Christian Robert is currently Professor at CEREMADE, Université Paris-Dauphine (France) and part-time Professor at the University of Warwick, Department of Statistics. He is also a senior member of the Institut Universitaire de France (IUF) until 2021 and a member of the Statistics Laboratory at Centre de Recherche en Economie et Statistique (CREST) in Paris-Saclay. He also holds a prAIrie chair since 2019. He has been a member of the Research Section of the Royal Statistical Society and the Editor of the Journal of the Royal Statistical Society (Series B, Statistical Methodology). He is now Deputy-Editor for the journal Biometrika. He was President of the International Society for Bayesian Analysis (ISBA) in 2008 and is a Fellow of the RSS, the IMS, the ISBA and the ASA. His reseach interests cover Bayesian statistics (decision theory, model choice, foundations, objective Bayesian methodology), Computational statistics (Monte Carlo methodology, MCMC methods, sequential importance sampling, approximate Bayesian computation (ABC), convergence diagnoses) and Latent variable models (mixtures, hidden Markov models). He has written a dozen books and more than 200 articles in these domains.
Andral C., Douc R., Marival H., Robert C. (2024), The importance Markov Chain, Stochastic Processes and their Applications, vol. 171
Robert C., Rousseau J. (2023), A special issue on Bayesian Inference: Challenges, Perspective, and Prospects, Philosophical Transactions. Physical, Mathematical and Engineering Sciences, vol. 381, n°2247
Elvira V., Martino L., Robert C. (2022), Rethinking the Effective Sample Size, International Statistical Review, vol. 90, n°3, p. 525-550
Clarte G., Robert C., Ryder R., Stoehr J. (2021), Component-wise approximate Bayesian computation via Gibbs-like steps, Biometrika, vol. 108, n°3, p. 591–607
Robert C., Roberts G. (2021), Rao–Blackwellisation in the Markov Chain Monte Carlo Era, International Statistical Review, vol. 89, n°2, p. 237-249
Wu C., Robert C. (2020), Coordinate sampler: a non-reversible Gibbs-like MCMC sampler, Statistics and Computing, vol. 30, p. 721–730
Frazier D., Robert C., Rousseau J. (2020), Model Misspecification in ABC: Consequences and Diagnostics, Journal of the Royal Statistical Society. Series B, Statistical Methodology, vol. 82, n°2, p. 421-444
Bernton E., Jacob P., Gerber M., Robert C. (2019), Approximate Bayesian computation with the Wasserstein distance, Journal of the Royal Statistical Society. Series B, Statistical Methodology, vol. 81, n°2, p. 235-269
McShane B., Gal D., Gelman A., Robert C., Tackett J. (2019), Abandon Statistical Significance, The American Statistician, vol. 73, n°Sup.1, p. 235-245
Raynal L., Marin J-M., Pudlo P., Ribatet M., Robert C., Estoup A. (2019), ABC random forests for Bayesian parameter inference, Bioinformatics, vol. 35, n°10, p. 1720-1728
Martin G., McCabe B., Frazier D., Maneesoonthorn W., Robert C. (2019), Auxiliary Likelihood-Based Approximate Bayesian Computation in State Space Models, Journal of Computational and Graphical Statistics, vol. 28, n°3, p. 508-522
Frazier D., Martin G., Robert C., Rousseau J. (2018), Asymptotic Properties of Approximate Bayesian Computation, Biometrika, vol. 105, n°3, p. 593-607
Robert C., Elvira V., Tawn N., Wu C. (2018), Accelerating MCMC algorithms, Wiley Interdisciplinary Reviews. Computational Statistics, vol. 10, n°5, p. 1-22
Grazian C., Robert C. (2018), Jeffreys priors for mixture estimation: properties and alternatives, Computational Statistics & Data Analysis, vol. 121, p. 149-163
Kamary K., Lee J., Robert C. (2018), Weakly informative reparameterisations for location-scale mixtures, Journal of Computational and Graphical Statistics, vol. 27, n°4, p. 836-848
Robert C., Rousseau J. (2017), How Principled and Practical Are Penalised Complexity Priors?, Statistical Science, vol. 32, n°1, p. 36-40
Mengersen K., Drovandi C., Robert C., Pyne D., Gore C. (2016), Bayesian Estimation of Small Effects in Exercise and Sports Science, PLoS ONE, vol. 11, n°4, p. e0147311
Robert C. (2016), The expected demise of the Bayes factor, Journal of Mathematical Psychology, vol. 72, p. 33-37
Robert C., Rousseau J. (2016), Nonparametric Bayesian Clay for Robust Decision Bricks, Statistical Science, vol. 31, n°4, p. 506-510
Pudlo P., Marin J-M., Estoup A., Cornuet J-M., Gautier M., Robert C. (2016), Reliable ABC model choice via random forests, Bioinformatics, vol. 32, n°6, p. 859-866
Robert C. (2016), Comment on: Reflections on the Probability Space Induced by Moment Conditions with Implications for Bayesian Inference, Journal of Financial Econometrics, vol. 14, n°2, p. 265-271
Arbel J., Robert C., Prünster I., Ryder R. (2015), Three discussions of the paper "sequential quasi-Monte Carlo sampling", by M. Gerber and N. Chopin, Journal of the Royal Statistical Society. Series B, Statistical Methodology, vol. 77, n°3, p. 569-570
Robert C. (2015), Discussion on the paper "Sequential quasi Monte Carlo" by Gerber and Chopin, Journal of the Royal Statistical Society. Series B, Statistical Methodology, vol. 77, n°3, p. 2
Green P., Latuszyski K., Pereyra M., Robert C. (2015), Bayesian computation: a perspective on the current state, and sampling backwards and forwards, Statistics and Computing, vol. 25, n°4, p. 835-862
Moores M., Drovandi C., Mengersen K., Robert C. (2015), Pre-processing for approximate Bayesian computation in image analysis, Statistics and Computing, vol. 25, n°1, p. 23-33
Robert C., Grazian C., Masiani I. (2015), Comment on Article by Dawid and Musio, Bayesian Analysis, vol. 10, n°2, p. 511-515
Salmeron D., Cano J., Robert C. (2015), Objective Bayesian hypothesis testing in binomial regression models with integral prior distributions, Statistica Sinica, vol. 25, n°3, p. 1009-1024
Robert C. (2014), On the Jeffreys-Lindley paradox, Philosophy of Science, vol. 81, n°2, p. 216-232
Reylé C., Robin A., Robert C., Fliri J., Czekaj M., Martins A. (2014), Constraining the thick disc formation scenario of the Milky Way, Astronomy & Astrophysics, vol. 569, p. n°A13
Robert C. (2014), Discussion of the paper "Bayesian measures of model complexity and fit" by D. Spiegelhalter et al., Journal of the Royal Statistical Society. Series B, Statistical Methodology, vol. 76, n°3, p. 492-493
Gelman A., Robert C. (2014), Revised evidence for statistical standards, PNAS - Proceedings of the National Academy of Sciences of the United States of America, vol. 111, n°19, p. E1936-E1937
Mengersen K., Robert C. (2014), Big Bayes Stories—Foreword, Statistical Science, vol. 29, n°1, p. 1
Rousseau J., Pillai N., Marin J-M., Robert C. (2014), Relevant statistics for Bayesian model choice, Journal of the Royal Statistical Society. Series B, Statistical Methodology, vol. 76, n°5, p. 833-859
Kamary K., Robert C. (2014), Reflecting about Selecting Noninformative Priors, Journal of Applied and Computational Mathematics, vol. 3, n°5, p. n°1000175
Robert C. (2013), The Theory That Would Not Die: How Bayes’ Rule Cracked the Enigma Code, Hunted Down Russian Submarines, and Emerged Triumphant from Two Centuries of Controversy by Sharon Bertsch McGrayne, International Statistical Review, vol. 80, n°1, p. 178-179
Pudlo P., Robert C., Mengersen K. (2013), Bayesian computation via empirical likelihood., PNAS - Proceedings of the National Academy of Sciences of the United States of America, vol. 110, n°4, p. 1321-1326
Robert C. (2013), Error and Inference: an outsider stand on a frequentist philosophy, Theory and Decision, vol. 74, n°3, p. 447-461
Gelman A., Robert C., Mengersen K., Chopin N. (2013), In praise of the referee, ISBA Bulletin, vol. 20, n°1, p. 13-19
Robert C., Rousseau J., Gelman A. (2013), Inherent difficulties of non-Bayesian likelihood-based inference, as revealed by an examination of a recent book by Aitkin, Statistics & Risk Modeling, vol. 30, n°2, p. 105-120
Doucet A., Robert C. (2013), Introduction to Special Issue on Monte Carlo Methods in Statistics, ACM Transactions on Modeling and Computer Simulation, vol. 23, n°1, p. n°1
Gelman A., Robert C. (2013), Rejoinder: The Anti-Bayesian Moment and Its Passing., The American Statistician, vol. 67, n°1, p. 16-17
Robert C. (2013), Discussion, International Statistical Review, vol. 81, n°1, p. 52-56
Robert C., Gelman A. (2013), "Not Only Defended But Also Applied" : The Perceived Absurdity of Bayesian Inference., The American Statistician, vol. 67, n°1, p. 1-5
Cornuet J-M., Marin J-M., Mira A., Robert C. (2012), Adaptive Multiple Importance Sampling, Scandinavian Journal of Statistics, vol. 39, n°4, p. 798-812
Lombaert E., Cornuet J-M., Marin J-M., Robert C., Pudlo P., Estoup A. (2012), Estimation of demo-genetic model probabilities with Approximate Bayesian Computation using linear discriminant analysis on summary statistics., Molecular Ecology Resources, vol. 12, n°5, p. 846-855
Marin J-M., Robert C., Celeux G., El Anbari M. (2012), Regularization in regression: comparing Bayesian and frequentist methods in a poorly informative situation, Bayesian Analysis, vol. 7, n°2, p. 477-502
Marin J-M., Robert C., Ryder R., Pudlo P. (2012), Approximate Bayesian Computational methods, Statistics and Computing, vol. 22, n°6, p. 1167-1180
Lartillot N., Robert C., Atchade Y. (2012), Bayesian computation for statistical models with intractable normalizing constants, Brazilian Journal of Probability and Statistics, vol. 27, n°4, p. 416-436
Robert C. (2011), A Handbook of Statistical Analyses Using R, Second Edition by Brian S. Everitt, Torsten Hothorn: A review, International Statistical Review, vol. 79, n°2, p. 276-277
Marin J-M., Pillai N., Cornuet J-M., Robert C. (2011), Lack of confidence in approximate Bayesian computation model choice, PNAS - Proceedings of the National Academy of Sciences of the United States of America, vol. 108, n°37, p. 15112-15117
Douc R., Robert C. (2011), A vanilla Rao-Blackwellisation of Metropolis-Hastings algorithms, Annals of Statistics, vol. 39, n°1, p. 261-277
Robert C. (2011), James E. Gentle: Computational statistics, Statistics and Computing, vol. 21, n°2, p. 289-291
Robert C., Roy V., Hobert J. (2011), Improving the Convergence Properties of the Data Augmentation Algorithm with an Application to Bayesian Mixture Modelling, Statistical Science, vol. 26, n°3, p. 332-351
Robert C. (2011), A Comparison of the Bayesian and frequentist approaches to estimation by Francisco J. Samaniego: A review., International Statistical Review, vol. 79, n°1, p. 117-118
Robert C. (2011), Discussion on "Is Bayes posterior just quick and dirty confidence?" by D.A.S. Fraser, Statistical Science, vol. 26, n°3, p. 317-318
Jacob P., Robert C., Smith M. (2011), Using parallel computation to improve Independent Metropolis-Hastings based estimation, Journal of Computational and Graphical Statistics, vol. 20, n°3, p. 616-635
Robert C., Casella G. (2011), A Short History of Markov Chain Monte Carlo: Subjective Recollections from Incomplete Data, Statistical Science, vol. 26, n°1, p. 102-115
Robert C. (2011), Reading Keynes' Treatise on Probability, International Statistical Review, vol. 79, n°1, p. 1-15
Robert C. (2011), Book reviews, Fall 2011, Chance, vol. 24, n°4, p. 58-61
Robert C. (2011), Bayesian Decision Analysis: Principles and Practice by Jim Q. Smith: A review, International Statistical Review, vol. 79, n°2, p. 272-273
Robert C. (2011), Bayesian Model Selection and Statistical Modeling by Tomohiro Ando: A review, International Statistical Review, vol. 79, n°1, p. 120-121
Robert C. (2011), Time Series: Modeling, Computation, and Inference by Raquel Prado, Mike West: A review, International Statistical Review, vol. 79, n°2, p. 277-279
Marin J-M., Robert C. (2010), On resolving the Savage–Dickey paradox, Electronic Journal of Statistics, vol. 4, p. 643-654
Raftery A., Fienberg S., Berger J., Robert C. (2010), Incoherent phylogeographic inference, PNAS - Proceedings of the National Academy of Sciences of the United States of America, vol. 107, n°41, p. E157
Iacobucci A., Robert C., Marin J-M. (2010), On variance stabilisation in population Monte Carlo by double Rao-Blackwellisation, Computational Statistics & Data Analysis, vol. 54, n°3, p. 698-710
Fort G., Prunet S., Kilbinger M., Wraith D., Robert C., Benabed K. (2010), Bayesian model comparison in cosmology with Population Monte Carlo, Monthly Notices of the Royal Astronomical Society, vol. 405, n°4, p. 2381-2390
Robert C. (2010), On the relevance of the Bayesian approach to Statistics, Review of Economic Analysis, n°2, p. 139-152
Robert C., Chen C., Mengersen K. (2010), Model choice versus model criticism, PNAS - Proceedings of the National Academy of Sciences of the United States of America, vol. 107, n°3
Beaumont M., Nielsen R., Robert C., Hey J., Gaggiotti O., Knowles L., Estoup A., Panchal M., Corander J., Hickerson M., Sisson S., Fagundes N., Chikhi L., Beerli P., Vitalis R., Cornuet J., Huelsenbeck J., Foll M., Yang Z., Rousset F., Balding D., Excoffier L. (2010), In defence of model-based inference in phylogeography, Molecular Ecology, vol. 19, n°3, p. 436-446
Chopin N., Robert C. (2010), Properties of Nested Sampling, Biometrika, vol. 97, n°3, p. 741-755
Robert C. (2010), The Search for Certainty: a critical assessment, Bayesian Analysis, vol. 5, n°2, p. 213-222
Robert C., Marin J-M., Cornuet J-M., Beaumont M. (2009), Adaptive approximate Bayesian computation, Biometrika, vol. 96, n°4, p. 983-990
Grelaud A., Marin J-M., Robert C. (2009), ABC methods for model choice in Gibbs random fields, Comptes rendus. Mathématique, vol. 347, n°3-4, p. 205-210
Robert C., Titterington M., Cucala L., Marin J-M. (2009), A Bayesian reassessment of nearest-neighbour classification, Journal of the American Statistical Association, vol. 104, n°485, p. 263-273
Robert C. (2009), Comments on: Natural Induction: An Objective Bayesian Approach, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas , vol. 103, n°1, p. 149-150
Robert C., Chopin N., Rousseau J. (2009), Rejoinder: Harold Jeffreys' Theory of Probability Revisited, Statistical Science, vol. 24, n°2, p. 191-194
Taly J-F., Grelaud A., Robert C., Marin J-M., Rodolphe F. (2009), ABC likelihood-free methods for model choice in Gibbs random fields, Bayesian Analysis, vol. 4, n°2, p. 317-336
Robert C., Rousseau J., Chopin N. (2009), Harold Jeffreys' Theory of Probability revisited, Statistical Science, vol. 24, n°2, p. 141-172
Kilbinger M., Cardoso J-F., Cappé O., Wraith D., Prunet S., Robert C. (2009), Estimation of cosmological parameters using adaptive importance sampling, Physical Review. D, Particles, Fields, Gravitation and Cosmology, vol. 80, n°2
Robert C., Wood A. (2008), Report of the Editors - 2007, Journal of the Royal Statistical Society. Series B, Statistical Methodology, vol. 70, n°1, p. 1-2
Robert C., Marin J-M. (2008), Approximating the marginal likelihood in mixture models, Indian Bayesian Society Newsletter, vol. V, n°1, p. 2-7
Robert C. (2008), Discussion of "Sure independence screening for ultra-high dimensional feature space" by Fan and Lv., Journal of the Royal Statistical Society. Series B, Statistical Methodology, vol. 70, n°5, p. 901
Robert C., Marin J-M. (2008), Some difficulties with some posterior probability approximations, Bayesian Analysis, vol. 3, n°2, p. 427-442
Jouini E., Ben Mansour S., Napp C., Marin J-M., Robert C. (2008), Are Risk-Averse Agents more Optimistic? A Bayesian Estimation Approach, Journal of Applied Econometrics, vol. 23, n°6, p. 843-860
Marin J-M., Robert C. (2008), On some difficulties with a posterior probability approximation technique, Bayesian Analysis, vol. 3, n°2, p. 427-442
Santos F., Beaumont M., Robert C., Cornuet J-M., Balding D., Marin J-M. (2008), Infering population history with DIY ABC : a user-friendly approach to Approximate Bayesian Computation, Bioinformatics, vol. 24, n°23, p. 2713-2719
Robert C., Cano J., Salmeron D. (2008), Integral equation solutions as prior distributions for Bayesian model selection, Test, vol. 17, n°3, p. 493-504
Robert C. (2008), À propos de l'article de N. Vayatis" Bayésiens contre fréquentistes, un faux débat", La Recherche : L'actualité des sciences, vol. 424, p. 6
Cappé O., Marin J-M., Douc R., Robert C., Guillin A. (2008), Adaptive Importance Sampling in General Mixture Classes, Statistics and Computing, vol. 18, n°4, p. 447-459
Perry D., Ball A., Mengersen K., Thompson J., Robert C., Alston C. (2007), Bayesian mixture models in a longitudinal setting for analysing sheep CAT scan images, Computational Statistics & Data Analysis, vol. 51, n°9, p. 4282–4296
Guillin A., Douc R., Robert C., Marin J-M. (2007), Minimum variance importance sampling via Population Monte Carlo, ESAIM. Probability and Statistics, vol. 11, p. 427-447
Robert C., Marin J-M., Guillin A., Douc R. (2007), Convergence of adaptive mixtures of importance sampling schemes, Annals of Statistics, vol. 35, n°1, p. 420-448
Kendall W., Robert C., Marin J-M. (2007), Confidence bands for Brownian motion and applications to Monte Carlo simulation, Statistics and Computing, vol. 17, n°1, p. 1-10
Robert C. (2007), Comment on Article by Jain and Neal, Bayesian Analysis, vol. 2, n°3, p. 483-494
Forbes F., Titterington M., Celeux G., Robert C. (2006), Rejoinder, Bayesian Analysis, vol. 1, n°4, p. 701-706
Robert C., Marin J-M., Celeux G. (2006), Iterated importance sampling in missing data problems, Computational Statistics & Data Analysis, vol. 50, n°12, p. 3386-3404
Marin J-M., Celeux G., Robert C. (2006), Sélection bayésienne de variables en régression linéaire, Journal de la Société française de statistique, vol. 147, n°1, p. 59-80
Amzal B., Robert C., Bois F., Parent E. (2006), Bayesian-Optimal Design via Interacting Particle Systems, Journal of the American Statistical Association, vol. 101, n°474, p. 773-785
Robert C., Hobert J., Jones G. (2006), Using a Markov Chain to Construct a Tractable Approximation of an Intractable Probability Distribution, Scandinavian Journal of Statistics, vol. 33, n°1, p. 37-51
Robert C., Titterington M., Celeux G., Forbes F. (2006), Deviance Information Criteria for Missing Data Models, Bayesian Analysis, vol. 1, n°4, p. 651-674
Marin J-M., Robert C., Guillin A. (2005), Estimation bayésienne approximative par échantillonnage préférentiel, Revue de statistique appliquée, vol. 53, n°1, p. 79-95
Cappé O., Guillin A., Marin J-M., Robert C. (2004), Population Monte Carlo, Journal of Computational and Graphical Statistics, vol. 13, n°4, p. 907-929
Rousseau J., Parmigiani G., Robert C., Müller P. (2004), Optimal Sample Size for Multiple Testing: The Case of Gene Expression Microarrays, Journal of the American Statistical Association, vol. 99, n°468, p. 990-1001
Casella G., Wells M., Robert C. (2004), Mixture models, latent variables and partitioned importance sampling, Statistical Methodology, vol. 1, n°1-2, p. 1-18
Hobert J., Robert C. (2004), A mixture representation of π with applications in Markov chain Monte Carlo and perfect sampling, Annals of Applied Probability, vol. 14, n°3, p. 1295-1305
Robert C., Justel A., Hurn M. (2003), Estimating Mixtures of Regressions, Journal of Computational and Graphical Statistics, vol. 12, n°1, p. 55-79
Robert C., Philippe A. (2003), Perfect simulation of positive Gaussian distributions, Statistics and Computing, vol. 13, n°2, p. 179-186
Robert C., Cappé O., Ryden T. (2003), Reversible jump, birth-and-death and more general continuous time Markov chain Monte Carlo samplers, Journal of the Royal Statistical Society. Series B, Statistical Methodology, vol. 65, n°3, p. 679-700
Titterington M., Robert C., Casella G., Mengersen K. (2002), Perfect samplers for mixtures of distributions, Journal of the Royal Statistical Society. Series B, Statistical Methodology, vol. 64, n°4, p. 777-790
Lavine M., Robert C., Casella G. (2001), Explaining the Perfect Sampler, The American Statistician, vol. 55, n°4, p. 299-305
Robert C. (1995), Simulation of truncated normal variables, Statistics and Computing, vol. 5, n°2, p. 121-125
Robert C., Marin J-M. (2014), Bayesian Essentials with R (2nd ed.), Berlin: Springer, 296 p.
Titterington M., Robert C., Mengersen K. (2011), Mixtures. Estimation and Applications, Chichester: Wiley, 308 p.
Robert C., Casella G. (2011), Méthodes de Monte-Carlo avec R, Berlin: Springer, 256 p.
Robert C., Casella G. (2009), Introducing Monte Carlo Methods with R Springer, 284 p.
Robert C., Marin J-M. (2007), Bayesian Core: A practical approach to computational Bayesian statistics, New York: Springer, 258 p.
Robert C. (2007), The Bayesian Choice: From Decision Theoretic Foundations to Computational Implementation, New York: Springer, 577 p.
Robert C. (2006), Le Choix Bayésien : principes et pratique, Paris: Springer, 638 p.
Casella G., Robert C. (2004), Monte Carlo Statistical Methods, New York: Springer, 645 p.
Robert C. (2022), 50 shades of Bayesian testing of hypotheses, in Arni S.R. Srinivasa Rao, G. Alastair Young, C.R. Rao, Handbook of Statistics- Volume 47 - Advancements in Bayesian Methods and Implementation, Amsterdam: Elsevier, p. 304
Robert C., Carallo G., Casarin R. (2021), A Bayesian Generalized Poisson Model for Cyber Risk Analysis, in Marco Corazza, Manfred Gilli, Cira Perna, Claudio Pizzi, Marilena Sibillo, Mathematical and Statistical Methods for Actuarial Sciences and Finance, Berlin Heidelberg: Springer, p. 123-128
Robert C. (2021), Approximate Bayesian computation, an introduction, in Jean-Baptiste Marquette , Didier Fraix‐Burnet , Stéphane Girard and Julyan Arbel, Statistics for Astrophysics, Les Ulis: EDP Sciences, p. 77-112
Wu C., Robert C. (2020), Markov Chain Monte Carlo Algorithms for Bayesian Computation, a Survey and Some Generalisation, in Kerrie L. Mengersen, Pierre Pudlo, Christian P. Robert, Case Studies in Applied Bayesian Data Science, Berlin Heidelberg: Springer, p. 89-119
Robert C., Celeux G., Kamary K., Malsiner-Walli G., Marin J-M. (2019), Computational Solutions for Bayesian Inference in Mixture Models, in Sylvia Fruhwirth-Schnatter, Gilles Celeux, Christian P. Robert, Handbook of Mixture Analysis CRC Press, Taylor & Francis, p. 24
Marin J-M., Pudlo P., Estoup A., Robert C. (2018), Likelihood-free model choice, in Scott A. Sisson, Yanan Fan, Mark Beaumont, Handbook of Approximate Bayesian Computation CRC Press, Taylor & Francis, p. 662
Celeux G., Frühwirth-Schnatter S., Robert C. (2018), Model Selection for Mixture Models-Perspectives and Strategies, in Sylvia Fruhwirth-Schnatter, Gilles Celeux, Christian P. Robert, Handbook of Mixture Analysis CRC Press, Taylor & Francis, p. 498
Robert C. (2011), Monte Carlo Methods in Statistics, in Lovric, Miodrag, International Encyclopedia of Statistical Science, Berlin: Springer, p. 854-858
Marin J-M., Robert C., Rousseau J. (2011), Bayesian Inference and Computation, in Stumpf, Michael, Handbook of Statistical Systems Biology Wiley, p. 600
Mengersen K., Robert C. (2011), Exact Bayesian Analysis of Mixtures, in Titterington, Michael, Mixtures: Estimation and Applications, Chichester (UK): Wiley, p. 241-254
Robert C., Rousseau J. (2010), On Bayesian Data Analysis, in Böcker, Klaus, Rethinking Risk Measurement and Reporting, London: Infopro Digital Risk Ltd, p. 527
Marin J-M., Robert C. (2010), On computational tools for Bayesian data analysis, in Böcker, Klaus, Rethinking Risk Measurement and Reporting, London: Infopro Digital Risk Ltd, p. 527
Robert C. (2010), Bayesian computational methods (2e ed.), in Mori, Yuichi, Handbook of Computational Statistics, Berlin: Springer, p. 719-766
Marin J-M., Robert C. (2010), Importance sampling methods for Bayesian discrimination between embedded models, in Chen M H., Müller P., Sun D., Ye K., Dey D., Frontiers of Statistical Decision Making and Bayesian Analysis, Berlin Heidelberg: Springer, p. 513-527
Mengersen K., Marin J-M., Robert C. (2005), Bayesian Modelling and Inference on Mixtures of Distributions, in Rao, C.R., Handbook of Statistics - Bayesian Thinking - Modeling and Computation Elsevier, p. 459-507
Casella G., Robert C., Wells M. (2004), Generalized Accept-Reject Sampling Schemes, in Rubin, Herman, A Festschrift for Herman Rubin, Beachwood (Ohio): Lecture Notes Monograph Series, p. 417
Frühwirth-Schnatter S., Celeux G., Robert C. (2019), Handbook of Mixture Analysis CRC Press, Taylor & Francis, 522 p.
Robert C. (2016), Approximate Bayesian Computation: A Survey on Recent Results, in Ronald Cools, Dirk Nuyens, Monte Carlo and Quasi-Monte Carlo Methods. MCQMC, Leuven, Belgium, April 2014, Springer, 185-205 p.
Grazian C., Robert C. (2015), Jeffreys’ Priors for Mixture Estimation, in Sylvia Frühwirth-Schnatter, Angela Bitto, Gregor Kastner, Alexandra Posekany, Bayesian Statistics from Methods to Models and Applications / BAYSM 2014, Springer, 37-48 p.
Robert C. (2011), Simulation in Statistics, in Jain, S., Winter Simulation Conference, WSC 2011. Proceedings : 11-14 December 2011, Phoenix, Arizona, Phoenix, IEEE - Institute of Electrical and Electronics Engineers, 12 p.
Wraith D., Robert C. (2009), Computational methods for Bayesian model choice, in Goggans, Paul M., Bayesian Inference and Maximum Entropy Methods in Science and Engineering: The 29th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering, Oxford (Mississippi), American Institute of Physics, 12 p.
Robert C., Grazian C. (2014), Jeffreys Priors for Mixture Models, SIS 2014, Cagliari, Italie
Pudlo P., Leblois R., Robert C. (2012), Empirical likelihood for Bayesian inference in population genetics, Mathematical and Computational Evolutionnary Biology 2012, Montpellier, France
Marin J-M., Robert C. (2010), On Resolving the Savage-Dickey Paradox, 9th Valencia International Meeting on Bayesian Statistics - 2010 World Meeting of the International Society for Bayesian Analysis, Benidorm, Espagne
Rodolphe F., Grelaud A., Robert C. (2010), Détection de sélection darwinienne sur un gène par une approche sans vraisemblance, 42èmes Journées de Statistique, Marseille, France
Féron O., Bouriga M., Robert C., Marin J-M. (2010), Bayesian Estimation of a Covariance Matrix: Application for Asset and Liabiliy Management, 9th Valencia International Meeting on Bayesian Statistics - 2010 World Meeting of the International Society for Bayesian Analysis, Benidorm, Espagne
Rodolphe F., Marin J-M., Taly J-F., Grelaud A., Robert C. (2009), Choix de modèle pour les champs de Gibbs par un algorithme ABC., 41èmes Journées de Statistique, SFdS, Bordeaux, France
Jouini E., Napp C., Robert C., Ben Mansour S., Marin J-M. (2006), Are risk averse agents more optimistic ?, EGRIE, Barcelone, Espagne
Amzal B., Parent E., Bois F., Robert C. (2003), Optimisation de plans d'expérience par méthodes particulaires, 35e Journées de Statistiques, Lyon, France
Robert C. (2019), The Beauty of Mathematics in Computer Science, Chance, vol. 32, n°2, p. 47-48
Robert C. (2017), Une Vie Brève (One Hundred Twenty-One Days), Chance, vol. 30, n°1, p. 40-40
Robert C. (2017), Superintelligence: Paths, Dangers, Strategies, Chance, vol. 30, n°1, p. 42-43
Robert C. (2017), Statistical Rethinking, Chance, vol. 30, n°1, p. 40-42
Robert C. (2013), Book Reviews, Summer 2013, Chance, vol. 26, n°2
Robert C. (2012), Book reviews, Summer 2012, Principles of Applied Statistics, Chance, vol. 25, n°3, p. 58-59
Robert C. (2012), Book reviews, Winter 2011, Chance, vol. 25, n°1, p. 49-57
Robert C. (2012), Book reviews, Summer 2012, Chance, vol. 25, n°3
Alquier P., Robert C. (2012), Book reviews, Fall 2012, Chance, vol. 25, n°4, p. 57-61
Donnet S., Robert C. (2012), Book reviews, Winter 2012, Chance, vol. 25, n°4
Iacobucci A., Robert C. (2012), Book Reviews (Spring 2012), Chance, vol. 25, n°2, p. 57-61
Robert C. (2011), A Handbook of Statistical Analyses Using R, Second Edition by Brian S. Everitt, Torsten Hothorn: A review, International Statistical Review, vol. 79, n°2, p. 276-277
Robert C. (2011), Evidence and Evolution: The logic behind the science, Human Genomics, vol. 5, p. 130-136
Robert C. (2011), Bayesian Decision Analysis: Principles and Practice by Jim Q. Smith: A review, International Statistical Review, vol. 79, n°2, p. 272-273
Robert C. (2011), Bayesian Model Selection and Statistical Modeling by Tomohiro Ando: A review, International Statistical Review, vol. 79, n°1, p. 120-121
Robert C. (2011), Time Series: Modeling, Computation, and Inference by Raquel Prado, Mike West: A review, International Statistical Review, vol. 79, n°2, p. 277-279
Robert C. (2011), A Comparison of the Bayesian and frequentist approaches to estimation by Francisco J. Samaniego: A review., International Statistical Review, vol. 79, n°1, p. 117-118
Robert C. (2011), Book reviews, Fall 2011, Chance, vol. 24, n°4, p. 58-61
Stoehr J., Robert C. (2024), Simulating signed mixtures, Paris, Cahier de recherche CEREMADE, Université Paris Dauphine-PSL, 30 p.
Luciano A., Robert C., Ryder R. (2023), Insufficient Gibbs Sampling, Paris, Cahier de recherche CEREMADE, Université Paris Dauphine-PSL, 22 p.
Casarin R., Craiu R., Frattarolo L., Robert C. (2022), Living on the Edge: An Unified Approach to Antithetic Sampling, Paris, Cahier de recherche CEREMADE, Université Paris Dauphine-PSL, 66 p.
Martin G., Frazier D., Robert C. (2022), Computing Bayes: From Then 'Til Now 1, Paris, Cahier de recherche CEREMADE, Université Paris Dauphine-PSL, 21 p.
Hairault A., Robert C., Rousseau J. (2022), Evidence estimation in finite and infinite mixture models and applications, Paris, Cahier de recherche CEREMADE, Université Paris Dauphine-PSL, 43 p.
McKimm H., Wang A., Pollock M., Robert C., Roberts G. (2022), Sampling using Adaptive Regenerative Processes, Paris, Cahier de recherche CEREMADE, Université Paris Dauphine-PSL, 34 p.
Thin A., Janati Y., Le Corff S., Ollion C., Doucet A., Durmus A., Moulines É., Robert C. (2021), NEO: Non Equilibrium Sampling on the Orbit of a Deterministic Transform, Cahier de recherche CEREMADE, Université Paris Dauphine-PSL, 36 p.
Wu C., Stoehr J., Robert C. (2019), Faster Hamiltonian Monte Carlo by Learning Leapfrog Scale, Paris, Cahier de recherche CEREMADE, Université Paris Dauphine-PSL, 18 p.
Clarte G., Ryder R., Robert C., Stoehr J. (2019), Component-wise approximate Bayesian computation via Gibbs-like steps, Paris, Cahier de recherche CEREMADE, Université Paris Dauphine-PSL, 30 p.
Wu C., Robert C. (2017), Average of Recentered Parallel MCMC for Big Data, Paris, Cahier de recherche CEREMADE, Université Paris Dauphine-PSL, 14 p.
Celeux G., Jewson J., Josse J., Marin J-M., Robert C. (2017), Some discussions on the Read Paper Beyond subjective and objective in statistics" by A. Gelman and C. Hennig", Paris, Cahier de recherche CEREMADE, Université Paris Dauphine-PSL, 5 p.
Bernton E., Jacob P., Gerber M., Robert C. (2017), Inference in generative models using the Wasserstein distance, Paris, Cahier de recherche CEREMADE, Université Paris Dauphine-PSL, 34 p.
Kamary K., Mengersen K., Robert C., Rousseau J. (2017), Testing hypotheses via a mixture estimation model, Paris, Cahier de recherche CEREMADE, Université Paris Dauphine-PSL, 37 p.
Wu C., Robert C. (2017), Generalized Bouncy Particle Sampler, Paris, Cahier de recherche CEREMADE, Université Paris Dauphine-PSL, 28 p.
Robert C., Rousseau J. (2016), Some comments about A Bayesian criterion for singular models by M. Drton and M. Plummer, Paris, Cahier de recherche CEREMADE, Université Paris Dauphine-PSL, 4 p.
Kamary K., Lee J., Robert C. (2016), Non-informative reparameterisations for location-scale mixtures, Cahier de recherche CEREMADE, Université Paris Dauphine-PSL
Banterle M., Grazian C., Robert C. (2014), Accelerating Metropolis-Hastings algorithms: Delayed acceptance with prefetching, Paris, Cahier de recherche CEREMADE, Université Paris Dauphine-PSL, 20 p.
Marin J-M., Cornuet J-M., Sedki M., Pudlo P., Robert C. (2012), Efficient learning in ABC algorithms, Paris, Université Paris-Dauphine, 24 p.
Robert C. (2012), Principles of Uncertainty, by J.B. Kadane: A review, Paris, Université Paris-Dauphine, 4 p.
Robert C. (2011), First moments of the truncated and absolute Student's variates, Paris, Université Paris-Dauphine, 4 p.
Robert C., Marin J-M., Pillai N., Rousseau J. (2011), Evaluating statistic appropriateness for Bayesian model choice, Paris, Université Paris-Dauphine, 18 p.
Marin J-M., Pillai N., Robert C. (2011), Why approximate Bayesian computational (ABC) methods cannot handle model choice problems, Paris, Université Paris-Dauphine, 20 p.
Barthelme S., Beffy M., Chopin N., Doucet A., Jacob P., Johansen A., Marin J-M., Robert C. (2011), Discussions on "Riemann manifold Langevin and Hamiltonian Monte Carlo methods", Paris, Université Paris-Dauphine, 6 p.
Robert C. (2010), About incoherent inference, Paris, Université Paris-Dauphine, 3 p.
Schäfer C., Mengersen K., Marin J-M., Robert C., Ryder R., Chopin N. (2010), On Particle Learning, Paris, Université Paris-Dauphine, 19 p.
Jacob P., Chopin N., Robert C., Rue H. (2009), Comments on Particle Markov chain Monte Carlo" by C. Andrieu, A. Doucet, and R. Hollenstein", Paris, Cahier de recherche CEREMADE, Université Paris Dauphine-PSL, 9 p.
Robert C. (2006), Three discussions on model choice, Paris, Cahiers du CEREMADE, 17 p.
Robert C., Rousseau J. (2002), A Mixture Approach to Bayesian Goodness of Fit, Paris, Université Paris-Dauphine, 25 p.
Guillin A., Cappé O., Marin J-M., Robert C. (2002), Population Monte Carlo for Ion Channel Restoration, Paris, Cahiers du CEREMADE, 15 p.
Hobert J., Robert C. (2001), Moralizing perfect sampling, Paris, Cahiers du CEREMADE, 22 p.
Casella G., Robert C., Wells M. (2001), Rao-blackwellization of generalized accept-reject schemes, Paris, Cahiers du CEREMADE, 10 p.
Andrieu C., Robert C. (2001), Controlled MCMC for Optimal Sampling, Paris, Cahiers du CEREMADE, 38 p.
Doucet A., Robert C. (2000), Maximum a Posteriori Parameter Estimation for Hidden Markov Models, Paris, Cahiers du CEREMADE, 25 p.
Robert C. (2013), Des spécificités de l'approche bayésienne et de ses justifications en statistique inférentielle, 18 p.