### Medial Representations

#### Mathematics, Algorithms and Applications

#### Kaleem Siddiqi

School of Computer Science & Centre For Intelligent Machines McGill University http://www.cim.mcgill.ca/~shape

with contributions from:

Sylvain Bouix, James Damon, Sven Dickinson, Pavel Dimitrov, Diego Macrini, Marcello Pelillo, Carlos Phillips, Ali Shokoufandeh, Svetlana Stolpner, Steve Zucker,

# Motivation





















### Blum's A-Morphologies: 2D



FIG. 29. Equivalent objects in some simple A-morphologies. In the upper half, the object sym-axes have the same topology. In the lower half, the object and ground have the same directed graph.

### Blum's A-Morphologies: 3D



FIG. 42. Sym-axes of some three-dimensional objects. The ellipsoids at the top show that the sym-ax can now be both arcs and surfaces. The bottom shows the sym-ax for a rectangular solid and for a general spherical envelope.

### Blum's Grassfire Machine



"Figure 19 shows my first physical embodiment of the process. It uses a movie projector and camera with high contrast film. These are symmetrically driven apart from the lens in such a way as to keep a one to one magnification, but to increase the circle of confusion (defocussing). Corner detection is done by a separate process. I am presently building a closed loop electronic system to do both the wave generation and corner detection."

[A transformation for Extracting New Descriptors of Shape, 1967.]

# Mathematics

### The Rowboat Analogy



Figure 1.7. Local medial geometry. a. Local geometric properties of a medial point and its boundary pre-image. b. The rowboat analogy for medial points.

### Contact Classification

**Theorem 1 (Giblin and Kimia)** The internal medial locus of a threedimensional object  $\Omega$  generically consists of

- 1 sheets (manifolds with boundary) of  $A_1^2$  medial points;
- 2 curves of  $A_1^3$  points, along which these sheets join, three at a time;
- 3 curves of  $A_3$  points, which bound the free (unconnected) edges of the sheets and for which the corresponding boundary points fall on a crest;
- 4 points of type  $A_1^4$ , which occur when four  $A_1^3$  curves meet;
- 5 points of type  $A_1A_3$  (i.e.,  $A_1$  contact and  $A_3$  contact at a distinct pair of points) which occur when an  $A_3$  curve meets an  $A_1^3$  curve.





### Euclidean Distance Function



### Gradient Vector Field

| Ц.,              | N                  | $\leq \lambda$ | . N.           | $\sim \gamma$ | $\sim \sim$  | $N^{-1}$     | $\sim \infty$                                | $N \sim$                                                | $\sim \gamma$            | . N          | ς τ                                          | <u>ц</u> ,      | ι.           | τ. τ            | 1          | L Γ          | 1            | 1.2          | 1.7                                          | 1              | 1.7        | 1              | 1.1        |              |                | 5.5               | 5 1         | 1.2          | 1.7                   | . N          | ς τ           | 5 1                                               | 1               | 1.7          | 1.1                       | 11                    | - 7 - J        | $l \neq l$            | 7          |
|------------------|--------------------|----------------|----------------|---------------|--------------|--------------|----------------------------------------------|---------------------------------------------------------|--------------------------|--------------|----------------------------------------------|-----------------|--------------|-----------------|------------|--------------|--------------|--------------|----------------------------------------------|----------------|------------|----------------|------------|--------------|----------------|-------------------|-------------|--------------|-----------------------|--------------|---------------|---------------------------------------------------|-----------------|--------------|---------------------------|-----------------------|----------------|-----------------------|------------|
|                  | ÷.                 |                | 1.1            |               | <b>.</b>     | ÷.,          |                                              |                                                         |                          | • • •        |                                              |                 |              |                 |            |              |              |              |                                              |                |            |                |            |              |                |                   |             |              |                       |              |               |                                                   |                 |              |                           |                       |                |                       | ۰.         |
| <u>۱</u>         | <u>۱</u>           | •              |                |               |              |              | <u>,                                    </u> | N N                                                     | <u> </u>                 |              | <u> </u>                                     | •               | ١١.          | <u>\</u>        | L.         | ۱.           |              | 66           | 1.6                                          | <u>د</u>       | 66         | - <u>-</u>     | 4 ( j      |              |                | Υ.Υ.              | <u>\</u>    | - L 6        | - <b>(</b> (          | - <b>N</b> - | ۱.            | N 1                                               |                 | ί (          | 64                        | 66                    | - 6- 6         | ( ( (                 | 4          |
| <u>ب</u>         | 1                  | $\sim \infty$  | . N.           | $\sim \gamma$ | $\sim \sim$  | $N^{-1}$     | $\sim \sim$                                  | $\chi_{\chi}$                                           | $\sim 2$                 | υN.          | NΝ                                           | - X - 1         | ι.           | τ. τ            | 1          | L Γ          | 1            | 1.2          | 1.7                                          | 1              | 1.1        | 1              | 11         |              |                | 5.5               | 5 1         | 1.2          | 11                    | <u>ار ا</u>  | ς τ.          | 5 1                                               | - Z - 1         | 1.7          | 11                        | 11                    | 11             | $l = l \rightarrow l$ | 1          |
|                  |                    |                |                | τ.            |              | ÷.,          |                                              |                                                         |                          | · · ·        |                                              | ·               | • •          | 11              |            |              |              |              |                                              |                |            | - <b>1</b> -   |            |              |                | 1.1               | 11          |              |                       | <b>.</b>     |               |                                                   |                 |              | 1.                        |                       |                |                       | ٠.         |
| <u>۱</u>         | L .                | ነ ነ            | • •            | <u></u>       | • •          | •            |                                              | 1.1                                                     | - <b>1</b> - 3           | • •          | X = X                                        |                 | ъ ъ.         | λ λ             | L.         | ۱L           | L.           | ι.           | 1.6                                          | ۲ <b>6</b> –   | 6 6        | - <b>6</b>     | 6 6        |              |                | 1 1               | 11          | 10           | - <b>(</b> (          | N            | <b>۱</b>      | 11                                                | . ( )           | ( (          | 6 6                       | - (   (               | - <b>(</b> ) ( |                       | <u>(</u>   |
| L.               | 1                  | 1 > 1          | . N.           | $\sim 2$      | $\sim$       | $X \to X$    | $\sim$                                       | N = N                                                   | N N                      | . N          | N N                                          | - N - 1         |              | τt              | 1          | ιī           | 1            | 1.2          | 1.7                                          | 1              | 1.1        | 1              | 1.1        | 1            |                | 1.5               | 5 0         | 1.2          | 1.1                   | - N -        | 5 U           | <u>с</u> т                                        | J.,             | 1.1          | 1.1                       |                       | 1.1            | $l \in l$             | 6          |
|                  |                    | •              |                |               | · . ·        |              | · · ·                                        |                                                         |                          | • • •        |                                              | •               | • •          |                 |            |              |              |              |                                              |                |            | •              | •          | •            |                |                   |             |              |                       |              |               |                                                   |                 |              |                           |                       |                |                       | <u>.</u>   |
| - <b>N</b> -     | <u>ا</u>           | 1 1            |                | <u> </u>      |              |              | <u> </u>                                     |                                                         |                          | . N.         | > >                                          |                 | ъъ.          | <b>X</b> X      | <u>ا</u>   |              | - <b>L</b>   | 66           | 14                                           | - <b>6</b> -   | 6 6        | - <b>6</b>     | 6 6        | - L          |                | 1. 1.             | N 1         | . L 6        | - <b>6</b> - <b>6</b> | - <b>N</b> - | Υ.Υ.          | N 1                                               | . <b>6</b> 1    | 6 6          | 6 6                       | 66                    | - 6- 6         | ( / /                 | ſ          |
| ι,               | 1                  | 1.7            | 1.1            | $\sim \sim$   | с. N.        | $\sim 2$     | $\sim \infty$                                | $\sim \sim$                                             | 1)                       | · `          | NΝ                                           | <u>з</u> с      | с N          | 5.5             | 1          | <b>і</b> і   | 1            | 1.2          | 1.1                                          | 1              | 1.1        |                | 7 E        | 1            |                | $1 \rightarrow 1$ | 5.0         | 1.2          | 1.0                   | 1            | NΝ            | <u>к</u> 1                                        | . J             | 1.0          | 1.1                       |                       | 11             | $\sim c_{1}$          | 6          |
|                  |                    |                | - 11           |               | <b>-</b>     | ÷.,          |                                              |                                                         |                          | • • •        |                                              | • • •           |              |                 |            |              |              |              | ÷ •                                          |                |            |                | •          |              |                | 1 I               |             |              | - N N                 |              |               |                                                   |                 |              | 1 L                       |                       |                |                       | <u>.</u>   |
| <u>۱</u>         |                    | 6              | - <b>N</b> -   |               | ×            | <b>.</b> .   | <u> </u>                                     | A 4                                                     | •                        | × •          | $\mathcal{N} \to \mathcal{N}$                | • • •           | ν.           | 11              | L.         |              |              | 66           | 4 6                                          | <u>د</u>       | 66         | - <b>6</b> -   | 6 L        |              |                | 1. 1.             | 11          | . L 6        | - <b>(</b>            | 6            | <u>ъъ</u>     | <u> </u>                                          |                 | ( (          | 66                        | 66                    | - ( (          | i 🖌 🕴                 | £          |
| - <b>h</b>       | 1                  | 17             | 1              | $\sim \sim$   | $\sim \sim$  | $\sim 2$     | $\sim \sim$                                  | N N                                                     | $\lambda \lambda$        | $\sim \sim$  | NΝ                                           | $\sim 10^{-1}$  | ۱ X -        | Υ.Υ.            | 1          | ΙL           | <u>_</u>     | L / .        | 1.7                                          | 1              | 1.1        | 1              | 7 E        |              |                | 1 1               | 33          | 17           | 11                    | 1            | $\sim \gamma$ | N 1                                               | 1.1             | 1.7          | 1.1                       | 11                    | 11             | < 7 g                 | 6          |
|                  |                    |                |                |               | <b>-</b>     |              |                                              |                                                         |                          |              |                                              |                 |              |                 | •          | · · ·        |              | •            | <u> </u>                                     | <b>.</b>       |            | - <b>1</b> -   | <b>.</b> . |              |                | ÷ •               |             |              |                       | ·.           |               | . 1                                               |                 |              | <u>.</u>                  |                       |                |                       | <u>.</u>   |
| 1 N.             | L.                 | 6              | <u>د</u>       |               |              |              | ÷                                            | $\sim \sim$                                             | •                        | × *          | <u> </u>                                     | - N.,           | • >          | 5 N             | <u>۱</u>   |              |              | 6 6          | 4 <b>(</b>                                   | 7              | ί,         | - <b>(</b> - ) | 6 L.       |              |                | 1.1               | - N - N     | - <b>1</b> 6 | 11                    | - <b>6</b>   |               | <u> </u>                                          |                 | ۰ <b>۱</b>   | 4 4 C                     | - <b>(</b> - <b>(</b> | 11             | - <b>-</b>            | £          |
| ٠.               | ۲.                 | 17             | 1              | $\ell \geq$   | S 84         | N 1          | $\sim \infty$                                | $\sim \sim$                                             | $\sim \sim$              | < N.         | $\sim \gamma$                                | . X 1           | $\sim$       | $\nabla \nabla$ | Ł          | ΙL           |              | 11           | 1.1                                          | 1              | 277        | ×4.            | 7 E        |              |                | 1 1               | N A         | <u></u>      | 11                    | 1            | L 🔨           | ∵∕~ī                                              | <u>``</u> }~i   | ( <u>)</u>   | 11                        | 11                    | 11             | 11                    | 6          |
|                  |                    |                | ÷.             |               |              |              |                                              |                                                         |                          |              |                                              | · ./            |              |                 |            |              |              |              |                                              |                |            | •              | • •        |              |                |                   |             |              | S. 1                  |              |               |                                                   |                 | ·            |                           |                       | - <u>-</u>     |                       | 2          |
| - <b>1</b>       | <u>ъ</u> .,        | ۱.             | - <b>6</b>     | <u>د</u> ا    |              |              |                                              |                                                         | •                        | e e .        |                                              | <b>7</b> • •    | ъ. ъ.        | N 14            | <u>۱</u>   |              |              | 66           | 4 <b>6</b>                                   | 1 <b>6</b> - 1 | 6 6        | - <b>6</b>     | 6 L.       | - L          |                | 1.1               | <u> )</u> ) | • • •        | 1 N.                  | <u> </u>     | مون ا         | / -                                               | <b>Y</b> (      | ( ( )        | ᡯᢇᢩᡘ                      |                       | 11             | - • •                 | -          |
| ٠.               | Ł                  | 11             | 1              | 1 3           | 6 N.         | 1 <b>-</b> 1 | S 84                                         | $\sim \sim$                                             | $\lambda \lambda$        | $\sim \sim$  | $\smallsetminus X$                           | 5 N 1           | ιv.          | $\Sigma \Sigma$ | Ł          | LΙ           | L            | 11           | l/l                                          | 1              | 11         | - 8            | 1.5        | L            | LL             | LL                | Υ.Υ         | 117          | 11                    | ιT           | Γι            | $N^{-1}$                                          | <u>ار ایر ا</u> | 11           | 11                        | $\mathcal{N}$         | 11             | 11                    | 1          |
|                  | ÷.,                |                | ÷.             | • •           |              |              |                                              |                                                         |                          |              | Ζ.                                           | • • •           |              |                 | ÷.         |              |              |              | : :                                          | ÷.             | : :        | - 1 - I        |            |              |                |                   |             |              |                       |              |               | Ξ.                                                | . <b>.</b>      |              |                           | - 5                   |                |                       |            |
| - <b>-</b>       | <b>1</b>           | ۱.             | <u>د</u> ا     | 6 G.          | -            |              |                                              |                                                         |                          | • • •        | · • •                                        | 5 A 1           | 2.2          | 1.1             | <u> </u>   |              | <u>۱</u>     | ι.           | 4 4 A                                        | - <b>6</b> - 1 | 6 6        | - <b>6</b>     | 6 L.       | L            |                | 1.1               | <u>)</u> )  | 1 I I        | · • • • •             | - <b>L</b>   | L L           |                                                   |                 | 66           | 11                        | •••                   | N ( 1          |                       | -          |
| <u>ک</u>         | Υ.                 | 5.7            | - E -          | 11            |              | 1 <b>-</b> 1 | S 8.                                         | $\sim \sim$                                             | N 1                      | · /•         | <u>х</u> Ү.                                  | •••             | · ·          | -               |            | LL           | 4            | ĽΖ           | LI                                           | 1              | 11         | - Ł -          | 2 U        | L            | LL             | LL                | 1 1         | 11           | 11                    | L            | LΙ            | 103                                               | <u>ک</u> ک      | LΣ           | 21                        | 11                    | $\sim$         | 1 e e                 | £          |
|                  | ÷.                 |                | ÷.             | 1.2           | ~            | ς.           |                                              | $\sim \infty$                                           | ~ ~                      | ∕•           | <u>ر ان ان ا</u>                             | $\sim$          |              |                 |            | 2 S.         | Γ.           | ГТ.          | 7.7                                          | 5              | 1.5        | - i -          | 1.1        |              |                | ÷ ÷               | 11          |              | 5.5                   | - E -        |               | $\sim 1$                                          | T               | 77           | ر ۲                       |                       | - 22           | $\lambda > 1$         |            |
|                  | 1                  | 11             | ſ              | 66            |              |              |                                              |                                                         | - 77                     | N 14         | . 🗶                                          | 1               |              |                 |            |              | 10           |              | <u>وا او ا</u>                               | 6 M. A.        | <b>€</b> • | 6              | L L        |              |                | 1 L               | 1 1         | 11           | 6 E                   | . ek . e     | . ان ا        | <u>ور او </u> |                 |              | - <b>* *</b> 7            |                       |                | Υ.                    |            |
| $\sim N_{\rm e}$ | Υ.                 | 57             | - Ł.,          | 11            | <u>ار ا</u>  |              | • •                                          | 2 B 1                                                   | $\cdot \checkmark \cdot$ | - C          | $\gamma$                                     | _ <b>/</b> -∎ ` |              | _               | . T.       |              | ÷.           |              |                                              | r              | <u> </u>   | - L            | 8 U        | L            | LL             | LL                | 1.1         | 11           | 11                    |              |               | 2 2                                               | - <u>1</u> -    |              | · ·                       | 6.6                   |                | · • •                 | -          |
| с.<br>Г.         | ξ.                 | i i.           | 11             | 1.7           | - <i>1</i> - | λ. 1         |                                              | $\sim \infty$                                           | λv                       | $\sim 7$     | ί.,                                          | 1               | ~ ~          | ~ <b>.</b> ~    | N 1        | i 1          | Г.,          | Г Г.         | 11                                           | . e.           | 17         | e 74,          | i i.       | i i          |                | 1 E               | T = X       | 1.1          | 5.5                   |              | ι.            | 1 1                                               | <b>-</b>        | с с          | 1011                      | $\sim$                | 1.1            | ╴╻┙╴╺╸                | -          |
| 5 B.             |                    | 6 B.           | - <b>-</b> - 1 | • •           | •            | - <b>1</b> - |                                              |                                                         | / <b>.</b>               | $M_{\rm e}$  |                                              | 7 -             |              | - 1e            | Ъ А        | : t          | 1            | r r.         | . <b>.</b>                                   | - A            | . e .      | e (6)          | 9 F        | · 🕴          | ۶.             | •• ••             | ÷ 1.        | S 8.         | 10.10                 | <b>.</b>     |               | 1 1                                               | 1               | 1. 1         | 10.10                     | - 2 N                 | 1.0            | . <u>.</u> .          |            |
| с N.             | Υ.                 | 57             | 6.             | ( (           | 6            | 1 <b>-</b> 1 |                                              | $\sim \gamma$                                           |                          | 7            | ` 1                                          |                 | Ъ. Т.        |                 | 4.         |              | ÷.           |              | ·. ·                                         |                | · · ·      |                | 1 1        |              |                | <u> </u>          | 2.2         | <u> </u>     | · · ·                 | • •          | • •           |                                                   | <u> </u>        | <u></u>      |                           |                       | 1.1            | Y                     | ۰.         |
|                  | λ.                 | ς j.           | 1.1            | بر م          | × 1          | S. 1         | <u> </u>                                     | $\sim$                                                  |                          | <u>~</u>     | $\checkmark$                                 |                 | < ~ '        | N N.            | з,         | i î          | ſ            | ГГ           | f = f                                        | с <b>с</b> .   | 1          | с <u>с</u> ,   | LL         | - C - 1      | ΓC,            | <b>۱</b> ۱        | 1-1         | <u> </u>     | $\sim \sim$           |              | L کی          | بمعر                                              | Г               | r r          | 7.7                       | . r 1                 | $\sim$         |                       | ۰.         |
| •                |                    | •              |                |               |              |              |                                              | 1.1                                                     | L 🖌                      | _            | Ζ.                                           | • • •           | СĽР.         | ι.              | <b>N</b> 1 | ١.           | 1            | r 7.         | 1 1                                          | 1              | ر جر       | e e .          | 1.1        | . <b>7</b>   | 1.1            | <u>ک</u> ک        | 5 5         | 1.5          | N N                   | N 14         | K             | ٧. ١                                              | <b>.</b>        | 1.1          | × 7                       | ╌┮╍┥                  | ч.             |                       | <b>.</b> . |
| • •              | ۰ <b>۰</b> ,       | ትተ             | 11             |               |              |              | • •                                          | $\sim >$                                                | 1                        | •            | <u>^                                    </u> |                 | 1.0          |                 |            |              |              |              | · - ·                                        |                |            |                |            |              |                |                   |             |              |                       |              | <u> </u>      |                                                   |                 |              |                           |                       |                | · . ·                 |            |
|                  | 1                  | · • •          | <u>/</u> ~ •   |               | λ            | S. 1         | < <b>/</b>                                   | 1.1                                                     | У 🗸                      | x.           | $\sim \infty$                                | I               | - <b>1</b>   | 11              | <u> </u>   | مليريا       | -1-          | ┍╼╼╣         | $<$ $\cdot$                                  | e e,           | <u>_</u>   | с с.           | T T        | - C - 1      | r 71           | Ν Ν.              | 5 3         | 11           | $\sim \sim$           | $\sim$       | ι.            | <b>1</b> 1                                        | 5               | C Γ          | $\mathcal{L} \mathcal{L}$ | - F - I               |                |                       | -          |
| _                | Ľ_                 |                | <b>.</b>       |               |              |              | 23                                           | с <sup>1</sup> с 2                                      | 1. 3                     | × •          |                                              | 1 V I V         | 5            | ٩.              | ~^         | . <b>1</b>   | 1            | r 7.         | · 🚬                                          | e / .          | 10         | · 7 ·          | 1.7        | - C - 1      | 6 . <u>A</u> 1 | •                 | s 5.        | 11           | N N                   | Λ.           | . • .         | < N                                               | •               | 1 6          | 11                        | - 7 I                 | • • •          |                       |            |
|                  | <b>[</b> •         | ٦.             |                | 6 1           |              | 10           | Χ                                            |                                                         | ~_^                      | • •          | >>                                           |                 |              |                 | Č.,        |              |              |              | · •                                          |                |            |                |            |              |                |                   |             |              |                       |              |               |                                                   |                 |              |                           |                       |                |                       |            |
| • -••            | ۱ <mark>۲</mark> ۰ | د ۲            | $\sim$         | J 1           | - N -        | وبمحجو       | <u>م</u> ا                                   | \X.                                                     | $\kappa$ s               | . N          | <u>_</u>                                     | 11              | <u>٦</u>     | م مرد<br>م      | > >        | . 1          | I            | 1 7          | $\Gamma_{1}$                                 | Г X,           | ξ Ι        | ſ              | I ſ        | 1            | r 7            | 1.5               | 7 7         | -13          | , X 🔨                 | 2.2          | ч N .,        | 2 N                                               | 3               | r r          | 1.1                       | ſI                    | 11             | 1 1 1                 | ١.         |
| •                | · 🍋                | e .            | <b>.</b>       | <u>.</u>      | _            | 1            |                                              | <                                                       |                          | 2. N         | - <b>1</b>                                   | 11              | ×~.          | ١.              | N 3        | •            | 5            | 1 /          | 1 A 1                                        | e / .          | · /~~      | <u> </u>       |            | - C - J      | e              | A                 | ۰ V         | ~**          | 1.1                   | A 4          | . N           | <b>N</b> N                                        | - <b>1</b>      | r r          | 11                        | - <u>7 1</u>          | 5 5            | 1 1 1                 | ٩.         |
|                  | <u> </u>           | 10             | . és -         | <b>k</b> k    |              |              | ~                                            |                                                         | ι.                       | - A.         |                                              | <u> </u>        |              |                 |            |              |              |              |                                              |                |            |                | 7 T        | <u> </u>     |                |                   | - 7         |              |                       |              | 1.1           |                                                   |                 | a . a        | 1.0                       |                       |                |                       |            |
|                  | <u> </u>           | ςï             |                | 1 1           |              | 55           | <u> </u>                                     | <u> </u>                                                | יי <sub>ר</sub> יי –     | - ·          | - 7                                          |                 |              | ъ I             |            | - <b>-</b> - | I            | , ,          |                                              |                | ( )        | 1              | 1 1        | - C - N      | ሮ 🗖            | - <b>-</b>        | r Y         | 1            | <b>,</b> , ,          |              |               |                                                   | <u> </u>        | , r          | C 1                       | 1 1                   |                |                       | ٩.         |
| ••               | 1                  | $\sim$         | . /            | 1.1           | <b>L</b>     | <b>۲</b> ٩   | •                                            | ۰. ا                                                    | · •                      | ر مام        |                                              |                 |              | . 1             | 1, 1       | . <b>.</b> . | <b>5</b> - 1 | e e          | 11                                           | 5 A.           | 11         | 17.            | 1.7        | . <b>.</b> . | A              |                   | - <b>l</b>  |              |                       |              |               | 2 🔨                                               | - <b>N</b>      | C ( C        | 11                        | - T - I               | 11             | 1 1 1                 | ٩.         |
|                  |                    | e 1            |                | 1.1           | -            | 1 A          |                                              |                                                         | 1                        |              | •                                            | <b>∿∠</b> 4     |              |                 |            |              |              | A . A        |                                              | 6 A.           | 1.1        | 1 A -          |            |              | ٦.             |                   | •••         | (* (         | - <b>(</b> - (        | •••          |               |                                                   |                 | ۰.           | , ,                       |                       |                |                       |            |
| · ·              | ÷                  |                | ÷.             | 1 1           | •            | • •          |                                              | _                                                       | • †• -                   | 7            | (I)                                          | $1^{\rm N}$     |              | · •             | •          | • •          | •            | ~ ~          | · ·                                          |                |            | 1              |            |              | - Y            |                   | e e         | Y (          | 16                    | 11           |               | <ul> <li>•</li> </ul>                             | 10.0            |              | • •                       |                       |                |                       | •          |
| • 11             | 1                  | C (            | <b>آ</b>       | ſ i           | - <b>1</b> - | 11           | 1                                            | $\mathcal{L}_{\mathcal{M}} = \mathcal{L}_{\mathcal{M}}$ | • 👌 /                    | • C          | F 77                                         | <u> -</u>       | ነ            |                 |            | ·            | ٩            | ~ r          | 11                                           | C (1)          | 11         | ۲.             | 1          | • • •        | ~ k            | 10                | , <u> </u>  | 5.7          | $\sim$ $>$            | ~ ~          |               | ~ <b>~</b>                                        |                 |              | - C - C                   | - F - I               | 11             | 1 1 1                 | ٩.,        |
| 6 A.             | 1                  | 11             | 1              | 1.5           |              | 5 1          |                                              |                                                         | $\cdot \sim $            | e 7 -        | 1.7                                          | 5 K K           | Γ.           | _               | _          |              |              | e . e        | 10                                           | с <u>с</u>     | 11         | 1.1            |            |              | لار م          | أمر المريا        | ° 7 ° 7     | . 🕴 🕴        | <u>٦</u>              |              |               |                                                   | -               | •            | 1.1                       | 11                    |                |                       | ٩.         |
|                  | ÷.                 |                |                |               |              | 11           |                                              |                                                         |                          | <u> </u>     | <u></u>                                      | 2               |              |                 |            |              | <b>-</b>     |              | <u> </u>                                     |                |            |                |            |              | - ·            | X (               |             | 1.1          | -1-                   | •            |               |                                                   |                 |              |                           |                       |                |                       | 2          |
| 16               | σ.,                | r c            |                | 1 1           | 1            | 1.1          |                                              | <u>_</u>                                                | <u> </u>                 | r r          | 1 (                                          | 1.1             | - <b>-</b> - | •               | • •        |              | · .          | . C          | <u>,                                    </u> | с <u>с</u> .   | 1.0        | •              | <u> </u>   | • • •        |                | $\sim$            | ( I         | ( )          | •••}•••               |              |               |                                                   |                 |              | <u> </u>                  |                       | 11             | 1 1 1                 | ١.,        |
| ۰. <u>۴</u> .    | 1                  | 11             | 1              | 1.1           | 5            | 5 1          | <u>مر ا</u>                                  | 1                                                       | 1                        | · 7 ·        | 17                                           | 1.3             |              | <               | •          |              |              | . 7          | 11                                           | 1 A I          | 1.         | مر م           | مر مر      | ر مر ا       | 11             | 11                | ~~7         | ┕┓╇┻┛┩       | -( 👡                  |              |               |                                                   | -               |              |                           | 1                     | 5.5            | 5 1 1                 | 5          |
|                  |                    |                |                |               | . <u>.</u>   |              |                                              |                                                         |                          |              |                                              |                 |              |                 |            |              |              |              |                                              |                | <u> </u>   |                | · · ·      |              |                | 1.1               |             |              |                       |              |               |                                                   |                 |              |                           |                       |                |                       | ÷.         |
| · -              | <u> </u>           | 2 I            | 1              | 1 1           | 1            | <u>з</u> , ч |                                              | <u> </u>                                                | - C - C                  | r            | I ſ                                          | 11              |              | <u> </u>        | 2.2        | •            |              |              | <u> </u>                                     | r r            | <u> </u>   | •              | ~ ~        |              |                | с (               | r r         | ( )          | 1.7                   | 2.2          |               | •                                                 |                 |              |                           | • I                   | 11             | 1 1                   | э.         |
| 1                | 1                  | 6 E            | <b>آ</b> .     | 1 1           | 1            | 5 J          | e e                                          | 11                                                      | 11                       | 11           | f 7                                          | 11              | 11           | ١.              | 5 A        | •            | • •          | •            | 11                                           | 11             | × .        | مر م           | 11         | 1            | e 1.           | 1.1               | 11          | 1.5          | 1 1                   | (X, Y)       |               |                                                   |                 |              |                           | •                     | - <u>1</u> -1  | 5 5 <sup>-</sup>      | 5          |
| - <b>.</b>       |                    |                |                | 1.1           | - <b>F</b>   |              | e .e                                         | 100                                                     | 1.1                      | . <u>.</u> . |                                              | 1.1             |              |                 | ÷.,        |              |              |              | <b>.</b>                                     | ۰.<br>بر       |            |                |            | 1.0          | a a            | 1.1               | , ,         | . <b>.</b> . |                       |              |               |                                                   |                 | <u> </u>     |                           |                       |                | e e 1                 | ξ.         |
| r                | <u> </u>           |                | 1              | 1 1           |              | <u> </u>     |                                              | ~ ^                                                     |                          |              | 1                                            |                 |              |                 | 2.7        |              |              |              | r I                                          |                | ~ '        |                | 66         |              |                |                   |             |              |                       |              |               |                                                   |                 |              | ~ ~                       |                       |                |                       | 1          |
| 1                | Ζ.,                | ſ ľ            | Г.,            | I I           | <u>ا</u> `   | 10           | e e,                                         | 11                                                      | 10                       | ۲.           | ( (                                          | - [ ]           | 5            | ۱١.             | 1.5        | . <b>N</b> . | N 5          | •            | •                                            | مر م           | 1          | <u> </u>       | 11         | Ζ.           | 11             | 1.0               | 11          | 1 1          | 11                    | 11           | . 🔨 '         | <b>۱</b>                                          | - <b>1</b> - 1  | •            | ••••••                    | •                     | - <b>-</b>     | Г î                   | 1          |
|                  | 1                  | 1.1            | 1              | 1.1           | - <b>F</b>   | . <b>.</b> . | e e .                                        | 11                                                      | 1.1                      | 1.1          | 1.1                                          | 1.1             |              | 11              | 5.5        | •            | с. н         |              |                                              |                | . <b></b>  |                | 0.0        | . e .        | 11             | 1.1               | 1.1         | 1.1          | 1.1                   | 1.1          |               | s s.                                              |                 |              |                           |                       |                |                       | 5          |
| · •              | ÷.                 |                | -              |               |              | · · ·        | - <u>-</u>                                   | ÷. •.                                                   |                          |              |                                              |                 |              |                 |            |              | •            | • •          | • •                                          |                | • •        | ŕ              |            |              |                |                   | 1           |              |                       | ÷ .          |               |                                                   | • •             | • •          | •                         |                       |                | - •                   | 1          |
| - C -            | 10                 | ŕÍ             | ſ              | Ιſ            | <u> </u>     | , <b>-</b>   | c c.                                         | $r \in C$                                               | - ( - (                  | ſ            | r r                                          | I I             | 1            | 1 <b>1</b>      | <u> </u>   | с N.         |              | - <b>-</b> - |                                              | ~ ~            | 1 - A      | ~ ~            | 1 C        | · • •        | r r            | r r               | - C - C     | - C - I      | 11                    | - N - N      | N N .         | N N                                               | - N - N         | - <b>-</b> - | S. 54                     |                       | - <b>-</b> -   | •                     | з –        |
|                  | •                  |                |                |               |              |              |                                              |                                                         |                          |              |                                              |                 |              |                 |            |              |              |              |                                              |                |            |                |            |              |                |                   |             |              |                       |              |               |                                                   |                 |              |                           |                       |                |                       |            |

### Outward Flux



### Outward Flux



### Outward Flux



**Definition 1** The outward flux of  $\dot{\mathbf{q}}$  through  $\partial R$  is given by

$$\int_{\partial R} \langle \, \dot{\mathbf{q}}, \mathcal{N} \, \rangle \, \, \mathrm{d}s$$

**Definition 2** The average outward flux of  $\dot{\mathbf{q}}$  through  $\partial R$  is given by

$$\frac{\int_{\partial R} \langle \, \dot{\mathbf{q}}, \mathcal{N} \, \rangle \, \, \mathrm{d}s}{\int_{\partial R} \, \, \mathrm{d}s}$$



Let S be a branch of the skeleton and let  $R = R_1 \cup R_2$ be a path connected region which intersects it. Let  $\partial R = C_1 \cup C_2$  and  $C_3 = S \cap R$ . Let  $C'_{3t}, C''_{3t}$  be parallel curves to  $C_3$  which approach  $C_3$  as  $t \to 0$ . Let  $R_{1t}$  and  $R_{2t}$  be the regions obtained from  $R_1$  and  $R_2$  by removing the region between the curves  $C'_{3t}$  and  $C''_{3t}$  Finally, let  $\dot{\mathbf{q}}_+$  denote  $\dot{\mathbf{q}}$ above S and  $\dot{\mathbf{q}}_-$  denote  $\dot{\mathbf{q}}$  below S.



The outward flux of  $\dot{\mathbf{q}}$  through  $\partial R$  is given by

$$\int_{\partial R} \langle \, \dot{\mathbf{q}}, \mathcal{N} \, \rangle \, \mathrm{d}s = \int_{C_1} \langle \, \dot{\mathbf{q}}, \mathcal{N} \, \rangle \, \mathrm{d}s + \int_{C_2} \langle \, \dot{\mathbf{q}}, \mathcal{N} \, \rangle \, \mathrm{d}s.$$

Applying the divergence theorem to  $R_{1t}$  and  $R_{2t}$ 

$$\int_{R_{1t}} \operatorname{div}(\dot{\mathbf{q}}) \, \mathrm{d}v = \int_{C_{1t}} \langle \, \dot{\mathbf{q}}, \mathcal{N} \, \rangle \, \mathrm{d}s + \int_{C'_{3t}} \langle \, \dot{\mathbf{q}}, \mathcal{N} \, \rangle \, \mathrm{d}s,$$
$$\int_{R_{2t}} \operatorname{div}(\dot{\mathbf{q}}) \, \mathrm{d}v = \int_{C_{2t}} \langle \, \dot{\mathbf{q}}, \mathcal{N} \, \rangle \, \mathrm{d}s + \int_{-C''_{3t}} \langle \, \dot{\mathbf{q}}, \mathcal{N} \, \rangle \, \mathrm{d}s.$$



Adding the above two equations we have

$$\int_{R_{1t}} \operatorname{div}(\dot{\mathbf{q}}) \, \mathrm{d}v + \int_{R_{2t}} \operatorname{div}(\dot{\mathbf{q}}) \, \mathrm{d}v =$$

$$\int_{C_{1t}} \langle \dot{\mathbf{q}}, \mathcal{N} \rangle \, \mathrm{d}s + \int_{C_{2t}} \langle \dot{\mathbf{q}}, \mathcal{N} \rangle \, \mathrm{d}s +$$

$$\int_{C'_{3t}} \langle \dot{\mathbf{q}}, \mathcal{N} \rangle \, \mathrm{d}s + \int_{-C''_{3t}} \langle \dot{\mathbf{q}}, \mathcal{N} \rangle \, \mathrm{d}s.$$



It is a standard property that the tangent to the skeleton bisects the the angle between  $\dot{q}_+$  and  $\dot{q}_-$  at a skeletal point (see Figure 2). Thus, on  $C_3$  we have

$$\langle \dot{\mathbf{q}}_{+}, \mathcal{N}_{+} \rangle = \langle \dot{\mathbf{q}}_{-}, \mathcal{N}_{-} \rangle,$$
 (2)

where  $\mathcal{N}_+, \mathcal{N}_-$  denote the normals to  $C_3$  from above and from below, respectively. Thus, one can take the limit as  $t \to 0$  of both sides of the above equation to obtain the following extension of the divergence theorem

### (extended) Divergence Theorem

**Theorem 1** For a path connected region R which contains part of a skeletal curve S, the divergence of the vector field  $\dot{\mathbf{q}}$  is related to its flux through  $\partial R$  by the following equation

$$\int_{R=R_1\cup R_2} \operatorname{div}(\dot{\mathbf{q}}) \, \mathrm{d}v =$$
$$\int_{\partial R} \langle \, \dot{\mathbf{q}}, \mathcal{N} \, \rangle \, \mathrm{d}s + 2 \int_{C_3} \langle \, \dot{\mathbf{q}}, \mathcal{N}_{C_3} \, \rangle \, \mathrm{d}s.$$

**Corollary.** The OF for a region shrinking to a skeleton point satisfies:

$$\lim_{R \to P} \operatorname{OF}_R \to 2\left( \langle \nabla D(P), \mathcal{N} \rangle \right) \operatorname{length}(C_3)$$

### Circular Neighborhoods



### Average Outward Flux



### Damon: Skeletal Structures



FIGURE 2. A Skeletal Structure (M, U) defining a region  $\Omega$  with smooth boundary  $\mathcal{B}$ 

radial shape operator  $S_{rad}(v) = -\operatorname{proj}_{U}\left(\frac{\partial U_{1}}{\partial v}\right)$ 

radial curvature

$$K_{rad} = \det(S_{rad})$$

### Damon: Radial Flow



FIGURE 3. a) Radial Flow and b) Grassfire Flow

- radial curvature condition + edge condition + compatibility condition ensure smoothness of boundary
- complete characterization of local and relative differential geometry of boundary in terms of radial shape operator on skeletal structure

### (Rigorous) Divergence Theorem

**Theorem 9** (Modified Divergence Theorem). Let  $\Omega$  be a region with smooth boundary  $\mathcal{B}$  defined by the skeletal structure. Also, let  $\Gamma$  be a region in  $\Omega$  with regular piecewise smooth boundary. Suppose F is a smooth vector field with discontinuities across M, then

(7.1) 
$$\int_{\Gamma} div F \, dV = \int_{\partial \Gamma} F \cdot \mathbf{n}_{\Gamma} \, dS - \int_{\tilde{\Gamma}} c_F \, dM$$

where  $\tilde{\Gamma} = \tilde{M} \cap \pi^{-1}(M \cap \Gamma)$ .

 $\operatorname{proj}_{TM}(F) = c_F \cdot U_1$ , where  $\operatorname{proj}_{TM}$  denotes projection onto U along TM

# Boundary Integrals as Medial Integrals

**Theorem 1.** Suppose (M, U) is a skeletal structure defining a region with smooth boundary  $\mathcal{B}$  and satisfying the partial Blum condition. Let  $g : \mathcal{B} \to \mathbb{R}$  be Borel measurable and integrable with respect to the Riemannian volume measure. Then,

(3.1) 
$$\int_{\mathcal{B}} g \, dV = \int_{\tilde{M}} \tilde{g} \cdot \det(I - rS_{rad}) \, dM$$

where  $\tilde{g} = g \circ \psi_1$ .

# Algorithms

## Algorithm

Algorithm 2: Topology Preserving Thinning.

Data : Object, Average Outward Flux Map.
Result : (2D or 3D) Skeleton.
for (each point x on the boundary of the object) do
if (x is simple) then
insert(x, maxHeap) with AOF(x) as the sorting key for insertion;

while (maxHeap.size > 0) do

 $\mathbf{x} = \text{HeapExtractMax}(\text{maxHeap});$ 

if (x is simple) then

if (x is an end point) and (AOF(x) < Thresh) then

Remove  $\mathbf{x}$ ;

for (all neighbors  $\mathbf{y}$  of  $\mathbf{x}$ ) do

if (y is simple) then

insert( $\mathbf{y}$ , maxHeap) with AOF( $\mathbf{y}$ ) as the sorting key for insertion;

### Validation

To verify the theoretical results, boundary points corresponding to regular skeletal points are reconstructed according to:  $Q_{1,2} = P + rR(\pm\alpha)\mathbf{t}_P$ 



STEP 1. Start with a binary shape.



**STEP 3.** Compute skeleton with algorithm presented in [3].



**STEP 2.** Compute AOF of shape using circular regions.



**STEP 4.** Using our results for shrinking circular regions, reconstruct boundary points from regular skeletal points.

### Validation



The limiting average outward flux value determines the object angle, which in turn is used to recover the associated bi-tangent points, shown as filled circles.

### Brain Ventricles



Original

Medial Surface

### Venus de Milo





Circa 100 BC

# Applications

### Virtual Endoscopy



Colon



Arteries

### 3D Medial Graph Matching



### Medial Graph Matching

- Edit Distance Based Approaches (Sebastian, Kline, Kimia; Hancock, Torsello)
  - motivated by string edit distances
  - polynomial time algorithm for trees, (but need to define edit costs)
- Maximum Clique Approaches (Pelillo et al.)
  - subgraph isomorphism -> maximum clique in an association graph
  - discrete combinatorial problem -> continuous optimization
- Graph Spectra-Based Approaches (Shokoufandeh et al.)
  - eigenvalue analysis of adjacency matrix for DAGs
  - separation of "topology" and "geometry"
  - extension to handle indexing

### A Topological Signature Vector



- At node "a" compute the sum of the magnitudes of the "k" largest eigenvalues of the adjacency matrix of the subgraph rooted at "a".
- Carry out this process recursively at all nodes.
- The sorted sums become the components of the "TSV" assigned to node V.

## Matching Algorithm



- (a) Two DAGs to be matched.
- (b) A bi-partite graph is formed, spanning their nodes but excluding their edges. The edge weights W(i,j) in the bi-partite graph encode node similarity as well as TSV similarity. The two most similar nodes are found, and are added to the solution set of correspondences.
- (c) This process is applied, recursively, to the subgraphs of the two most similar nodes. This ensures that the search for corresponding nodes is focused in corresponding subgraphs, in a top-down manner.

### Medial Surfaces to DAGs



(Malandain, Bertrand, Ayache, IJCV'03)

# 3D Object Models: The McGill Shape Benchmark

- 420 models reflecting 18 object classes
- Severe Articulation: hands, humans, teddy-bears, eyeglasses, pliers, snakes, crabs, ants, spiders, octopuses
- Moderate or No Articulation: planes, birds, chairs, tables, cups, dolphins, four-limbed animals, fish
- Precision Vs Recall Experiments: shape distributions of Osada et al. (SD), harmonic spheres of Kazhdhan et al. (HS) and medial surfaces (MS).









# Summary

### Medial Representations

Mathematics, Algorithms and Applications

Kaleem Siddiqi and Stephen M. Pizer Springer (in press, 2006)

- Chapter 1: Pizer, Siddiqi, Yushkevich: "Introduction"
- PART 1 MATHEMATICS
- Chapter 2: Giblin, Kimia: "Local Forms and Transitions of the Medial Axis"
- Chapter 3: Damon: "Geometry and Medial Structure"
- PART 2 ALGORITHMS
- Chapter 4: Siddiqi, Bouix, Shah: "Skeletons Via Shocks of Boundary Evolution"
- Chapter 5: Borgefors, Nystrom, Sanniti di Baja: "Discrete Skeletons from Distance Transforms."

#### Medial Representations

Mathematics, Algorithms and Applications

Kaleem Siddiqi and Stephen M. Pizer Springer (in press, 2006)

- Chapter 6: Szekely: "Voronoi Skeletons"
- Chapter 7: Amenta and Choi: "Voronoi Methods for 3D Medial Axis Approximation"
- Chapter 8: Pizer et al.: "Synthesis, Deformation and Statistics of 3D Objects Via M-reps"
- PART 3 APPLICATIONS
- Chapter 9: Pizer et al.: "Statistical Applications with Deformable M-Reps"
- Chapter 10: Siddiqi et al: "3D Model Retrieval Using Medial Surfaces"
- Chapter 11: Leymarie, Kimia: "From the Infinitely Large to the Infinitely Small"

### Selected References

- Bouix, Siddiqi, "Optics, Mechanics and Hamilton-Jacobi Skeletons" [Advances in Imaging and Electron Physics, 2005]
- Damon, "Global Geometry of Regions and Boundaries via Skeletal and Medial Integrals" [preprint, 2003]
- Dimitrov, "Flux Invariants for Shape" [M.Sc. thesis, McGill, 2003]
- Dimitrov, Damon, Siddiqi, "Flux Invariants for Shape" [CVPR'03]
- Pelillo, Siddiqi, Zucker, "Matching Hierarchical Structures Using Association Graphs" [ECCV'98, PAMI'99]

### Selected References

- Sebastian, Klein, Kimia, "Recognition of Shapes By Editing their Shock Graphs" [ICCV'01, PAMI'04]
- Shokoufandeh, Macrini, Dickinson, Siddiqi, Zucker, "Indexing Hierarchical Structures Using Graph Spectra" [CVPR'99, PAMI'05]
- Siddiqi, Bouix, Tannenbaum, Zucker, "Hamilton-Jacobi Skeletons" [ICCV'99, IJCV'02]
- Siddiqi, Shokoufandeh, Dickinson, Zucker, "Shock Graphs and Shape Matching" [ICCV'98, IJCV'99]
- Stolpner, Siddiqi "Revealing Significant Medial Structure in Polyhedral Messhes" [3DPVT'06]