Cardaliaguet P., Forcadel N., Girard T., MONNEAU R. (2024), Conservation laws and Hamilton-Jacobi equations on a junction: The convex case, Discrete and Continuous Dynamical Systems. Series A, vol. 44, n°12, p. 3920-3961
Cardaliaguet P., Forcadel N., MONNEAU R. (2024), A class of germs arising from homogenization in traffic flow on junctions, Journal of Hyperbolic Differential Equations, vol. 21, n°02, p. 189-254
Forcadel N., Imbert C., MONNEAU R. (2024), Coercive Hamilton–Jacobi equations in domains: the twin blow-ups method, Comptes rendus. Mathématique, vol. 362, n°G8, p. 829-839
Forcadel N., Imbert C., MONNEAU R. (2024), Nonconvex coercive Hamilton–Jacobi equations :Guerand’s relaxation revisited, Pure and Applied Analysis, vol. 6, n°4, p. 1055-1089
MONNEAU R. (2024), Structure of Riemann solvers on networks, Paris, Cahier de recherche CEREMADE, Université Paris Dauphine-PSL, 166 p.
Forcadel N., Imbert C., MONNEAU R. (2024), The twin blow-up method for Hamilton-Jacobi equations in higher dimension, Paris, Cahier de recherche CEREMADE, Université Paris Dauphine-PSL, 23 p.
Forcadel N., Imbert C., MONNEAU R. (2024), Germs for scalar conservation laws: the Hamilton-Jacobi equation point of view, Paris, Cahier de recherche CEREMADE, Université Paris Dauphine-PSL, 21 p.
MONNEAU R. (2023), Strictly convex Hamilton-Jacobi equations: strong trace of the gradient, Paris, Cahier de recherche CEREMADE, Université Paris Dauphine-PSL, 27 p.
MONNEAU R. (2023), Strictly convex Hamilton-Jacobi equations: strong trace of the derivatives in codimension ≥ 2, Paris, Cahier de recherche CEREMADE, Université Paris Dauphine-PSL, 34 p.