
Introduction to Continuous optimization
Assessment

(6th January 2022)
Durée: 3h (It is not necessary to do all 4 exercises!)

Exercise I: non-linear forward-backward descent

We consider a space X (to simplify, finite-dimensional, yet everything below is dimension independent), with
a norm ∥ · ∥, and dual X∗ with dual norm, for all u ∈ X∗,

∥u∥∗ = sup
{
⟨u, x⟩X∗,X : ∥x∥ ≤ 1

}
and we recall (admit) that

∥x∥ = sup
{
⟨u, x⟩X∗,X : ∥u∥∗ ≤ 1

}
.

In particular, ⟨u, x⟩X∗,X ≤ ∥u∥∗∥x∥ for any x ∈ X, u ∈ X∗. Here, ⟨u, x⟩X∗,X denotes the linear form u ∈ X∗

evaluated at the vector x ∈ X. (In practice, one identifies X ∼ Rd, X∗ ∼ Rd, and ⟨u, x⟩X∗,X =
∑d

i=1 uixi,

where d ≥ 1 is the dimension. In this case, one can use the standard Euclidean stucture of Rd to define the
convex conjugate, etc.)

1. Let N (x) := ∥x∥2/2. Show that the conjugate

N ∗(u) = sup
x

⟨u, x⟩X∗,X −N (x)

is given by ∥u∥2∗/2.

Important remark: We recall that u ∈ ∂N (x) ⇔ x ∈ ∂N ∗(u) ⇔ ⟨u, x⟩X∗,X = N (x) + N ∗(u), with
moreover, in that case, using that N and N ∗ are 2-homogeneous, ⟨u, x⟩X∗,X = 2N (x) = 2N ∗(u) (Legendre-
Fenchel’s identity plus Euler’s identity for homogeneous functions), therefore ∥x∥ = ∥u∥∗.

2. We consider a convex, lower-semicontinuous function F (x) = f(x) + g(x), where f, g are convex and
where f has L-Lipschitz differential df : X → X∗:

∥df(x)− df(y)∥∗ ≤ L∥x− y∥.

We introduce the “Bregman divergence” of f , defined by:

Df (y, x) := f(y)− f(x)− ⟨df(x), y − x⟩X∗,X .

Show that Df (y, x) ≤ L∥y − x∥2/2 = LN (y − x).

3. (Implicit-explicit algorithm.) We define an iterative algorithm by choosing x0 ∈ X, τ > 0, and letting,
for k ≥ 0, xk+1 be a minimizer of:

min
x

g(x) +
〈
df(xk), x

〉
X∗,X

+
1

τ
N (x− xk).

We admit that it exists (it is not difficult), and assume that it can be computed (this is an assumption on g).
Write the equation satisfied by xk+1, and show that there is qk+1 ∈ ∂g(xk+1) such that:

∥xk+1 − xk∥ = τ∥qk+1 + df(xk)∥∗
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4. Show that for all x ∈ X,

F (x) +
1

τ
N (x− xk) ≥ F (xk+1) +

1

τ
N (xk+1 − xk)−Df (x

k+1, xk).

Deduce that if τ = θ/L for some θ ∈]0, 1[, one has:

F (xk) ≥ F (xk+1) +
1− θ

2τ
∥xk+1 − xk∥2.

5. Using the convexity of g, f , show that, considering qk+1 ∈ ∂g(xk+1) with τ∥qk+1+df(xk)∥∗ = ∥xk+1−xk∥,
one has, for any x∗ ∈ X:

F (xk+1)− F (x∗) ≤
(
1

τ
+ L

)
∥xk+1 − xk∥∥x∗ − xk+1∥.

6. We denote for k ≥ 0, ∆k := F (xk) − F (x∗), where x∗ is a minimizer of F . We now assume that there
exists D > 0 such that ∥xk − x∗∥ ≤ D for all k ≥ 0 (this is clear for instance if the domain of g is bounded).
Deduce from the Questions 5. and 4. (still using τ = θ/L) that for all k ≥ 0:

∆k+1 +
1

2

1− θ

(1 + θ)2
τ

D2
∆2

k+1 ≤ ∆k

7. Letting ak := 1−θ
2(1+θ)2

τ
D2∆k, one has therefore ak+1 + a2k+1 ≤ ak, and ak ≥ 0 for all k (assuming x∗ is a

minimizer of F ).

i. show that if a0 ≥ 2 and k ≥ log2 log2 a0, then ak ≤ 2 (We recall log2 x = lnx/ ln 2, so that 2log2 x = x).
[Remark: it means for instance that a10 ≤ 2 if a0 ≈ 10300.]

ii. show that if ak0
≤ 2, for some k0 ≥ 1, then:

ak ≤ 2

k − k0 + 1
.

[Hint: introduce bk := 1/ak ≥ 1/2 and show that bk+1 ≥ bk+λ, considering the alternatives bk+1/bk ≥ λ
and bk+1/bk ≤ λ, for some λ ∈ (0, 1) to be determined.]

8. Conclude by giving a convergence rate for the algorithm. Show that (with this analysis) the best choice
for θ is θ = 1/3 which gives the rate:

F (xk)− F (x∗) ≤ 32D2L

1 + k − k0
.

Exercice II - conjugates

1. Let A ∈ Rn×n be invertible, and consider

f(x) =
1

2
∥Ax∥2, (x ∈ Rn)

Evaluate ∇f(x). Deduce that f∗(y) =
〈
(A∗A)−1y, y

〉
/2 = ∥(A∗)−1y∥2/2.

2. For x ∈ R, let f(x) = − ln(1−|x|) if |x| < 1, +∞ if |x| ≥ 1. Show that f(x) ≥ |x|. Deduce that f∗(y) = 0
if |y| ≤ 1. Show then that f∗(y) = (|y| − 1)+ − ln(1 + (|y| − 1)+), where t+ = max{t, 0}.

2



Exercice III - prox and conjugate of entropy and max functions

Let Σ = {x ∈ Rn :
∑n

i=1 xi = 1, xi ≥ 0 ∀ i = 1, . . . , n} be the unit simplex in Rn.

1. Compute the convex conjugate of g : x 7→
∑n

i=1 xi lnxi if x ∈ Σ, and +∞ else, where 0 ln 0 = 0.

2. For ε > 0 one considers the “soft-max” function ε−max(y), y ∈ Rn, given by

ε−max(y) = ε ln

n∑
i=1

eyi/ε.

Show that max{y1, . . . , yn} ≤ ε−max(y) ≤ max{y1, . . . , yn}+ ε lnn.

3. Show that (ε−max)∗(x) = εg(x) (with g defined in Question 1.).

4. If max(y) denotes the function max{y1, . . . , yn}, deduce that

max∗(x) =

{
0 if

∑n
i=1 xi = 1, xi ≥ 0 ∀ i = 1, . . . , n ,

+∞ else
= δΣ(x)

the characteristic function of the set Σ.

5. One wishes to compute proxτ max(x̄) for τ > 0, x̄ ∈ Rn, that is:

argmin
x

1

2τ

n∑
i=1

(xi − x̄i)
2 +

n
max
i=1

xi

Show first that it is equivalent to solve:

min
t∈R

min
xi≤t ∀i

t+
1

2τ

n∑
i=1

(xi − x̄i)
2

and then to solve:

min
t∈R

t+
1

2τ

n∑
i=1

[(x̄i − t)+]2

where z+ := max{z, 0} denotes the “positive part” of z ∈ R.

6. Show that the optimal t exists and satisfies:

n∑
i=1

(x̄i − t)+ = τ.

Deduce that t < maxni=1 x̄i.

7. Can you imagine an algorithm to compute t?

8. Assuming the previous question is solved, deduce an algorithm for projecting onto the unit simplex Σ.

Exercice IV: epi-convergence

Let (Cn)n be a sequence of closed, convex subsets of Rd, C ⊂ Rd. Rd is equipped with the Euclidean norm.

We say that Cn
K→ C (convergence in the sense of Kuratowski) if and only if:

i. for all x ∈ C, there exists a sequence (xn)n with xn ∈ Cn for all n and such that xn
n→∞−→ x;

ii. if xnk
∈ Cnk

(for a subsequence) and if xnk

k→∞−→ x, then x ∈ C.
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1. Distance function We introduce dn(x) = dist (x,Cn) = miny∈Cn
∥x − y∥ ≥ 0. Why is there a unique

y ∈ C with dn(x) = ∥x− y∥? Show that for each n, dn is 1-Lipschitz, and convex.

2. We recall Ascoli-Arzelà’s theorem:

Theorem 1 (Ascoli-Arzelà). If fn : Rd → R are functions which are uniformly equi-continuous, and uniformly
bounded in some point, then there is a subsequence fnk

which converges locally uniformly.

Uniformly equi-continuous means that ∀ε > 0, ∃η > 0, ∀x, x′ ∈ Rd, ∥x−x′∥ ≤ η ⇒ (∀n, |fn(x)−fn(x
′)| ≤ ε).

Show that either dn(x) → ∞ for all x ∈ Rd, or there exists a function d and a subsequence dnk
such that

dnk
→ d locally uniformly.

3. We assume dnk
→ d locally uniformly. Let C := {x ∈ Rd : d(x) = 0}. Show that Cnk

K→ C, and that C
is closed and convex.

4. Show that in this case, d(x) = dist (x,C) for all x.

5. Show that if dn → +∞, then Cn
K→ ∅.

We have shown that the K-convergence is compact on the set of closed, convex1 sets: given any sequence (Cn)
of closed (convex) sets, there is a subsequence which converges to a closed, convex set (but possibly empty).

6. Let fn : Rd → R∪ {+∞} be convex, proper lower semi-continuous functions. Let Cn = epi fn = {(x, t) ∈
Rd+1, t ≥ fn(x)}. By the previous result, there exists C, closed and convex and a subsequence with Cnk

K→ C
(in Rd+1). Show that C = epi f for some convex, lower-semicontinuous function f . When is f not proper?
We say that fnk

“epi-converges” to f .

7. We assume now that fn ≥ 0 for all n, and that supn minB(0,1) fn < +∞. Show that f is proper.

(B(0, 1) = {x ∈ Rd : ∥x∥ ≤ 1}.)

8. We assume fn epi-converges to f which is proper. Show that fn “Γ-converges” to f , that is:

(Γ−) for all x and xn → x, f(x) ≤ lim infn fn(xn);

(Γ+) for all x, there exists xn → x such that lim supn fn(xn) ≤ f(x) (so that, by (Γ−), limn fn(xn) = f(x)).

[Hint: use (ii) for (Γ−) and (i) for (Γ+).]

9. In the case of the previous question, assuming in addition (to simplify) fn ≥ 0, let x ∈ Rd and xn → x:
show, using properties (Γ+) and (Γ−), that limn→∞ proxfn(xn) = proxf (x).

(One has to show (1) that proxfn(xn) is bounded, (2) that any limit point has to be proxf (x).)

10. We consider fn convex, proper, lsc, which Γ-converges to f , convex, proper, lsc. Show that f∗
n (the

convex conjugate) Γ-converges to f∗.

(a.) show first, using (Γ+) for fn, that (Γ
−) holds for f∗

n;

(b.) to show (Γ+), we first admit that it is enough to show the property for y ∈ Rd such that ∂f∗(y) ̸= ∅, so
that there is x ∈ ∂f∗(y) ⇔ y ∈ ∂f(x).

What is the minimizer of z 7→ f(z) − ⟨y, z⟩ + ∥z − x∥2/2? Introduce zn as the minimizer of fn(z) −
⟨y, z⟩ + ∥z − x∥2/2 and show (using Question 9.) that zn → x. Then, let yn = y − zn + x → y: use
Legendre-Fenchel’s inequality to show that f∗

n(yn) → f∗(y).

1In fact it is compact on the set of closed sets.
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