MR Image Reconstruction from Sparse Radial Samples Using Bregman Iteration and InverseScale Space Methods

Lin He

Johann Radon Institute for Computational and Applied Mathematics (RICAM), Linz

Collaborator: Ti-Chiun Chang, Stanley Osher, Tong Fang and Peter Speier

Working Group: UCLA & Siemens Cooperate Research, Princeton

Data obtained: Siemens AG Med, Erlangen, Germany

MIA'06, Paris, Sept 2006

Motivation

Practical Motivation

- ▶ Imaging speed has been the major drawback of $\mathsf{MRI} \Rightarrow \mathsf{sample}$ the frequency plane sparsely;
- ▶ Sparse sampling \Rightarrow in image artifacts and/or low
signal to noise ratio (SNR) signal to noise ratio (SNR)
	- Backprojection method
	- Gridding method

•

...

A theory by Candes, Romberg andTao'04

Consider

- \blacktriangleright a discrete complex signal f of length N
- ightharpoonly chosen set of frequencies Ω of mean size τN , where $\tau < 1$

 \blacktriangleright #{t, f(t) ≠ 0} ≤ $\alpha(M) \cdot (\log N)^{-1}$ · \cdot # Ω , $\forall M>0$ Then

- ► with the probability at least $1 O(N^{-M}),$
- \blacktriangleright f can be reconstructed exactly from

$$
\min_{g}\sum_{t=0}^{N-1}|g(t)|,\ \text {S.t. }\hat{g}(\omega)=\hat{f}(\omega)\ \text {for all }\omega\in\Omega.
$$

From Sparse to SparseRepresentation

An Extension to Signals that have Sparse Representation

$$
\hat{g} = \arg\min_{g} ||\psi(g)||_1 \text{ s.t. } FFT(g)|_{\Omega} = y.
$$

 \blacktriangleright g is the reconstructed image,

- \blacktriangleright ψ transforms \overline{g} into a sparse representation,
- \blacktriangleright y represents the sampled data on $\Omega,$
- ▶ solved with an iterative scheme with a projection on the constrained set $\Omega.$

Candes, Romberg & Tao '05; Candes & Romberg '05

Sparse representation for piecewise constant image

TV regularization

$$
\hat{g} = \arg\min_{g} ||g||_{BV} \text{ s.t. } FFT(g)|_{\Omega} = y,
$$

where $||g||_{BV} := \int |\nabla g| dx$.

▶ The wavelet transform

$$
\hat{g} = \arg\min_{g} ||g||_{W} \text{ s.t. } FFT(g)|_{\Omega} = y,
$$

where $||g||_W$ W is the summation of the wavelet ϵ after the wavelet coefficients after the wavelet transformation.

MR Image Reconstruction from Sparse Radial Samples Using Bregman Iteration and Inverse Scale Space Methods – p. 5/3

Continue:

Previous work:

- Minimizing l^1 norms: *Dobson & Santosa '96; Donoho & Elad '03 ...*
- • Sparse representations: Feuer & Nemirovsky '02; Gribonval &Nielson '04 ...
- Uncertainty principles: Donoho & Huo '01; Elad & Brukstein '02 ...

Reconstructing from RawMeasurement Data

Challenges

- ◮ The raw data is not on uniform grids ⇒ FFT is not ^a good operator to enforce the constraint;
- ▶ The target image is sometimes a piecewise smooth image⇒ TV or the wavelet transform alone is not ^a good sparse representation.

Continue

Solutions

- ▶ A non-uniform fast Fourier transform applied;
	- NFFT in C++ by *Kunis & Potts '04*
	- NUFFT in Matlab by Fessler & Sutton '03

▶ Wavelet + TV as an approximate sparse representation of ^a piecewise smooth image.

Lustig, Lee, Donoho & Pauly '05 ISMRM; Lustig, Donoho & Pauly '06 ISMRM; Plett, Guarini, & Irarrazaval '06

Our work

Our Model

min $m \$ $\lim_{m} \left\{ \mu ||m||_{BV} + \nu ||m||_{W} + \lambda ||Am - y||_{2}^{2} \right\},$ (1)

- \blacktriangleright y is the known undersample data in k -space;
- \blacktriangleright A is the non-uniform FFT operator;
- \blacktriangleright μ , ν and λ are non-negative parameters;
	- $\mu = 0 \Rightarrow$ wavelet transformation;
	- $\nu = 0 \Rightarrow$ total variation regularization;
	- Balance μ and ν for piecewise smooth images;

 solved with conjugate gradient descent method and back tracking line search.

Continue

More novelties

- \blacktriangleright Bregman iteration is applied to obtain finer scales; Bregman '67; Osher, Burger, Goldfarb, Xu & Yin '05; He, Marquina & Osher '05; He, Burger & Osher 06'...
- ▶ Inverse scale space flow method is also ${\sf experimented;}$ Burger, Gilboa, Osher & Xu '06; Xu & Osher '06...
- ▶ Curvelet + TV is under experimenting to obtain sharper edges. Candes & Donoho '02; Candes & Guo '02; Candes, Demanet, Donoho & Ying '05 ...

Siven a convex function φ , the Bregman distance is defined by

$$
D_{\varphi}(u,v) = \varphi(u) - \varphi(v) - \langle u - v, \partial \varphi(v) \rangle,
$$

where $<\cdot, \cdot>$ denotes the inner product in \mathbb{R}^n and
a conject of the sub-steplent of set $\partial \varphi(y)$ is an element of the sub-gradient of φ at point y.

 $\varphi(u) =\int|\nabla u|^2dx, \ D_\varphi(u,v) =\int|\nabla (u-v)|^2dx.$

► In general, $D_{\varphi}(u, v) \neq D_{\varphi}(v, u)$ and also the triangle inequality does not hold.

 \blacktriangleright

However, $D_{\varphi}(u,v) \geq 0$ and $D_{\varphi}(u,v) = 0$ if f for otr and only if for strictly converse Radial Samples Using Bregman Iteration and Inverse Scale Space Methods – p. 12/33 $u=v$ $v\left(\mathsf{if}\right)$

The Iterative Refinement Procedurefor ROF model

Introduced by Osher et al. for Image Denoising

▶ ROF model:
$$
\left\{\min_{u \in BV(\Omega)} ||u||_{BV} + \lambda ||u - f||_{L^2}^2\right\};
$$

 \blacktriangleright \bullet Denote $J(u) = ||u||_{BV}$, u_0
the the Breamen iteration the n th Bregman iteration is defined as $_{0} = 0$ and $v_{\rm 0}$ $_{0} = 0,$ for $n > 0,$

$$
u_n = \arg\min_{u \in BV(\Omega)} \left\{ D_J(u, u_{n-1}) + \lambda ||u - f||_{L^2}^2 \right\},\,
$$

$$
\Leftrightarrow u_n = \arg\min_{u \in BV(\Omega)} \left\{ J(u) + \lambda ||u - f - v_{n-1}||_{L^2}^2 \right\},\,
$$

 \blacktriangleright

where $v_n=$ $f+v_{n-1}-u_n$. \blacktriangleright It goes on until a stopping criterion is satisfied. Methods – p. 13/3 \blacktriangleright \blacktriangleright Theory proves that \parallel $u \$ $\, n \,$ $f||_{L^2}$ $_2 \leq$ $\sqrt{\frac{J(f)}{n\lambda}}$ $\frac{J}{\lambda}$, if J (f) $<\infty$.

- noise free image f ;
- noisy image f .
- ▶ Numerical experiments show significant improvement over standard ROF model.
	- Small λ makes the image smooth at earlier iteration;
	- However, image features come back before thenoise along the iteration;

 \blacktriangleright

Osher, Burger, Goldfarb, Xu & Yin '05; He, Burger & Osher 06'

The Iterative Refinement Procedurefor Our Model

 $\sum_{v} \text{Denote } J(m) = \mu ||m||_{BV} + \nu ||m||_{W}, m_0$ $v_0=0$, for $n>0,$ the n th Bregman iteration is $_0 = 0$ and defined as $\epsilon_0 = 0$, for $n > 0$, the n th Bregman iteration is

$$
m_n = \arg\min_m \{ D_J(m, m_{n-1}) + \lambda ||Am - y||_{L^2}^2 \},
$$

 $\Leftrightarrow m_n$ $\lambda_m = \arg \min_m \big\{ J(m) + \lambda ||Am\big\}.$ $-y-v_{n-1}$ || 2 $\left\{ \frac{2}{L^{2}}\right\}$,

where $v_n=y+v_{n-1}-\,$ $- Am$ $n\,$.

 \blacktriangleright

Stopping criterion is dependent on the user needs. \blacktriangleright

▶ Divide by $\lambda = \Delta t$, the E-L eqn of ([1\)](#page-9-0) becomes

$$
\frac{\partial J(m_k^{\Delta t}) - \partial J(m_{k-1}^{\Delta t})}{\Delta t} = -\widehat{A}(Am_k^{\Delta t} - y).
$$

 \blacktriangleright \blacktriangleright Setting $t_k=k\Delta t$, p $\Delta t(t_k) = \partial J(m)$ $_{k}^{\Delta t}),\,m$ $\Delta^t(t_k)=m$ $\frac{\Delta t}{k}$

$$
\frac{p^{\Delta t}(t_k) - p^{\Delta t}(t_k - \Delta t)}{\Delta t} = -\widehat{A}(Am^{\Delta t}(t_k) - y).
$$

 \blacktriangleright ► Letting $\Delta t \rightarrow$ 0 , with initial values $m(0)=p(0)=0$

$$
\partial_t p(t) = -\widehat{A}(Am(t) - y), \ p(t) \in \partial J(m(t)),
$$

Burger, Gilboa, Osher & Xu'06 Manuels using Bregman Iteration and Inverse Scale Space Methods – p. 16/33

 \blacktriangleright

A Simple Example by Meyer for ROF model Assumef $= \alpha \chi_R$ $_R$ where

$$
\chi_R(x, y) = \begin{cases} 1 & \text{if } x^2 + y^2 \le R^2; \\ 0 & \text{else.} \end{cases}
$$
 (2)

then the solution of ROF model

$$
u = \begin{cases} 0 & \text{if } \alpha R \le \frac{1}{\lambda}, \\ (\alpha - \frac{1}{\lambda R}) \chi_R & \text{else.} \end{cases}
$$

An Intuitive Explanation

- \blacktriangleright If $\lambda \alpha R > 1$, optimal decomposition at the iteration
	- 1st: $f + v_0 = \alpha \chi_R$ $R = (\alpha - \frac{1}{\lambda R})$ $\frac{1}{\lambda R})\chi_R+\frac{1}{\lambda R}$ $\frac{1}{\lambda R}\chi_R := u_1+v_1;$
	- \sim 1 \sim 1 \sim 1 \sim 1 \bullet 2nd: $f+v_1$ $_1 = (\alpha + \frac{1}{\lambda i})$ $\frac{1}{\lambda R}$) $\chi_R = \alpha \chi_R + \frac{1}{\lambda R}$ $\frac{1}{\lambda R}\chi_R := u_2+v_2.$
- Denote $\tilde{n} = \min\{n \in \mathbb{N} | n \lambda \alpha R > 1\},\$
	- 1st: $f + v_0 = \alpha \chi_R = 0 + \alpha \chi_R := u_1 + v_1;$
	- •...
	- nth:

 $f + v_{n-1} = n\alpha \chi_R$ $R = (n\alpha$ -1 $\frac{1}{\lambda R})\chi_R+\frac{1}{\lambda R}$ $\frac{1}{\lambda R}\chi_R := u_n+v_n;$

 • (n+1)th: $f+v_n$ $n = (\alpha + \frac{1}{\lambda})$ $\frac{1}{\lambda R}$) $\chi_R=\alpha\chi_R+\frac{1}{\lambda R}$ $\frac{1}{\lambda R} \chi_R := u_{n+1}+v_{n+1}.$ ng Bregman Haration and Inverse Scale Space Methods – p. 1.

MR Image Reconstruction from Sparse Radial Samples Using Bregman Iteration and Inverse Scale Space Methods – p. 18/33

When f $=\alpha_1\chi$ distance between two circles is large enough that \boldsymbol{R} 1 $\frac{a_1}{(x_1,y_1)}+\alpha_2\chi$ \boldsymbol{R} 2 $\frac{R_2}{(x_2,y_2)}$ Assume that the $||f||_*$ $_{*} = \max(\frac{\alpha}{n})$ 1 $\,R$ 1 $_{2}$, α 2 $\,R$ 2 2 $\frac{2R_2}{2}) =: \frac{\alpha}{2}$ 1 $\,R$ 1 $\frac{2\mathbf{c}_1}{2}$, Kinderman, Osher & Xu '06.

• If
$$
\frac{1}{2\lambda} \ge \frac{\alpha_1 R_1}{2} > \frac{\alpha_2 R_2}{2}
$$
, *f* is decomposed as

$$
\begin{cases} u = 0, \\ v = \alpha_1 \chi_{(x_1, y_1)}^{R_1} + \alpha_2 \chi_{(x_2, y_2)}^{R_2}; \end{cases}
$$
(3)

Why Bregman Iteration (3):Continue?

• else if $\frac{\alpha}{\alpha}$ 1 $\, R$ 1 $\frac{1}{2}$ > is as follows, 1 $\frac{1}{2\lambda}\geq\frac{\alpha}{2}$ 2 $\, R$ 2 2 $\frac{2R_2}{2}$, then the extreme pair (u,v)

$$
\begin{cases}\nu = (\alpha_1 - \frac{1}{\lambda R_1}) \chi_{(x_1, y_1)}^{R_1}, \\
v = \frac{1}{\lambda R_1} \chi_{(x_1, y_1)}^{R_1} + \alpha_2 \chi_{(x_2, y_2)}^{R_2};\n\end{cases} (4)
$$

• otherwise $\frac{\alpha}{\epsilon}$ decomposition of f is 1 $\, R$ 1 $\frac{R_1}{2}\geq\frac{\alpha}{2}$ 2 $\, R$ 2 $\frac{2}{2}$ $>$ 1 $\frac{1}{2\lambda}$, the optimal

$$
\begin{cases}\nu = (\alpha_1 - \frac{1}{\lambda R_1}) \chi_{(x_1, y_1)}^{R_1} + (\alpha_2 - \frac{1}{\lambda R_2}) \chi_{(x_2, y_2)}^{R_2}, \\
v = \frac{1}{\lambda R_1} \chi_{(x_1, y_1)}^{R_1} + \frac{1}{\lambda R_2} \chi_{(x_2, y_2)}^{R_2}.\n\end{cases}
$$
\n(5)

Why Bregman Iteration (3)? :Continue

- If we denote n_1 and $n_2 = \min\{n \in \mathbb{N} | n \lambda \alpha_2 R_2 > 1\}$; $_1$ and n_2 , $n_1 = \min\{n \in \mathbb{N} | n\lambda\alpha_1 R_1 > 1\}$
- At the $(n_1$ R_1 exac $_1$ + 1)th iteration we recover circle of radius circle of radius R_2 exa $_1$ exactly and at the $n_{\rm 2}$ $_2+1$ th iteration we recover $_{\rm 2}$ exactly.
- Particularly, if we choose λ small enough that $n_1 + 1 < n_2$, then at the $(n_1$ of radius R_1 has been recovered exactly while the $(1 + 1)$ th iteration, the circle circle of R_2 $_1$ has been recovered exactly while the $_{\rm 2}$ is still missing.

A Modification of Meyer's Example

- ▶ Assume $y=F\alpha\chi_R$, where F is the FFT operator;
- \blacktriangleright $||Fm$ $- F\alpha \chi_R ||_2^2$ $\bar{2}$ $=$ $= ||m - \alpha \chi_R||_2^2$ 2 $\frac{2}{2}$ for any m ;
- \blacktriangleright The solution of $\min\limits_{m}\big\{||m||_{BV}+\lambda||Fm\big\}$ $m \$ $y||$ 2 $\begin{smallmatrix}2\2 \end{smallmatrix}$ is

$$
m = \begin{cases} 0 & \text{if } \alpha R \le \frac{1}{\lambda}, \\ (\alpha - \frac{1}{\lambda R}) \chi_R & \text{else.} \end{cases}
$$

 \blacktriangleright The Bregman iteration will have an exact recovery;

Numerical Results for Phantom (1)

Data Details

•

- Magnetom Avanto 1.5T scanner
- 63 radial lines with 512 samples each
- Three coils/channels
- Computation time is around ⁵ minutes per channel per Bregman iteration (Matlab)
- Scanning parameters are TR=4.8ms, TE=2.4ms, flip angle a=60o, FOV=206mm with a resolution of 256 pixels

$$
\mu=1, \nu=0, \text{ and } \lambda=100
$$

Numerical Results for Phantom (2)

Bregman iteration

MR Image Reconstruction from Sparse Radial Samples Using Bregman Iteration and Inverse Scale Space Methods – p. 24/33

Numerical Results for Phantom (3)

Zoom in Results of Bregman iteration

MR Image Reconstruction from Sparse Radial Samples Using Bregman Iteration and Inverse Scale Space Methods – p. 25/3

Numerical Results for Phantom (4)

Inverse Scale Space Methods

RISS iter 400

 \cdots

MR Image Reconstruction from Sparse Radial Samples Using Bregman Iteration and Inverse Scale Space Methods – p. 26/33

Numerical Results for Head (1)

Data Details

- 62 radial lines with 512 samples each
- Four coils/channels
- Scanning parameters are TR=4.46ms, TE=2.23ms, flip angle a=50o, FOV=250mm with ^aresolution of 256 pixels
- \bullet μ $\mu = 1$, $\nu = 0.1$, and $\lambda = 200$;

Numerical Results for Head (2)

Bregman iteration

MR Image Reconstruction from Sparse Radial Samples Using Bregman Iteration and Inverse Scale Space Methods – p. 28/3

Numerical Results for Head (3)

Inverse Scale Space Methods

MR Image Reconstruction from Sparse Radial Samples Using Bregman Iteration and Inverse Scale Space Methods - p. 29/3

Summary

MR Image Reconstruction from Sparse Samples

- Propose a new model with wavelet + TV
- •Bregman iteration
- Inverse scale space method

Future Work

The Potential of Curvelet, 5.3% Fourier Domain data

Wavelet

MR Image Reconstruction from Sparse Radial Samples Using Bregman Iteration and Inverse Scale Space Methods - p. 31/3

- University of California, Los Angeles, U.S.A
- •Siemens Corporate Research, Princeton, U.S.A
- Siemens AG Med, Erlangen, Germany
- the Austrian National Science Foundation FWFthrough project SFB F 013 / 08

Continue

Thank you for your attention!

www.math.ucla.edu/∼helin

MR Image Reconstruction from Sparse Radial Samples Using Bregman Iteration and Inverse Scale Space Methods - p. 33/3