MR Image Reconstruction from Sparse Radial Samples Using Bregman Iteration and Inverse Scale Space Methods

Lin He

Johann Radon Institute for Computational and Applied Mathematics (RICAM), Linz

Collaborator: Ti-Chiun Chang, Stanley Osher, Tong Fang and Peter Speier

Working Group: UCLA & Siemens Cooperate Research, Princeton

Data obtained: Siemens AG Med, Erlangen, Germany

MIA'06, Paris, Sept 2006

Motivation

Practical Motivation

- Imaging speed has been the major drawback of MRI \Rightarrow sample the frequency plane sparsely;
- Sparse sampling ⇒ in image artifacts and/or low signal to noise ratio (SNR)
 - Backprojection method
 - Gridding method
 - ..

A theory by Candes, Romberg and Tao'04

Consider

- \blacktriangleright a discrete complex signal f of length N
- > a randomly chosen set of frequencies Ω of mean size τN , where $\tau < 1$

► $\#\{t, f(t) \neq 0\} \le \alpha(M) \cdot (\log N)^{-1} \cdot \#\Omega, \forall M > 0$ <u>Then</u>

- ▶ with the probability at least $1 O(N^{-M})$,
- ► *f* can be reconstructed exactly from

$$\min_{g} \sum_{t=0}^{N-1} |g(t)|, \text{ s.t. } \hat{g}(\omega) = \hat{f}(\omega) \text{ for all } \omega \in \Omega.$$

$$\max_{mage \text{ Reconstruction from Sparse Radial Samples Using Bregman Iteration and Inverse Scale Space Methods - p. 3/3}$$

From Sparse to Sparse Representation

An Extension to Signals that have Sparse Representation

$$\hat{g} = \arg\min_{g} ||\psi(g)||_1$$
 s.t. $FFT(g)|_{\Omega} = y$.

g is the reconstructed image,

- \blacktriangleright ψ transforms g into a sparse representation,
- > y represents the sampled data on Ω ,
- solved with an iterative scheme with a projection on the constrained set Ω.

Candes, Romberg & Tao '05; Candes & Romberg '05

Sparse representation for piecewise constant image

TV regularization

$$\hat{g} = \arg\min_{g} ||g||_{BV}$$
 s.t. $FFT(g)|_{\Omega} = y$,

where $||g||_{BV} := \int |\nabla g| dx$.

The wavelet transform

$$\hat{g} = \arg\min_{g} ||g||_W$$
 s.t. $FFT(g)|_{\Omega} = y$,

where $||g||_W$ is the summation of the wavelet coefficients after the wavelet transformation.

MR Image Reconstruction from Sparse Radial Samples Using Bregman Iteration and Inverse Scale Space Methods - p. 5/3

Continue:

Previous work:

- Minimizing l^1 norms: Dobson & Santosa '96; Donoho & Elad '03 ...
- Sparse representations: *Feuer & Nemirovsky '02; Gribonval & Nielson '04 ...*
- Uncertainty principles: Donoho & Huo '01; Elad & Brukstein '02 ...

Reconstructing from Raw Measurement Data

Challenges

- The raw data is not on uniform grids a good operator to enforce the constraint;
- The target image is sometimes a piecewise smooth image > TV or the wavelet transform alone is not a good sparse representation.

Continue

Solutions

- A non-uniform fast Fourier transform applied;
 - NFFT in C++ by Kunis & Potts '04
 - NUFFT in Matlab by Fessler & Sutton '03

Wavelet + TV as an approximate sparse representation of a piecewise smooth image.

Lustig, Lee, Donoho & Pauly '05 ISMRM; Lustig, Donoho & Pauly '06 ISMRM; tett, Guarini, & Irarrazaval '06

Our work

Our Model

 $\min_{m} \left\{ \mu ||m||_{BV} + \nu ||m||_{W} + \lambda ||Am - y||_{2}^{2} \right\},$ (1)

- > y is the known undersample data in k-space;
- A is the non-uniform FFT operator;
- > μ , ν and λ are non-negative parameters;
 - $\mu = 0 \Rightarrow$ wavelet transformation;
 - $\nu = 0 \Rightarrow$ total variation regularization;
 - Balance μ and ν for piecewise smooth images;

solved with conjugate gradient descent method and back tracking line search.

Continue

More novelties

- Bregman iteration is applied to obtain finer scales; Bregman '67; Osher, Burger, Goldfarb, Xu & Yin '05; He, Marquina & Osher '05; He, Burger & Osher 06'...
- Inverse scale space flow method is also experimented; Burger, Gilboa, Osher & Xu '06; Xu & Osher '06...
- Curvelet + TV is under experimenting to obtain sharper edges. Candes & Donoho '02; Candes & Guo '02; Candes, Demanet, Donoho & Ying '05 ...

Given a convex function φ , the Bregman distance is defined by

$$D_{\varphi}(u,v) = \varphi(u) - \varphi(v) - \langle u - v, \partial \varphi(v) \rangle,$$

where $\langle \cdot, \cdot \rangle$ denotes the inner product in \mathbb{R}^n and $\partial \varphi(y)$ is an element of the sub-gradient of φ at point y.

 $\varphi(u) = \int |\nabla u|^2 dx$, $D_{\varphi}(u, v) = \int |\nabla (u - v)|^2 dx$.

▶ In general, $D_{\varphi}(u, v) \neq D_{\varphi}(v, u)$ and also the triangle inequality does not hold.

However, $D_{\varphi}(u, v) \ge 0$ and $D_{\varphi}(u, v) = 0$ if u = v (if and only if for strictly convex functionals).

The Iterative Refinement Procedure for ROF model

Introduced by Osher et al. for Image Denoising

> ROF model:
$$\left\{\min_{u \in BV(\Omega)} ||u||_{BV} + \lambda ||u - f||_{L^2}^2\right\};$$

• Denote $J(u) = ||u||_{BV}$, $u_0 = 0$ and $v_0 = 0$, for n > 0, the *n*th Bregman iteration is defined as

$$u_n = \arg \min_{u \in BV(\Omega)} \left\{ D_J(u, u_{n-1}) + \lambda ||u - f||_{L^2}^2 \right\},\$$

$$\Leftrightarrow u_n = \arg\min_{u \in BV(\Omega)} \left\{ J(u) + \lambda ||u - f - v_{n-1}||_{L^2}^2 \right\},$$

FWF

where $v_n = f + v_{n-1} - u_n$. It goes on until a stopping criterion is satisfied. Theory proves that $||u_n - f||_{L^2} \leq \sqrt{\frac{J(f)}{n\lambda}}$, if $J(f) < \infty$.

- noise free image f ;
- noisy image f.
- Numerical experiments show significant improvement over standard ROF model.
 - Small λ makes the image smooth at earlier iteration;
 - However, image features come back before the noise along the iteration;

Osher, Burger, Goldfarb, Xu & Yin '05; He, Burger & Osher 06'

The Iterative Refinement Procedure for Our Model

Denote $J(m) = \mu ||m||_{BV} + \nu ||m||_W$, $m_0 = 0$ and $v_0 = 0$, for n > 0, the *n*th Bregman iteration is defined as

$$m_n = \arg\min_m \left\{ D_J(m, m_{n-1}) + \lambda ||Am - y||_{L^2}^2 \right\},\,$$

 $\Leftrightarrow m_n = \arg\min_m \left\{ J(m) + \lambda ||Am - y - v_{n-1}||_{L^2}^2 \right\},\$

where $v_n = y + v_{n-1} - Am_n$.

Stopping criterion is dependent on the user needs.

Divide by $\lambda = \Delta t$, the E-L eqn of (1) becomes

$$\frac{\partial J(m_k^{\Delta t}) - \partial J(m_{k-1}^{\Delta t})}{\Delta t} = -\widehat{A}(Am_k^{\Delta t} - y).$$

> Setting $t_k = k\Delta t$, $p^{\Delta t}(t_k) = \partial J(m_k^{\Delta t})$, $m^{\Delta t}(t_k) = m_k^{\Delta t}$

$$\frac{p^{\Delta t}(t_k) - p^{\Delta t}(t_k - \Delta t)}{\Delta t} = -\widehat{A}(Am^{\Delta t}(t_k) - y).$$

▶ Letting $\Delta t \rightarrow 0$, with initial values m(0) = p(0) = 0

$$\partial_t p(t) = -\widehat{A}(Am(t) - y), \ p(t) \in \partial J(m(t)),$$

Burger, Gilboa, Osher & Xu'06 MR Image Reconstruction from Sparse Radial Samples Using Bregman Iteration and Inverse Scale Space Methods – p. 16/3

(2)

A Simple Example by Meyer for ROF model Assume $f = \alpha \chi_R$ where

$$\chi_R(x,y) = \begin{cases} 1 & \text{if } x^2 + y^2 \le R^2; \\ 0 & \text{else.} \end{cases}$$

then the solution of ROF model

$$u = \begin{cases} 0 & \text{if } \alpha R \leq \frac{1}{\lambda}, \\ (\alpha - \frac{1}{\lambda R})\chi_R & \text{else.} \end{cases}$$

An Intuitive Explanation

- ▶ If $\lambda \alpha R > 1$, optimal decomposition at the iteration
 - 1st: $f + v_0 = \alpha \chi_R = (\alpha \frac{1}{\lambda R})\chi_R + \frac{1}{\lambda R}\chi_R := u_1 + v_1;$
 - 2nd: $f + v_1 = (\alpha + \frac{1}{\lambda R})\chi_R = \alpha \chi_R + \frac{1}{\lambda R}\chi_R := u_2 + v_2$.
- ► Denote $\tilde{n} = \min\{n \in \mathbb{N} | n\lambda\alpha R > 1\}$,
 - 1st: $f + v_0 = \alpha \chi_R = 0 + \alpha \chi_R := u_1 + v_1$;
 - ...
 - nth:

 $f + v_{n-1} = n\alpha\chi_R = (n\alpha - \frac{1}{\lambda R})\chi_R + \frac{1}{\lambda R}\chi_R := u_n + v_n;$

• (n+1)th: $f + v_n = (\alpha + \frac{1}{\lambda R})\chi_R = \alpha \chi_R + \frac{1}{\lambda R}\chi_R := u_{n+1} + v_{n+1}.$

MR Image Reconstruction from Sparse Radial Samples Using Bregman Iteration and Inverse Scale Space Methods - p. 18/3

When $f = \alpha_1 \chi_{(x_1,y_1)}^{R_1} + \alpha_2 \chi_{(x_2,y_2)}^{R_2}$ Assume that the distance between two circles is large enough that $||f||_* = \max(\frac{\alpha_1 R_1}{2}, \frac{\alpha_2 R_2}{2}) =: \frac{\alpha_1 R_1}{2}$, Kinderman, Osher & Xu '06.

• If
$$\frac{1}{2\lambda} \geq \frac{\alpha_1 R_1}{2} > \frac{\alpha_2 R_2}{2}$$
, f is decomposed as

$$\begin{cases}
u = 0, \\
v = \alpha_1 \chi_{(x_1, y_1)}^{R_1} + \alpha_2 \chi_{(x_2, y_2)}^{R_2};
\end{cases}$$
(3)

Why Bregman Iteration (3): Continue?

• else if $\frac{\alpha_1 R_1}{2} > \frac{1}{2\lambda} \ge \frac{\alpha_2 R_2}{2}$, then the extreme pair (u, v) is as follows,

$$\begin{cases} u = (\alpha_1 - \frac{1}{\lambda R_1})\chi^{R_1}_{(x_1, y_1)}, \\ v = \frac{1}{\lambda R_1}\chi^{R_1}_{(x_1, y_1)} + \alpha_2\chi^{R_2}_{(x_2, y_2)}; \end{cases}$$
(4)

• otherwise $\frac{\alpha_1 R_1}{2} \ge \frac{\alpha_2 R_2}{2} > \frac{1}{2\lambda}$, the optimal decomposition of f is

$$\begin{cases} u = (\alpha_1 - \frac{1}{\lambda R_1})\chi_{(x_1,y_1)}^{R_1} + (\alpha_2 - \frac{1}{\lambda R_2})\chi_{(x_2,y_2)}^{R_2}, \\ v = \frac{1}{\lambda R_1}\chi_{(x_1,y_1)}^{R_1} + \frac{1}{\lambda R_2}\chi_{(x_2,y_2)}^{R_2}. \end{cases}$$
(5)

Why Bregman Iteration (3)? : Continue

- If we denote n_1 and n_2 , $n_1 = \min\{n \in \mathbb{N} | n\lambda \alpha_1 R_1 > 1\}$ and $n_2 = \min\{n \in \mathbb{N} | n\lambda \alpha_2 R_2 > 1\};$
- At the $(n_1 + 1)$ th iteration we recover circle of radius R_1 exactly and at the $n_2 + 1$ th iteration we recover circle of radius R_2 exactly.
- Particularly, if we choose λ small enough that n₁ + 1 < n₂, then at the (n₁ + 1)th iteration, the circle of radius R₁ has been recovered exactly while the circle of R₂ is still missing.

A Modification of Meyer's Example

- Assume $y = F \alpha \chi_R$, where F is the FFT operator;
- ► $||Fm F\alpha\chi_R||_2^2 = ||m \alpha\chi_R||_2^2$ for any *m*;
- ► The solution of $\min_{m} \{ ||m||_{BV} + \lambda ||Fm y||_2^2 \}$ is

$$m = \begin{cases} 0 & \text{if } \alpha R \leq \frac{1}{\lambda}, \\ (\alpha - \frac{1}{\lambda R})\chi_R & \text{else.} \end{cases}$$

The Bregman iteration will have an exact recovery;

Numerical Results for Phantom (1)

Data Details

- Magnetom Avanto 1.5T scanner
- 63 radial lines with 512 samples each
- Three coils/channels
- Computation time is around 5 minutes per channel per Bregman iteration (Matlab)
- Scanning parameters are TR=4.8ms, TE=2.4ms, flip angle a=60o, FOV=206mm with a resolution of 256 pixels

$$\mu = 1$$
, $\nu = 0$, and $\lambda = 100$

Numerical Results for Phantom (2)

Bregman iteration

MR Image Reconstruction from Sparse Radial Samples Using Bregman Iteration and Inverse Scale Space Methods - p. 24/3

Numerical Results for Phantom (3)

Zoom in Results of Bregman iteration

MR Image Reconstruction from Sparse Radial Samples Using Bregman Iteration and Inverse Scale Space Methods - p. 25/3

Numerical Results for Phantom (4)

Inverse Scale Space Methods

RISS iter 400

MR Image Reconstruction from Sparse Radial Samples Using Bregman Iteration and Inverse Scale Space Methods – p. 26/3

Numerical Results for Head (1)

Data Details

- 62 radial lines with 512 samples each
- Four coils/channels
- Scanning parameters are TR=4.46ms, TE=2.23ms, flip angle a=50o, FOV=250mm with a resolution of 256 pixels
- $\mu = 1$, $\nu = 0.1$, and $\lambda = 200$;

Numerical Results for Head (2)

Bregman iteration

MR Image Reconstruction from Sparse Radial Samples Using Bregman Iteration and Inverse Scale Space Methods - p. 28/3

Numerical Results for Head (3)

RISS iter 200

Inverse Scale Space Methods

RISS iter 300

MR Image Reconstruction from Sparse Radial Samples Using Bregman Iteration and Inverse Scale Space Methods – p. 29/3

Summary

MR Image Reconstruction from Sparse Samples

- Propose a new model with wavelet + TV
- Bregman iteration
- Inverse scale space method

Future Work

The Potential of Curvelet, 5.3% Fourier Domain data

Wavelet

Total Variation

MR Image Reconstruction from Sparse Radial Samples Using Bregman Iteration and Inverse Scale Space Methods - p. 31/3

- University of California, Los Angeles, U.S.A
- Siemens Corporate Research, Princeton, U.S.A
- Siemens AG Med, Erlangen, Germany
- the Austrian National Science Foundation FWF through project SFB F 013 / 08

Continue

Thank you for your attention!

www.math.ucla.edu/~helin

MR Image Reconstruction from Sparse Radial Samples Using Bregman Iteration and Inverse Scale Space Methods - p. 33/3