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Motivation

Practical Motivation

◮ Imaging speed has been the major drawback of
MRI ⇒ sample the frequency plane sparsely;

◮ Sparse sampling ⇒ in image artifacts and/or low
signal to noise ratio (SNR)
• Backprojection method
• Gridding method
• ...
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A theory by Candes, Romberg and
Tao’04

Consider

◮ a discrete complex signal f of length N

◮ a randomly chosen set of frequencies Ω of mean
size τN , where τ < 1

◮ #{t, f(t) 6= 0} ≤ α(M) · (logN)−1 · #Ω, ∀M > 0

Then

◮ with the probability at least 1 −O(N−M ),

◮ f can be reconstructed exactly from

min
g

N−1∑

t=0

|g(t)|, s.t. ĝ(ω) = f̂(ω) for all ω ∈ Ω.
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From Sparse to Sparse
Representation

An Extension to Signals that have Sparse Representation

ĝ = arg min
g

||ψ(g)||1 s.t. FFT (g)|Ω = y.

◮ g is the reconstructed image,

◮ ψ transforms g into a sparse representation,

◮ y represents the sampled data on Ω,

◮ solved with an iterative scheme with a projection
on the constrained set Ω.

Candes, Romberg & Tao ’05; Candes & Romberg ’05
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Sparse Representations

Sparse representation for piecewise constant image

◮ TV regularization

ĝ = arg min
g

||g||BV s.t. FFT (g)|Ω = y,

where ||g||BV :=
∫
|∇g|dx.

◮ The wavelet transform

ĝ = arg min
g

||g||W s.t. FFT (g)|Ω = y,

where ||g||W is the summation of the wavelet
coefficients after the wavelet transformation.
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Numerical phantom results from
Candes et al.

(a) (b)

(c) (d)

Figure 1: Example of a simple recovery problem. (a) The Logan-Shepp phantom test
image. (b) Sampling ’domain’ in the frequency plane; Fourier coefficients are sampled along
22 approximately radial lines. (c) Minimum energy reconstruction obtained by setting
unobserved Fourier coefficients to zero. (d) Reconstruction obtained by minimizing the
total-variation, as in (1.1). The reconstruction is an exact replica of the image in (a).
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Continue:

Previous work:
• Minimizing l1 norms: Dobson & Santosa ’96; Donoho & Elad ’03 ...

• Sparse representations: Feuer & Nemirovsky ’02; Gribonval &

Nielson ’04 ...

• Uncertainty principles: Donoho & Huo ’01; Elad & Brukstein ’02 ...
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Reconstructing from Raw
Measurement Data

Challenges

◮ The raw data is not on uniform grids ⇒ FFT is not
a good operator to enforce the constraint;

◮ The target image is sometimes a piecewise
smooth image ⇒ TV or the wavelet transform
alone is not a good sparse representation.
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Continue

Solutions

◮ A non-uniform fast Fourier transform applied;
• NFFT in C++ by Kunis & Potts ’04

• NUFFT in Matlab by Fessler & Sutton ’03

◮ Wavelet + TV as an approximate sparse
representation of a piecewise smooth image.

Lustig, Lee, Donoho & Pauly ’05 ISMRM; Lustig, Donoho & Pauly ’06 ISMRM;

Plett, Guarini, & Irarrazaval ’06
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Our work

Our Model

min
m

{
µ||m||BV + ν||m||W + λ||Am− y||22

}
, (1)

◮ y is the known undersample data in k-space;

◮ A is the non-uniform FFT operator;

◮ µ, ν and λ are non-negative parameters;
• µ = 0 ⇒ wavelet transformation;
• ν = 0 ⇒ total variation regularization;
• Balance µ and ν for piecewise smooth images;

◮ solved with conjugate gradient descent method
and back tracking line search.
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Continue

More novelties

◮ Bregman iteration is applied to obtain finer scales;
Bregman ’67; Osher, Burger, Goldfarb, Xu & Yin ’05; He, Marquina & Osher ’05;

He, Burger & Osher 06’...

◮ Inverse scale space flow method is also
experimented; Burger, Gilboa, Osher & Xu ’06; Xu & Osher ’06...

◮ Curvelet + TV is under experimenting to obtain
sharper edges. Candes & Donoho ’02; Candes & Guo ’02; Candes,

Demanet, Donoho & Ying ’05 ...
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The Bregman Distance

◮ Given a convex function ϕ, the Bregman distance
is defined by

Dϕ(u, v) = ϕ(u) − ϕ(v)− < u− v, ∂ϕ(v) >,

where < ·, · > denotes the inner product in R
n and

∂ϕ(y) is an element of the sub-gradient of ϕ at
point y.
ϕ(u) =

∫
|∇u|2dx, Dϕ(u, v) =

∫
|∇(u− v)|2dx.

◮ In general, Dϕ(u, v) 6= Dϕ(v, u) and also the triangle
inequality does not hold.

◮ However, Dϕ(u, v) ≥ 0 and Dϕ(u, v) = 0 if u = v (if
and only if for strictly convex functionals).
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The Iterative Refinement Procedure
for ROF model

Introduced by Osher et al. for Image Denoising

◮ ROF model:
{

min
u∈BV (Ω)

||u||BV + λ||u− f ||2L2

}
;

◮ Denote J(u) = ||u||BV , u0 = 0 and v0 = 0, for n > 0,
the nth Bregman iteration is defined as

un = arg min
u∈BV (Ω)

{
DJ (u, un−1) + λ||u− f ||2L2

}
,

⇔ un = arg min
u∈BV (Ω)

{
J(u) + λ||u− f − vn−1||

2
L2

}
,

where vn = f + vn−1 − un.
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Convergence results and etc.

◮ Theory proves that ||un − f ||L2 ≤

√
J(f)
nλ , if J(f) <∞.

• noise free image f ;
• noisy image f .

◮ Numerical experiments show significant
improvement over standard ROF model.
• Small λ makes the image smooth at earlier

iteration;
• However, image features come back before the

noise along the iteration;

Osher, Burger, Goldfarb, Xu & Yin ’05; He, Burger & Osher 06’
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The Iterative Refinement Procedure
for Our Model

◮ Denote J(m) = µ||m||BV + ν||m||W , m0 = 0 and
v0 = 0, for n > 0, the nth Bregman iteration is
defined as

mn = arg min
m

{
DJ(m,mn−1) + λ||Am− y||2L2

}
,

⇔ mn = arg min
m

{
J(m) + λ||Am− y − vn−1||

2
L2

}
,

where vn = y + vn−1 − Amn.

◮ Stopping criterion is dependent on the user needs.
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Inverse Scale Space Methods

◮ Divide by λ = ∆t, the E-L eqn of (1) becomes

∂J(m∆t
k ) − ∂J(m∆t

k−1)

∆t
= −Â(Am∆t

k − y).

◮ Setting tk = k∆t, p∆t(tk) = ∂J(m∆t
k ), m∆t(tk) = m∆t

k

p∆t(tk) − p∆t(tk − ∆t)

∆t
= −Â(Am∆t(tk) − y).

◮ Letting ∆t→ 0, with initial values m(0) = p(0) = 0

∂tp(t) = −Â(Am(t) − y), p(t) ∈ ∂J(m(t)),

Burger, Gilboa, Osher & Xu’06
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Why Bregman Iteration (1)?

A Simple Example by Meyer for ROF model Assume
f = αχR where

χR(x, y) =

{
1 if x2 + y2 ≤ R2;

0 else.
(2)

then the solution of ROF model

u =

{
0 if αR ≤ 1

λ ,

(α− 1
λR

)χR else.
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Why Bregman Iteration (2)?

An Intuitive Explanation

◮ If λαR > 1, optimal decomposition at the iteration
• 1st: f + v0 = αχR = (α− 1

λR)χR + 1
λRχR := u1 + v1;

• 2nd: f + v1 = (α+ 1
λR

)χR = αχR + 1
λR
χR := u2 + v2.

◮ Denote ñ = min{n ∈ N|nλαR > 1},
• 1st: f + v0 = αχR = 0 + αχR := u1 + v1;
• ...
• nth:
f + vn−1 = nαχR = (nα− 1

λR
)χR + 1

λR
χR := un + vn;

• (n+1)th:
f + vn = (α+ 1

λR)χR = αχR + 1
λRχR := un+1 + vn+1.
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Why Bregman Iteration (3)?

When f = α1χ
R1

(x1,y1)
+ α2χ

R2

(x2,y2)
Assume that the

distance between two circles is large enough that
||f ||∗ = max(α1R1

2 , α2R2

2 ) =: α1R1

2 , Kinderman, Osher & Xu ’06.

• If 1
2λ ≥ α1R1

2 > α2R2

2 , f is decomposed as
{
u = 0,

v = α1χ
R1

(x1,y1)
+ α2χ

R2

(x2,y2)
;

(3)
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Why Bregman Iteration (3):
Continue?

• else if α1R1

2 > 1
2λ

≥ α2R2

2 , then the extreme pair (u, v)

is as follows,
{
u = (α1 −

1
λR1

)χR1

(x1,y1)
,

v = 1
λR1

χR1

(x1,y1)
+ α2χ

R2

(x2,y2)
;

(4)

• otherwise α1R1

2 ≥ α2R2

2 > 1
2λ , the optimal

decomposition of f is
{
u = (α1 −

1
λR1

)χR1

(x1,y1)
+ (α2 −

1
λR2

)χR2

(x2,y2)
,

v = 1
λR1

χR1

(x1,y1)
+ 1

λR2

χR2

(x2,y2)
.

(5)
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Why Bregman Iteration (3)? :
Continue

• If we denote n1 and n2, n1 = min{n ∈ N|nλα1R1 > 1}
and n2 = min{n ∈ N|nλα2R2 > 1};

• At the (n1 + 1)th iteration we recover circle of radius
R1 exactly and at the n2 + 1th iteration we recover
circle of radius R2 exactly.

• Particularly, if we choose λ small enough that
n1 + 1 < n2, then at the (n1 + 1)th iteration, the circle
of radius R1 has been recovered exactly while the
circle of R2 is still missing.
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Why Bregman Iteration (4)?

A Modification of Meyer’s Example

◮ Assume y = FαχR, where F is the FFT operator;

◮ ||Fm− FαχR||
2
2 = ||m− αχR||

2
2 for any m;

◮ The solution of min
m

{
||m||BV + λ||Fm− y||22

}
is

m =

{
0 if αR ≤ 1

λ ,

(α− 1
λR)χR else.

◮ The Bregman iteration will have an exact recovery;
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Numerical Results for Phantom (1)

Data Details
• Magnetom Avanto 1.5T scanner
• 63 radial lines with 512 samples each
• Three coils/channels
• Computation time is around 5 minutes per channel

per Bregman iteration (Matlab)
• Scanning parameters are TR=4.8ms, TE=2.4ms,

flip angle a=60o, FOV=206mm with a resolution of
256 pixels

• µ = 1, ν = 0, and λ = 100
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Numerical Results for Phantom (2)

Bregman iteration

Breg 1

Breg 4 Breg 6
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Numerical Results for Phantom (3)

Zoom in Results of Bregman iteration

Breg 1 Breg 2

Breg 4 Breg 6
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Numerical Results for Phantom (4)

Inverse Scale Space Methods
RISS iter 100 RISS iter 200

RISS iter 400 RISS iter 600
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Numerical Results for Head (1)

Data Details

• 62 radial lines with 512 samples each
• Four coils/channels
• Scanning parameters are TR=4.46ms,

TE=2.23ms, flip angle a=50o, FOV=250mm with a
resolution of 256 pixels

• µ = 1, ν = 0.1, and λ = 200;
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Numerical Results for Head (2)

Bregman iteration

Gridding Method  Breg 1

 Breg 2  Breg 4
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Numerical Results for Head (3)

Inverse Scale Space Methods
 RISS iter 100  RISS iter 200

 RISS iter 300  RISS iter 500
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Summary

MR Image Reconstruction from Sparse Samples

• Propose a new model with wavelet + TV
• Bregman iteration
• Inverse scale space method
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Future Work

The Potential of Curvelet, 5.3% Fourier Domain data
Back Projection Total Variation

Wavelet Curvlet
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Continue

Thank you for your attention!

www.math.ucla.edu/∼helin
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