Forcadel N., Imbert C., MONNEAU R. (2024), Germs for scalar conservation laws: the Hamilton-Jacobi equation point of view, Paris, Cahier de recherche CEREMADE, Université Paris Dauphine-PSL, 21 p.
Forcadel N., Imbert C., MONNEAU R. (2024), The twin blow-up method for Hamilton-Jacobi equations in higher dimension, Paris, Cahier de recherche CEREMADE, Université Paris Dauphine-PSL, 23 p.
Cardaliaguet P., Forcadel N., Girard T., MONNEAU R. (2023), Conservation laws and Hamilton-Jacobi equations on a junction: the convex case, Paris, Cahier de recherche CEREMADE, Université Paris Dauphine-PSL, 34 p.
MONNEAU R. (2023), Strictly convex Hamilton-Jacobi equations: strong trace of the gradient, Paris, Cahier de recherche CEREMADE, Université Paris Dauphine-PSL, 27 p.
Forcadel N., Imbert C., MONNEAU R. (2023), Coercive Hamilton-Jacobi equations in domains: the twin blow-ups method, Paris, Cahier de recherche CEREMADE, Université Paris Dauphine-PSL, 11 p.
MONNEAU R. (2023), Strictly convex Hamilton-Jacobi equations: strong trace of the derivatives in codimension ≥ 2, Paris, Cahier de recherche CEREMADE, Université Paris Dauphine-PSL, 34 p.
Cardaliaguet P., Forcadel N., MONNEAU R. (2023), A class of germs arising from homogenization in traffic flow on junctions, Paris, Cahier de recherche CEREMADE, Université Paris Dauphine-PSL, 49 p.
Forcadel N., Imbert C., MONNEAU R. (2023), Non-convex coercive Hamilton-Jacobi equations: Guerand's relaxation revisited, Paris, Cahier de recherche CEREMADE, Université Paris Dauphine-PSL, 31 p.