Introduction to Continuous optimization
Assessment
(6th January 2022)

Durée: 3h (It is not necessary to do all 4 exercises!)

Exercise I: non-linear forward-backward descent

We consider a space X (to simplify, finite-dimensional, yet everything below is dimension independent), with
a norm || - ||, and dual X* with dual norm, for all u € X*,

el = sup {1, 2) . <l < 1}

and we recall (admit) that
Jall = sup { (w2} x < e <1}

In particular, (u,z) v. v < ||u||«||z| for any z € X, uw € X*. Here, (u, ) y. y denotes the linear form u € X*
evaluated at the vector # € X. (In practice, one identifies X ~ R, X* ~ R?, and (u,z)y. x = Zle Ui T,
where d > 1 is the dimension. In this case, one can use the standard Euclidean stucture of R? to define the
convex conjugate, etc.)

1. Let M(z) :=|z[|?/2. Show that the conjugate

N*(u) = sup (u, ) - x = N(z)

is given by |ul|?/2.
One has, letting « = ty for t = ||z||:
2 2

. t t 1
N*w)= sup (uty)x. x =5 =suptful. — 5 =
t>0, ||y <1 ' t>0

[

Important remark: We recall that u € ON(z) & = € IN*(u) & (u,z)x. x = N(z) + N*(u), with
moreover, in that case, using that A" and N* are 2-homogeneous, (u, 7). x = 2N(z) = 2N*(u) (Legendre-
Fenchel’s identity plus Euler’s identity for homogeneous functions), therefore ||z|| = ||u]|«.

2. We consider a convex, lower-semicontinuous function F(z) = f(z) + g(z), where f,g are convex and
where f has L-Lipschitz differential df : X — X*:

ldf (z) = df (9) ||« < Lz = yl|.

We introduce the “Bregman divergence” of f, defined by:
Dy(y,z) = f(y) — f(z) — {df(z),y — @) x- x -

Show that Dy (y,z) < Llly — z[|*/2 = LN (y — ).

This is the classical Taylor expansion:

fy) = f(a) + / (f (@ + s(y — 2)),y — 7). x ds

= F@) + () — ) + / (df (& + 5(y — ) — df(2),y — ). x ds,



so that: .
Dy.) = [ (dfta+ sty =) = @)y — o)y s
Then, we use
(df (5 + 5(y — 2)) — dF @),y — 2 x < |F (@ + s(y — 2)) — dF @)y — 2l < Llly — o],

and fol sds = 1/2 to conclude.

3. (Implicit-explicit algorithm.) We define an iterative algorithm by choosing z° € X, 7 > 0, and letting,
for k> 0, z**! be a minimizer of:

1
. k 1 Lk
ming(e) + (df (), ) . + TN (@ —2¥).
We admit that it exists (it is not difficult), and assume that it can be computed (this is an assumption on g).
Write the equation satisfied by 2**!, and show that there is ¢**! € dg(2*+!) such that:
[+t = 2®)| = 7"t + df ()]

Since (df (z*),z) + LN (z — 2*) is continuous with full domain in E ~ R?, one can apply the results from the
lecture notes and one has at z*+1:

0 € dg(z" ) + df (=) + %8]\/'(93’”1 )

which means that there exists ¢**1 € 9g(x¥*1) such that
—7(@" +df (7)) € ON (@M —ab).
By the results in Question 1., it implies in particular that:

I7(¢"* + df ()| = ]a"F = 2"

4. Show that for all z € X,
F(z) + %N(:}: —zF) > P + %./\/(ack+1 — k) — Dy(a*tt 2.
Deduce that if 7 = 6/L for some 6 €]0, 1], one has:
F(h) 2 P + 22 k) - o

By definition, z**! satisfies that for all x € X,
g(x) + <df(:(;k’)7x>X*’X + %N(m —zF) > g(aF ) + <df(xk’)7xk+1>X*_’X + %N(xk'*'l — xk’).
Now, by convexity,
F(x) + %N(Jc —2F) > g(z) + f(z¥) + <df(1:k),x — mk>X*’X + %N(T — "),
and we deduce:

F(a) + TN — ) > o) 4 Fh) + (), o — k) b TN o),

X* X

We conclude using that g(zF*1) + f(2*) + (df (%), 2" — )
k.

o x = F(@Fth) — Dyp(ab+1, 2F). Then, using

Question 2., it follows, if we take z = =z
L

F(z*) > F(z*1) + %N(m’”l — M) - EkaH —2F|? = F(2*) + (71_ - L) N (M — k)

so that if 7 < 0/L < L < 60/7, we can show the required inequality.



5. Using the convexity of g, f, show that, considering ¢"*1 € dg(z*+1) with 7||¢* 1 +df (%) || = ||aF+1 —2F,
one has, for any z* € X:

1
P - F(a*) < (— n L) Jah T — ke — 2+
T

One has
F(z*) = f(z") +g(z") = f(a"h) 4 g(a™) + (df (&™) + " 2™ o)
Hence

F(z"Y) — F(z*) < — <df(l_k:) gt :L'k+1>x*7x _ <df(;ck“) —df (z%),z* — xk+1>x*,x

< [ldf@*) + ¢l lla” — 2| 4 df @) — df @)Ll — 24
< @R = aF ot — |+ LRt - aF ot - 2R

6. We denote for k > 0, Ay, := F(z¥) — F(z2*), where z* is a minimizer of F. We now assume that there
exists D > 0 such that ||z¥ — z*|| < D for all k > 0 (this is clear for instance if the domain of g is bounded).
Deduce from the Questions 5. and 4. (still using 7 = 6/L) that for all k¥ > 0:

1 1-0 7 4
Aiet T 5 gy prihet < A

We have from 5.:
14+06 ) ) .
Apis < %DH:L’"“ “ | = N -2y >

From 4.,
1-6 ) .
Apir + ——N (@ —2F) < A
T

Hence,
1-6 72
Ay - A2 <AL
k+1 + 2r (1 + 9)2D2 k+1 = k

7. Letting ai := ﬁ#Ak, one has therefore ax41 + ai+1 < ag, and a > 0 for all k (assuming z* is a

minimizer of F).

i. show that if a9 > 2 and k > log, log, ag, then a; < 2 (We recall logy # = Inx/In2, so that 2'°%2% = ).
[Remark: it means for instance that ajg < 2 if ag ~ 103%° ]

ii. show that if ax, < 2, for some kg > 1, then:
< 2
W = E—ko+1

[Hint: introduce by := 1/a; > 1/2 and show that b1 > bi+ A, considering the alternatives bgy1/bp > A
and by41/br, < A, for some A € (0,1) to be determined.]

For the first point (i.), we use that axy1 < \/ay, that is, logs ar11 < % log, ay. By induction it follows log, aix <
27 log, ap. In particular, log, ax < 1 as soon as 27 % log, ag < 1, that is 2¥ > log, ag, or k > log, log, ay.

For the second point, following the hint, we introduce by = 1/a; and write that

1 1 1 1 b
— |1 <— &S b(1+— | <) & bpaq > by .
br+1 < +bk+1) b k( +b >_ e = k+bk+1



We remark that aj, < 2 for any k > ko so that by > 1/2.
Let A € (0,1): either by > Abgrq and one has bgy; > bp + A, or by < Abpiq and one has by >
by + (% — 1)b > by + % The best choice for A is to choose A = (1 — X\)/(2A), that is
1
222+ A —1=0,)¢€ (0,1) &A= 3.
We deduce by induction that by > by, + (k — ko)/2 > (1 + k — ko) /2, hence the result.

8. Conclude by giving a convergence rate for the algorithm. Show that (with this analysis) the best choice
for 0 is @ = 1/3 which gives the rate:

32D2L
F(zF) - Fa*) < ——
@) = F@) < 79—

It follows that

AD? (1+6) 1 (1+6)* 4D’L
F"k —F(x*) < <
(@) = F@) < == L+k—ko — 0(1—0)1+k—ko

for ko > logy logs[(1—0)7/((1+60)2D?)(F(z0) — F(x*))]. Minimizing this rate with respect to 6 gives § = 1/3
and (1+6)2/(6(1 —0)) =8.

Exercice 1I - conjugates

1. Let A € R™ ™ be invertible, and consider

fa) = glAel?, (@ e RY)

Evaluate V f(z). Deduce that f*(y) = ((A*4) 'y, y) /2 = ||(A*) " 'y|?/2.

Observe that
flz+ty) = %IlA(w +ty)|* = fz) +t (A, Ay) + 2 f(y) = f(z) +t (A" Az,y) + o(t)

which shows that V f(z) = A*Ax.
Then, to compute sup,, (z,y) — ||Ax[|?/2, one sees that at the maximum,

y— A"Ar =0

Since A is invertible, one has z = (A*A)~'y. One deduces that

1 . 1 1 e 1 .
(e,9) = 5l Aall” = ((A"A)y,y) — SIAAT (A 7yl = SIA) "yl

2. Forz € R, let f(z) = —In(1—|z|) if |z| < 1, 400 if |z| > 1. Show that f(z) > |z|. Deduce that f*(y) =0
if |y] < 1. Show then that f*(y) = (Jy| —1)" — In(1 + (Jy| — 1)T), where ¢t* = max{¢, 0}.

One has —In(1 +¢) > —1In(1) — ¢t = —t by convexity hence f(x) > |z|. In particular f*(y) < &;_1 1)(y) and

f*<0on[-1,1]. Since f*(y) > 0-y — f(0) =0 we find that f*(y) =0if |y| < 1.

Now for |y| > 1, we compute sup, xy + In(1 — |z|): one has y — f;\_|7‘(f‘) = 0 (or one can easily check that the
sup is not at & = 0, so that |z|" = £1), i.e., for |y| > 1, y = sign (x)/(1 — |z|) for some |z| < 1. In particular
lyl = 1/(1 —[z]) and |z| = (Jy| =1)/[y| so that = = (|y| =1)/y. Then, zy +In(1 —[z]) = [y| =1 =Iny[ = f*(y).

All-in-all, f*(y) = (ly| — )+ —In(1 + (Jy| — 1)F).



Exercice 1II - prox and conjugate of entropy and max functions

Let X={z eR": > " o, =1, >0Vi=1,...,n} be the unit simplex in R".

1. Compute the convex conjugate of g : z +— > i x;Inz; if z € ¥, and 400 else, where 0In0 = 0.

One has to compute
n

sup E Ty — x;Inx;.
> wi=152

At the maximum, one has y; — Inz; — 1 = X where A is the multiplier for ), 2; = 1. In addition, one has

duxiyi —xilna; = (A+1) >, x; = A+ 1. One has
n
i =e 1Y, 1A Zeyi =1
i=1

so that

n

g y)=A+1= lnzey’.

i=1

2. For € > 0 one considers the “soft-max” function £ — max(y), y € R™, given by
n
e —max(y) = Eaneyi/E.
i=1

Show that max{yi,...,yn} <& —max(y) < max{yi,...,yn} +clnn.
If j = max; y;, one has >, evi/e > e¥/e and Yo e¥i/e < ne¥/c. The result follows.
3. Show that (¢ — max)*(z) = eg(x) (with g defined in Question 1.).
One sees that
(€9)"(y) = supw -y —eg(x) = Y @~ (y/e) — g(x) = eg”(y/e)

and the results follows from the first question, and the fact (eg)** = eg.

4. If max(y) denotes the function max{y,...,yn}, deduce that

0 i ai=1,2>0Vi=1,....n,
max*(w)—{ i) =TT " = ox(z)

)40 else
the characteristic function of the set X.

In fact it is easy to see that the conjugate of the right-hand side is the max function. But one also has, from
question 2.,
max*(x) > (¢ — max)*(z) = eg(z) > max*(z) — elnn,

so that max*(z) = lim._,¢eg(x) = 0 for z € dom g = 3, +00 else.



5. One wishes to compute prox, .. (z) for 7 > 0, Z € R", that is:

n

1 L .
arg min — g (x; — T;)° + maxx;
x 2T 4 1 i=1
1=

Show first that it is equivalent to solve:

n

. . 1 2
min min t+ — E (z; — Z;)
teR z;<tVi 2T 4 1

i—

and then to solve: .

1
int + — . — )T 2
it 3o
where 2t := max{z,0} denotes the “positive part” of z € R.

The first statement is obvious, since max’ ; x; = ming.,, <¢v; t by definition. Then, solving min,, <;(z; — @-)2
yields z; = z; if z; <t, x; =t else. In particular, z; —x; =0if ; < ¢, and z; — x; = T; — t if &; > t, that is:
T; —T; = (.f,' — t)+.

6. Show that the optimal ¢ exists and satisfies:

n

Deduce that ¢ < maxj_; Z;.

In fact the function in the min in the previous question is C', goes to oo as t — +o0, and if t < Z; for all 4, it
is t+ >, (z; —t)?/(27) which also goes to +oc as t — —oo. Hence it reaches a minimum at some ¢ € R where
the derivative vanishes.

The derivative is 1 — > | (Z; — )™ /7, hence the equation. In addition, the left-hand side of the equation
can be positive only if ¢ < max; T;.

7. Can you imagine an algorithm to compute 7

To compute ¢, the best method is to first sort the values (z;) by a sorting algorithm. Then, we assume
T1 > Ty > - > Ty, and we have to guess k > 1 such that ¢t > z; for i > k+1, t < Z). If Kk = 1, then one should
have
(fl—t):T & t=T1—T.
If 1 — 7 > T then the value is admissible and the problem is solved, otherwise we try k = 2. In general, for
a given k, one should have
k
>
i=1

which is admissible if Z; > ¢ for i = 1,...,k and Ty < t. Note that (denoting ¢, the value of ¢ for a guess k)

b= 1o+ L
by = —T _

k= LTk P

so computing the successive value of t; does not need more than one additional operation, hence the overall
complexity is the time for sorting, plus O(n).

t:

T =
el

8. Assuming the previous question is solved, deduce an algorithm for projecting onto the unit simplex X.

We have max* = dx the characteristic of ¥, and IIx(x) = proxs, (z). Hence, one has by Moreau’s identity:
HE (I’) =T — pI‘OXmaX(l’)

which is computed in the previous question.



Exercice 1V: epi-convergence

Let (C,,)n be a sequence of closed, convex subsets of RY, C' C RZ. R? is equipped with the Euclidean norm.
We say that C, Ko (convergence in the sense of Kuratowski) if and only if:

i. for all z € C, there exists a sequence (x,,), with z,, € C, for all n and such that z,, nse x;

ii. if @y, € Cp, (for a subsequence) and if z,, "2 2, then x € C.

1. Distance function We introduce d,(z) = dist (z,C,,) = minyec, ||z —y|| > 0. Why is there a unique
y € C with d,(z) = ||z — y||? Show that for each n, d,, is 1-Lipschitz, and convex.

The projection theorem says there is a unique y = I, (x), projection of « onto the closed convex set C,,. Now,
let z,2' € R% and y € C,, such that ||z —y|| = d,,(z). One has d,(2') — d,(z) < ||z’ —y|| — |z —y| < ||z —2'|.

Eventually, d,, is convex as the minimizer with respect to y of the jointly convex function (x,y) — ||z —
yll +dc, (y) (0c, the characteristic function of C,,). This is easily proved by considering x,2’, y,y’ € C,, with
() = [7—y] dn (') = ||z’ /|, t € [0, 1], and using that dy(tz-+(1—t)") < [[tr+(1— )z’ — (ty+(1—)y)]
since ty + (1 — t)y’ € Cp.

2. We recall Ascoli-Arzeld’s theorem:

Theorem 1 (Ascoli-Arzeld). If f,, : R? — R are functions which are uniformly equi-continuous, and uniformly
bounded in some point, then there is a subsequence f,, which converges locally uniformly.

Uniformly equi-continuous means that Ve > 0, 3n > 0, Vo, 2’ € R, ||z —2/|| < n = (Vn, |fa(z) = fo(2')] < &).
Show that either d,(z) — oo for all z € R?, or there exists a function d and a subsequence d,,, such that
dy, — d locally uniformly.

If for some x, d,,(x) 4 +oo, then there exists a subsequence such that d,, () is bounded (recall d,, > 0).
Then, d,, is uniformly bounded at the point z. In addition, it is uniformly equi-continuous because all the
functions are 1-Lipschitz (the property holds with n = ). Hence by Ascoli-Arzeld’s theorem, there is a further
subsequence (still denoted d,,, ) which converges locally uniformly to some limit function d.

3. We assume d,,, — d locally uniformly. Let C := {x € R? : d(x) = 0}. Show that C,,, % ¢, and that C
is closed and convex.

Let z € C: then d,, (x) — 0. It means there exists xp € C,, with d,, (z) = ||x — x| — 0. This shows
property (i) of the K-limit. For (ii): let now aj, € C),, for all k and and assume a subsequence zj, converges
to a point x € R%. Then 0 = dn,, (2,) = d(x) by uniform convergence, and d(z) = 0, hence z € C.

(' is closed and convex as the minimal level set of d which is continuous and convex.

4. Show that in this case, d(x) = dist (z, C) for all z.

Let € RY First, let y € C (which is closed and convex) such that ||z — y|| = dist (z,C). By (i.) there exists
yr € Cp,, with yr — y, so that d,, (z) < ||z — yg||, and in the limit we find d(z) < dist (z, C).

On the other hand, let now gy, such that d,, (x) = ||x — yi|| — d(z). We have that ||yx|| < ||z]| + dn, (z) i
bounded hence up to a subsequence, it has a limit y. By (ii), y € C and one has d,,, (z) — d(x) = ||l — y|| >
dist (z, C).

Hence d(z) = dist (z, C).

»n

5. Show that if d,, — +o0, then C,, .
We have shown that the K-convergence is compact on the set of closed, convex! sets: given any sequence (C,,)
of closed (convex) sets, there is a subsequence which converges to a closed, convex set (but possibly empty).

Point (i): is true since there is no x € (. Point (ii): is true since given z,, € Cy, d,(0) < ||a,| and since
d,,(0) — o0, x,, has no converging subsequence.

1n fact it is compact on the set of closed sets.



6. Let f, : R — RU{+o0} be convex, proper lower semi-continuous functions. Let C,, = epi f,, = {(x,t) €

R+t > f.(x)}. By the previous result, there exists C, closed and convex and a subsequence with C,,, Kc
(in R¥*1). Show that C = epi f for some convex, lower-semicontinuous function f. When is f not proper?
We say that f,, “epi-converges” to f.

First, we know that C' is closed and convex. Then, it is the epigraph of some f if and only if (z,t) € C =
(x,t") € C for all ¢’ > t. In that case, f(x) is given by inf{t € R: (z,t) € C} which is either +oo (if the set is
empty), —oo (if the set is R), or a min.

Let (z,t) € C. Then, by (i) there is (z,,t,) € C,, with (z,,t,) — (z,t). If ¢’ > t, one has ¢, +t' — ¢ >
tn > fn(xyn) hence (z,,t, +t' —t) € C,. By (ii), since (xy,t, +t —t) = (x,t'), one deduces (z,t') € C.
Hence if f(z) :=inf{t € R: (z,t) € C} one has C = {(x,t) : t > f(x)}.

If C =), f = +o0 is not proper. If C' contains {z} x R for some € RY, f(z) = —oo and f and is not
proper either. Otherwise, f must be proper.

7. We assume now that f, > 0 for all n, and that sup,, mingq 1 fn < 4oo. Show that f is proper.
(B(0,1) = {z € RY: 2] < 1}.)

C, Cc R x R since f,, > 0, so that C' C R x R, that is f > 0, and one cannot have f = —co. On the other
hand, letting ¢t = sup,, ming g ) fn, for each n there is x,, € B(0, 1) such that (z,,t) € epi f,, = C,,, and one

has d,,((0,0)) < ||z, || + ¢ < 1+ ¢ which is bounded: hence we are in the situation where some subsequence
dyp, — d = dist (-, C) locally uniformly and C' is not empty.

8. We assume f,, epi-converges to f which is proper. Show that f,, “I’-converges” to f, that is:

(™) for all  and x,, — z, f(z) < liminf,, f,(z,);

(T') for all z, there exists x,, — = such that limsup,, f,(z,) < f(z) (so that, by (I'7), lim, f.(z,) = f(x)).
[Hint: use (i) for (I'") and (i) for (I'").]

(P7): Let # € R? and z,, — x. Assume liminf, f,(z,) < +oo. Consider a subsequence f,, (z,, ) —
liminf, f,(x,), we also may assume that f,, (x,,) < oo for all k. Let ¢t > liminf,, f,(z,), then for k large
enough, fp, (z,,) <t and (z,,,t) € epi fn,. By (ii), we deduce that (z,t) € epi f, hence f(z) < t. Since this
is true for all ¢ > liminf,, f,(z,) it follows that f(x) < liminf,, f,(z,).

(TF): Let # € RY, assume f(x) < +oo, and let t > f(x) so that (x,t) € epif. Then by (i), there exists
(Tn,tn) € epi f, with (z,,t,) — (z,t). In particular, limsup,, f,(x,) < limsup,, ¢, = t. Since f is proper,
Isc, one can take ¢t = f(x) and the property is proved.

9. In the case of the previous question, assuming in addition (to simplify) f,, > 0, let z € R? and x,, — x:
show, using properties (I'*) and (T'~), that lim, . prox;, (z,) = prox(z).

(One has to show (1) that prox; (z,) is bounded, (2) that any limit point has to be prox;(z).)
Let 2, = proxy, (z,,), which minimizes f,,(2) + ||z — x,||?/2. First, f is proper, hence there is 7 with f(z) € R,
and there is z,, with lim,, f,,(z,) = f(Z).

In particular, f,,(zn) + [|2n — Znl|® < fu(Zn) + || Zn — 2, |* is bounded, and since f,,(2,,) > 0 it shows that
zn is bounded. Up to a subsequence we may assume that z,, — z.

Now, we have by (I'"):

. 1 e 1
f(Z) + 5”2 - ‘L||2 < hnlklnffﬂk (an) + 5”27% - :B77«k||2'

On the other hand, if 2/ € R, by (I't) there exists z/, with limsup,, f,(z,) < f(z). By minimality, one has

1 1
f”k (z”k) + §Hznk — Ty H2 < f"k (Z’:Lk) + 5”'4% — Ty, ”2

hence liminfy, fu, (2n,) + |20, — Tn, [2/2 < limsupy, fo, (2,) + 120, — 20, [7/2 < £(2') + [|2" = z]/2.



We deduce that 1 ]
OR ] Rk R {COR Et ]
since 2’ is arbitrary it shows that z = prox;(x). Since the limit of any converging subsequence is the same,

we deduce that z,, — z.

10. We consider f,, convex, proper, lsc, which I'-converges to f, convex, proper, lsc. Show that f* (the
convex conjugate) I'-converges to f*.

(a.) show first, using (I'") for f,, that (I'") holds for f;

(b.) to show (I't), we first admit that it is enough to show the property for y € R? such that df*(y) # 0, so
that there is x € 9f*(y) & y € 0f ().

What is the minimizer of z — f(2) — (y,2) + ||z — z||?/2? Introduce z, as the minimizer of f,(z) —
{(y,2) + ||z — x||?/2 and show (using Question 9.) that z, — x. Then, let y, = y — 2z, + 2 — y: use
Legendre-Fenchel’s inequality to show that f(y,) = f*(y).

Let (y,) with liminf,, f*(y,) < +o0, and assume y,, — y. Let x € R, let x,, — = with limsup,, f,,(z,) < f(z).
Then,

f:; (yn) > <xna yn> - fn(xn) = hnhlnf f* (yn) > hrnnlnf <13na yn> - fn,(xn)

= lim (2, yn) = limsup fo(2n) > (2, 9) = f(2).

We deduce, taking the sup over x, that
liminf £ (yn) > [*(y).

For the limsup: as suggested, let z, minimize f,(z) — (y, 2) + ||z — #(|*/2, that is 2, = prox; _, y(z). Then

by Question 9., z, — prox;_(, (z) = x (since y € 0f(x)).
We have
Ofn(zn) —y+2n =230 yp =y — 2, + 2 € Ofn(zn).

In particular y,, — y. We write:
fn(zn) + f:(yn) - <Zn7yn> .

In the limit using (a.), we find f(z) + f*(y) < (z,y) but then, one has:

{z,y) < fx) + [*(y) < liminf fr.(2n) +lminf £ (yn) < liminf(fo(20) + f7(yn)
< limsup(fa(zn) + o (yn)) <l (zn, yn) = (2,9)

showing that f,(zn) + [ (yn) — f(x) + f*(y). But then,

J () +limsup fr(yn) < liminf fo(z0) +limsup fo (yn) < i sup(fo(zn) + fo ) = f () + 17 (),

and we deduce that f(y,) — f*(y), as we needed to show (and also that f,,(z,) — f(z)).



