Introduction to Continuous optimization
Assessment
(6th January 2022)

Durée: 3h (It is not necessary to do all 4 exercises!)

Exercise I: non-linear forward-backward descent

We consider a space X (to simplify, finite-dimensional, yet everything below is dimension independent), with
a norm || - ||, and dual X* with dual norm, for all u € X*,

Jul = sup { (u,) . x : llof < 1}

and we recall (admit) that
ol = sup { (u,2) - x ¢ Nulle <1}

In particular, (u,z)y. x < |lull«||z|| for any € X, u € X*. Here, (u,z) . y denotes the linear form u € X*

evaluated at the vector # € X. (In practice, one identifies X ~ R, X* ~ R?, and (u,z)y. x = Zle Ui T,

where d > 1 is the dimension. In this case, one can use the standard Euclidean stucture of R? to define the
convex conjugate, etc.)

1. Let N(x):= ||z||*/2. Show that the conjugate
N () = 5up (1 2) e~ N (@)
is given by |ul|?/2.
Important remark: We recall that u € ON(z) & = € IN*(u) & (u,2)x. x = N(z) + N*(u), with

moreover, in that case, using that A" and N* are 2-homogeneous, (u,z)y. y = 2N () = 2A*(u) (Legendre-
Fenchel’s identity plus Euler’s identity for homogeneous functions), therefore ||z|| = ||u/|«.

2. We consider a convex, lower-semicontinuous function F(x) = f(x) + g(z), where f,¢ are convex and
where f has L-Lipschitz differential df : X — X*:

ldf () = df (y)ll« < Lllz —yll.
We introduce the “Bregman divergence” of f, defined by:
Dy(y,x) = f(y) = f(@) = (df (2),y — ) xu x -
Show that D¢(y,z) < Llly — z||*/2 = LN (y — z).

3. (Implicit-explicit algorithm.) We define an iterative algorithm by choosing 2z € X, 7 > 0, and letting,
for k > 0, 2**! be a minimizer of:

meg(x) + (df (z"), x>X*1X + %N(x —z").

We admit that it exists (it is not difficult), and assume that it can be computed (this is an assumption on g).
Write the equation satisfied by #**1, and show that there is ¢**1 € dg(z¥*+1) such that:

[2F — 2| = 7| ¢" Tt + df (7).



4. Show that for all z € X,
1 1
F(x) + =N(z — 2%) > F(a" ™) + =N (2" — 2F) — Dy (2", 2").
T T

Deduce that if 7 = 6/L for some 6 €]0, 1], one has:

1-46

F(a:k) 2 F(xk+1) +
2T

”xk+1 _ Z‘kHQ.

5. Using the convexity of g, f, show that, considering ¢**! € dg(z**1!) with 7(|¢* T +df (%) ||, = ||z —2*|,
one has, for any z* € X:
1
P = P < (42) 124 = a¥la - a4,
T

6. We denote for k > 0, Ay := F(2F) — F(2*), where z* is a minimizer of . We now assume that there
exists D > 0 such that ||z* — 2*|| < D for all k > 0 (this is clear for instance if the domain of g is bounded).
Deduce from the Questions 5. and 4. (still using 7 = /L) that for all & > 0:

1 1-6 7

A - A <A
k+1+2(1+9)2D2 k1 S Bk

7. Letting ai := ﬁﬁAk, one has therefore ag41 + aﬁﬂ < ag, and ag > 0 for all £ (assuming z* is a
minimizer of F).

i. show that if ag > 2 and k > log, log, ag, then a; < 2 (We recall log, * = Inx/In2, so that 2'°%2% = 7).
[Remark: it means for instance that a;q < 2 if ag ~ 10390

ii. show that if ax, < 2, for some kg > 1, then:

<
S k1 1

[Hint: introduce by, := 1/ay, > 1/2 and show that by1 > b+, considering the alternatives by /by > A
and bp41/br, < A, for some A € (0,1) to be determined.]

8. Conclude by giving a convergence rate for the algorithm. Show that (with this analysis) the best choice
for 0 is 6 = 1/3 which gives the rate:

32D,
F(a2*) — Fa*) < 222 2
(z") (w)_1+k—kzo

Exercice 1I - conjugates
1. Let A € R™™™ be invertible, and consider
1 2 n
f@) = 5lAal?, (xR
Evaluate V f(z). Deduce that f*(y) = ((A*4) 'y, y) /2 = [|(A*) " y[]?/2.

2. Forz e R, let f(z) = —In(1—|z|) if |x| < 1, +o0 if |x| > 1. Show that f(x) > |x|. Deduce that f*(y) =0
if |y] < 1. Show then that f*(y) = (Jy| —1)" — In(1 + (Jy| — 1)T), where ¢t* = max{t, 0}.



Exercice 1II - prox and conjugate of entropy and max functions

Let X={z eR": > " o, =1, >0Vi=1,...,n} be the unit simplex in R".
1. Compute the convex conjugate of g : z +— > | x;Inx; if x € ¥, and +oo else, where 0In0 = 0.
2. For € > 0 one considers the “soft-max” function £ — max(y), y € R™, given by

n

e —max(y) = 51112 evile.,

i=1
Show that max{yi,...,yn} <& — max(y) < max{yi,...,yn}t +clnn.
3. Show that (¢ — max)*(z) = eg(x) (with g defined in Question 1.).

4. TIf max(y) denotes the function max{y,...,yn}, deduce that

0 if S =1, >0Vi=1,....n,
max*(x){ if > i T = ! " = xn(x)

+o0o  else

the characteristic function of the set X.

5. One wishes to compute prox, .. (%) for 7 > 0, T € R", that is:
n
. A 2 n )
arg min o Z(ac2 )"+ Max z;
=1
Show first that it is equivalent to solve:

n

. . 1 N2
min min t+ — g (x; — T;)
teR z;<tVi 2T 4 f

1=

and then to solve: .

1
int 4+ — 7, —t)T]?
i+ g > @i 0]

where 21 := max{z,0} denotes the “positive part” of z € R.

6. Show that the optimal ¢ exists and satisfies:

Deduce that ¢ < maxj_; Z;.
7. Can you imagine an algorithm to compute 7

8. Assuming the previous question is solved, deduce an algorithm for projecting onto the unit simplex X.

Exercice IV: epi-convergence

Let (C,), be a sequence of closed, convex subsets of R?, C' € R%. R is equipped with the Euclidean norm.

We say that C,, 5 C (convergence in the sense of Kuratowski) if and only if:

i. for all z € C, there exists a sequence (), with x,, € C), for all n and such that z,, nz=se x;

.o . k
ii. if x,, € C,, (for a subsequence) and if z,, —3 , then z € C.



1. Distance function We introduce d,(z) = dist (z,C),,) = minyecc, ||z —y|| > 0. Why is there a unique
y € C with d,(z) = ||z — y||? Show that for each n, d, is 1-Lipschitz, and convex.

2. We recall Ascoli-Arzeld’s theorem:

Theorem 1 (Ascoli-Arzeld). If f, : R — R are functions which are uniformly equi-continuous, and uniformly
bounded in some point, then there is a subsequence fy, which converges locally uniformly.

Uniformly equi-continuous means that Ve > 0, 3n > 0, Vo, 2’ € R, ||z —2'|| < n = (Vn, |fo(z) — fu(2')] < €).
Show that either d,(z) — oo for all z € R%, or there exists a function d and a subsequence d,,, such that
dn, — d locally uniformly.

3. We assume d,,, — d locally uniformly. Let C := {x € R? : d(x) = 0}. Show that C,,, 5 ¢, and that C
is closed and convex.

4. Show that in this case, d(z) = dist (z, C) for all .

5. Show that if d,, — +oo, then C,, 2 0.
We have shown that the K-convergence is compact on the set of closed, convex! sets: given any sequence (C,,)
of closed (convex) sets, there is a subsequence which converges to a closed, convex set (but possibly empty).

6. Let f, : R — RU{+o0} be convex, proper lower semi-continuous functions. Let C,, = epi f,, = {(x,t) €

R4+ ¢ > f,(x)}. By the previous result, there exists C, closed and convex and a subsequence with C,,, KEc
(in R¥*1). Show that C = epi f for some convex, lower-semicontinuous function f. When is f not proper?
We say that f,, “epi-converges” to f.

7. We assume now that f, > 0 for all n, and that sup,, ming(m) fn < 4oo. Show that f is proper.
(B(0,1) = {z e R?: ||zf| < 1}.)

8. We assume f,, epi-converges to f which is proper. Show that f,, “I'-converges” to f, that is:

(I'7) for all z and z,, — z, f(z) < liminf,, f,(z,);

(T'+) for all x, there exists z, — = such that limsup,, fn(z,) < f(z) (so that, by ('), lim, fn(z,) = f(2)).
[Hint: use (ii) for (I'") and (i) for (I'").]

9. In the case of the previous question, assuming in addition (to simplify) f, > 0, let z € R? and x,, — x:

show, using properties (I') and ('), that lim, prox;, () = prox;(z).
(One has to show (1) that prox; (z,) is bounded, (2) that any limit point has to be prox(z).)

10. We consider f, convex, proper, lsc, which I'-converges to f, convex, proper, lsc. Show that f; (the
convex conjugate) I'-converges to f*.

(a.) show first, using (I'") for f,, that (I'") holds for f;
(b.) to show (I'"), we first admit that it is enough to show the property for y € R? such that df*(y) # 0, so
that there is x € 9f*(y) & y € 0f (x).

What is the minimizer of z — f(z) — (y,2) + ||z — z]|?>/2? Introduce z, as the minimizer of f,(z) —
{(y,z) + ||z — z||?/2 and show (using Question 9.) that z, — x. Then, let y, = y — 2, +x — y: use
Legendre-Fenchel’s inequality to show that f(y,.) — f*(y).

1n fact it is compact on the set of closed sets.



