Curriculum vitae

Catto Isabelle

Chargée de recherche CNRS
CEREMADE

cattoping@ceremade.dauphinepong.fr

Biographie

Isabelle Catto est docteure de l’Université Paris-Dauphine-PSL (1991) et chargée de recherches hors-classe au CNRS. Ses recherches portent sur l’étude de problèmes variationnels et d’équations aux dérivées partielles non linéaires issus de la mécanique quantique. 

Elle est actuellement responsable pédagogique de la double licence Intelligence artificielle et sciences des organisations de l’Université Paris-Dauphine-PSL. 

De 2014 à 2021, elle a été mise à disposition auprès de l’université PSL pour exercer des fonctions de vice-présidente en charge de la formation. Dans ce cadre, elle a mise en place te piloté deux nouvelles formations : le CPES en partenariat avec le Lycée Henri-IV et la licence Sciences pour un mode durable. 

Dernières publications

Articles

Catto I., Meng L., Paturel E., Séré É. (2024), Existence of minimizers for the Dirac-Fock Model of Crystals, Archive for Rational Mechanics and Analysis, vol. 248, n°63

Catto I., Dolbeault J., Sánchez Ó., Soler J. (2013), Existence of steady states for the Maxwell-Schrödinger-Poisson system: exploring the applicability of the concentration-compactness principle, Mathematical Models and Methods in Applied Sciences, vol. 23, n°10, p. 1915-1938

Bardos C., Catto I., Mauser N., Trabelsi S. (2010), Setting and analysis of the multi-configuration time-dependent Hartree-Fock equations, Archive for Rational Mechanics and Analysis, vol. 198, n°1, p. 273-330

Catto I., Bardos C., Mauser N., Trabelsi S. (2009), Global-in-time existence of solutions to the multiconfiguration time-dependent Hartree-Fock equations: A sufficient condition, Applied Mathematics Letters, vol. 22, n°2, p. 147-152

Valero J., Gimenez A., Amigo M., Catto I. (2009), Attractors for a non-linear parabolic equation modelling suspension flows, Discrete and Continuous Dynamical Systems. Series B, vol. 11, n°2, p. 205-231

Catto I., Cancès E., Gati Y. (2005), Mathematical analysis of a nonlinear parabolic equation arising in the modelling of non-newtonian flows, SIAM Journal on Mathematical Analysis, vol. 37, n°1, p. 60-82

Gati Y., Cancès E., Le Bris C., Catto I. (2005), Well-posedness of a multiscale model for concentrated suspensions, Multiscale Modeling and Simulation: A SIAM Interdisciplinary Journal, vol. 4, n°4, p. 1041-1058

Catto I., Hainzl C. (2004), Self-energy of one electron in non-relativistic QED, Journal of Functional Analysis, vol. 207, n°1, p. 68-110

Catto I., Exner P., Hainzl C. (2004), Enhanced binding revisited for a spinless particle in non-relativistic QED, Journal of Mathematical Physics, vol. 45, n°11, p. 4174-4185

Benguria R., Monneau R., Catto I., Dolbeault J. (2004), Oscillating minimizers of a fourth order problem invariant under scaling, Journal of Differential Equations, vol. 205, n°1, p. 253-269

Catto I., Lions P-L., Le Bris C. (2002), On some periodic Hartree-type models for crystals, Annales de l'Institut Henri Poincaré (C) Analyse non linéaire, vol. 19, n°2, p. 143-190

Le Bris C., Catto I., Lions P-L. (2001), On the thermodynamic limit for Hartree–Fock type models, Annales de l'Institut Henri Poincaré (C) Analyse non linéaire, vol. 18, n°6, p. 687-760

Catto I., Lions P-L., Le Bris C. (1998), Sur la limite thermodynamique pour des modèles de type Hartree et Hartree-Fock, Comptes rendus. Mathématique, vol. 327, n°3, p. 259-266

Catto I., Le Bris C., Lions P-L. (1996), Limite thermodynamique pour des modèles de type Thomas-Fermi, Comptes rendus. Mathématique, vol. 322, p. 357-364

Catto I., Lions P-L. (1993), Binding of atoms and stability of molecules in Hartree and Thomas-Fermi type theories. Part 3 : Binding of neutral subsystems, Communications in Partial Differential Equations, vol. 18, n°3-4, p. 381-429

Catto I. (1993), On some vector-valued non linear variational problems: variations on the Skyrme-Hartree-Fock model in nuclear physics, Differential and Integral Equations, vol. 6, n°2, p. 291-318

Catto I., Lions P-L. (1993), Binding of atoms and stability of molecules in Hartree and Thomas-Fermi type theories. Part 2 : Stability is equivalent to the binding of neutral subsystems, Communications in Partial Differential Equations, vol. 18, n°1-2, p. 305-354

Catto I., Lions P-L. (1993), Binding of atoms and stability of molecules in Hartree and Thomas-Fermi type theories. Part 4 : Binding of neutral systems for the Hartree model, Communications in Partial Differential Equations, vol. 18, n°7-8, p. 1149-1159

Catto I., Lions P-L. (1992), A necessary and sufficient condition for the stability of general molecular systems, Communications in Partial Differential Equations, vol. 17, n°7-8, p. 1051-1110

Catto I., Lions P-L. (1990), La stabilité des molécules et la liaison des atomes pour des modèles de type Thomas-Fermi ou Hartree, Comptes rendus. Mathématique, vol. 311, p. 193-198

Ouvrages

Pons G., Catto I., Gentil I. (2011), Mathématiques L sciences éco : éléments de calcul différentiel pour l'économie : + exercices et problèmes corrigés, Paris: Ellipses , 288 p.

Catto I., Le Bris C., Lions P-L. (1998), Mathematical theory of thermodynamic limits. Thomas- Fermi type models, Oxford: Clarendon Press, 292 p.

Chapitres d'ouvrage

Catto I. (2015), Hartree-Fock type models, in Björn Engquist, Encyclopedia of Applied and Computational Mathematics, Berlin Heidelberg: Springer

Catto I. (2015), Mathematical modelling of quantum crystals, in Björn Engquist, Encyclopedia of Applied and Computational Mathematics, Berlin Heidelberg: Springer

Catto I., Lions P-L., Le Bris C. (2000), Recent mathematical results on the quantum modeling of crystals, in Mireille Defranceschi, Claude Le Bris, Mathematical models and methods for ab initio quantum chemistry, Edimbourg: Springer, p. 95-120

Prépublications / Cahiers de recherche

Catto I., Meng L. (2023), Properties of periodic Dirac--Fock functional and minimizers, Paris, Cahier de recherche CEREMADE, Université Paris Dauphine-PSL, 32 p.

Retour à la liste