤ ∥x′− y∥−∥x− y∥ ≤ ∥x−x′∥.
Eventually, dn is convex as the minimizer with respect to y of the jointly convex function (x, y) 7→ ∥x −

y∥+ δCn
(y) (δCn

the characteristic function of Cn). This is easily proved by considering x, x′, y, y′ ∈ Cn with
dn(x) = ∥x−y∥, dn(x′) = ∥x′−y′∥, t ∈ [0, 1], and using that dn(tx+(1−t)x′) ≤ ∥tx+(1−t)x′−(ty+(1−t)y′)∥
since ty + (1− t)y′ ∈ Cn.

2. We recall Ascoli-Arzelà’s theorem:

Theorem 1 (Ascoli-Arzelà). If fn : Rd → R are functions which are uniformly equi-continuous, and uniformly
bounded in some point, then there is a subsequence fnk

which converges locally uniformly.

Uniformly equi-continuous means that ∀ε > 0, ∃η > 0, ∀x, x′ ∈ Rd, ∥x−x′∥ ≤ η ⇒ (∀n, |fn(x)−fn(x
′)| ≤ ε).

Show that either dn(x) → ∞ for all x ∈ Rd, or there exists a function d and a subsequence dnk
such that

dnk
→ d locally uniformly.

If for some x, dn(x) ̸→ +∞, then there exists a subsequence such that dnk
(x) is bounded (recall dn ≥ 0).

Then, dnk
is uniformly bounded at the point x. In addition, it is uniformly equi-continuous because all the

functions are 1-Lipschitz (the property holds with η = ε). Hence by Ascoli-Arzelà’s theorem, there is a further
subsequence (still denoted dnk

) which converges locally uniformly to some limit function d.

3. We assume dnk
→ d locally uniformly. Let C := {x ∈ Rd : d(x) = 0}. Show that Cnk

K→ C, and that C
is closed and convex.

Let x ∈ C: then dnk
(x) → 0. It means there exists xk ∈ Cnk

with dnk
(x) = ∥x − xk∥ → 0. This shows

property (i) of the K-limit. For (ii): let now xk ∈ Cnk
for all k and and assume a subsequence xkl

converges
to a point x ∈ Rd. Then 0 = dnkl

(xkl
) → d(x) by uniform convergence, and d(x) = 0, hence x ∈ C.

C is closed and convex as the minimal level set of d which is continuous and convex.

4. Show that in this case, d(x) = dist (x,C) for all x.

Let x ∈ Rd First, let y ∈ C (which is closed and convex) such that ∥x− y∥ = dist (x,C). By (i.) there exists
yk ∈ Cnk

with yk → y, so that dnk
(x) ≤ ∥x− yk∥, and in the limit we find d(x) ≤ dist (x,C).

On the other hand, let now yk such that dnk
(x) = ∥x− yk∥ → d(x). We have that ∥yk∥ ≤ ∥x∥+ dnk

(x) is
bounded hence up to a subsequence, it has a limit y. By (ii), y ∈ C and one has dnk

(x) → d(x) = ∥x− y∥ ≥
dist (x,C).

Hence d(x) = dist (x,C).

5. Show that if dn → +∞, then Cn
K→ ∅.

We have shown that the K-convergence is compact on the set of closed, convex1 sets: given any sequence (Cn)
of closed (convex) sets, there is a subsequence which converges to a closed, convex set (but possibly empty).

Point (i): is true since there is no x ∈ ∅. Point (ii): is true since given xn ∈ Cn, dn(0) ≤ ∥xn∥ and since
dn(0) → ∞, xn has no converging subsequence.

1In fact it is compact on the set of closed sets.
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6. Let fn : Rd → R∪ {+∞} be convex, proper lower semi-continuous functions. Let Cn = epi fn = {(x, t) ∈
Rd+1, t ≥ fn(x)}. By the previous result, there exists C, closed and convex and a subsequence with Cnk

K→ C
(in Rd+1). Show that C = epi f for some convex, lower-semicontinuous function f . When is f not proper?
We say that fnk

“epi-converges” to f .

First, we know that C is closed and convex. Then, it is the epigraph of some f if and only if (x, t) ∈ C ⇒
(x, t′) ∈ C for all t′ ≥ t. In that case, f(x) is given by inf{t ∈ R : (x, t) ∈ C} which is either +∞ (if the set is
empty), −∞ (if the set is R), or a min.

Let (x, t) ∈ C. Then, by (i) there is (xn, tn) ∈ Cn with (xn, tn) → (x, t). If t′ ≥ t, one has tn + t′ − t ≥
tn ≥ fn(xn) hence (xn, tn + t′ − t) ∈ Cn. By (ii), since (xn, tn + t′ − t) → (x, t′), one deduces (x, t′) ∈ C.
Hence if f(x) := inf{t ∈ R : (x, t) ∈ C} one has C = {(x, t) : t ≥ f(x)}.

If C = ∅, f ≡ +∞ is not proper. If C contains {x} × R for some x ∈ Rd, f(x) = −∞ and f and is not
proper either. Otherwise, f must be proper.

7. We assume now that fn ≥ 0 for all n, and that supn minB(0,1) fn < +∞. Show that f is proper.

(B(0, 1) = {x ∈ Rd : ∥x∥ ≤ 1}.)

Cn ⊂ Rd×R+ since fn ≥ 0, so that C ⊂ Rd×R+, that is f ≥ 0, and one cannot have f = −∞. On the other
hand, letting t = supn minB(0,1) fn, for each n there is xn ∈ B(0, 1) such that (xn, t) ∈ epi fn = Cn, and one

has dn((0, 0)) ≤ ∥xn∥ + t ≤ 1 + t which is bounded: hence we are in the situation where some subsequence
dnk

→ d = dist (·, C) locally uniformly and C is not empty.

8. We assume fn epi-converges to f which is proper. Show that fn “Γ-converges” to f , that is:

(Γ−) for all x and xn → x, f(x) ≤ lim infn fn(xn);

(Γ+) for all x, there exists xn → x such that lim supn fn(xn) ≤ f(x) (so that, by (Γ−), limn fn(xn) = f(x)).

[Hint: use (ii) for (Γ−) and (i) for (Γ+).]

(Γ−): Let x ∈ Rd and xn → x. Assume lim infn fn(xn) < +∞. Consider a subsequence fnk
(xnk

) →
lim infn fn(xn), we also may assume that fnk

(xnk
) < +∞ for all k. Let t > lim infn fn(xn), then for k large

enough, fnk
(xnk

) ≤ t and (xnk
, t) ∈ epi fnk

. By (ii), we deduce that (x, t) ∈ epi f , hence f(x) ≤ t. Since this
is true for all t > lim infn fn(xn) it follows that f(x) ≤ lim infn fn(xn).

(Γ+): Let x ∈ Rd, assume f(x) < +∞, and let t ≥ f(x) so that (x, t) ∈ epi f . Then by (i), there exists
(xn, tn) ∈ epi fn with (xn, tn) → (x, t). In particular, lim supn fn(xn) ≤ lim supn tn = t. Since f is proper,
lsc, one can take t = f(x) and the property is proved.

9. In the case of the previous question, assuming in addition (to simplify) fn ≥ 0, let x ∈ Rd and xn → x:
show, using properties (Γ+) and (Γ−), that limn→∞ proxfn(xn) = proxf (x).

(One has to show (1) that proxfn(xn) is bounded, (2) that any limit point has to be proxf (x).)

Let zn = proxfn(xn), which minimizes fn(z)+∥z−xn∥2/2. First, f is proper, hence there is x̄ with f(x̄) ∈ R,
and there is x̄n with limn fn(x̄n) = f(x̄).

In particular, fn(zn) + ∥zn − xn∥2 ≤ fn(x̄n) + ∥x̄n − xn∥2 is bounded, and since fn(zn) ≥ 0 it shows that
zn is bounded. Up to a subsequence we may assume that znk

→ z.
Now, we have by (Γ−):

f(z) +
1

2
∥z − x∥2 ≤ lim inf

k
fnk

(znk
) +

1

2
∥znk

− xnk
∥2.

On the other hand, if z′ ∈ Rd, by (Γ+) there exists z′n with lim supn fn(z
′
n) ≤ f(z). By minimality, one has

fnk
(znk

) +
1

2
∥znk

− xnk
∥2 ≤ fnk

(z′nk
) +

1

2
∥z′nk

− xnk
∥2

hence lim infk fnk
(znk

) + ∥znk
− xnk

∥2/2 ≤ lim supk fnk
(z′nk

) + ∥z′nk
− xnk

∥2/2 ≤ f(z′) + ∥z′ − x∥2/2.
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We deduce that

f(z) +
1

2
∥z − x∥2 ≤ f(z′) +

1

2
∥z′ − x∥2,

since z′ is arbitrary it shows that z = proxf (x). Since the limit of any converging subsequence is the same,
we deduce that zn → z.

10. We consider fn convex, proper, lsc, which Γ-converges to f , convex, proper, lsc. Show that f∗
n (the

convex conjugate) Γ-converges to f∗.

(a.) show first, using (Γ+) for fn, that (Γ
−) holds for f∗

n;

(b.) to show (Γ+), we first admit that it is enough to show the property for y ∈ Rd such that ∂f∗(y) ̸= ∅, so
that there is x ∈ ∂f∗(y) ⇔ y ∈ ∂f(x).

What is the minimizer of z 7→ f(z) − ⟨y, z⟩ + ∥z − x∥2/2? Introduce zn as the minimizer of fn(z) −
⟨y, z⟩ + ∥z − x∥2/2 and show (using Question 9.) that zn → x. Then, let yn = y − zn + x → y: use
Legendre-Fenchel’s inequality to show that f∗

n(yn) → f∗(y).

Let (yn) with lim infn f
∗(yn) < +∞, and assume yn → y. Let x ∈ Rd, let xn → x with lim supn fn(xn) ≤ f(x).

Then,

f∗
n(yn) ≥ ⟨xn, yn⟩ − fn(xn) ⇒ lim inf

n
f∗(yn) ≥ lim inf

n
⟨xn, yn⟩ − fn(xn)

= lim
n

⟨xn, yn⟩ − lim sup
n

fn(xn) ≥ ⟨x, y⟩ − f(x).

We deduce, taking the sup over x, that

lim inf
n

f∗
n(yn) ≥ f∗(y).

For the limsup: as suggested, let zn minimize fn(z)− ⟨y, z⟩+ ∥z − x∥2/2, that is zn = proxfn−⟨y,·⟩(x). Then

by Question 9., zn → proxf−⟨y,·⟩(x) = x (since y ∈ ∂f(x)).
We have

∂fn(zn)− y + zn − x ∋ 0 ⇔ yn := y − zn + x ∈ ∂fn(zn).

In particular yn → y. We write:
fn(zn) + f∗

n(yn) = ⟨zn, yn⟩ .

In the limit using (a.), we find f(x) + f∗(y) ≤ ⟨x, y⟩ but then, one has:

⟨x, y⟩ ≤ f(x) + f∗(y) ≤ lim inf
n

fn(zn) + lim inf
n

f∗
n(yn) ≤ lim inf

n
(fn(zn) + f∗

n(yn))

≤ lim sup
n

(fn(zn) + f∗
n(yn)) ≤ lim

n
⟨zn, yn⟩ = ⟨x, y⟩

showing that fn(zn) + f∗
n(yn) → f(x) + f∗(y). But then,

f(x) + lim sup
n

f∗
n(yn) ≤ lim inf

n
fn(zn) + lim sup

n
f∗
n(yn) ≤ lim sup

n
(fn(zn) + f∗

n(yn)) = f(x) + f∗(y),

and we deduce that f∗
n(yn) → f∗(y), as we needed to show (and also that fn(zn) → f(x)).
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