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Deformable Models

A powerful, model-based medical image 
analysis approach 
• Proposed in computer vision and graphics

• Actively explored in medical image analysis

• Combine bottom-up and top-down analysis

• Accommodate shape & motion constraints/variability

• Incorporate a priori anatomical knowledge

• Support intuitive interaction mechanisms

A powerful, modelA powerful, model--based medical image based medical image 
analysis approach analysis approach 
•• Proposed in computer vision and graphicsProposed in computer vision and graphics

•• Actively explored in medical image analysisActively explored in medical image analysis

•• Combine bottomCombine bottom--up and topup and top--down analysisdown analysis

•• Accommodate shape & motion constraints/variabilityAccommodate shape & motion constraints/variability

•• Incorporate a priori anatomical knowledgeIncorporate a priori anatomical knowledge

•• Support intuitive interaction mechanismsSupport intuitive interaction mechanisms



Computing Visible Surfaces from 
Scattered Visual Data
[Terzopoulos, 1984]
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Discontinuity-Preserving Surface 
Reconstruction

Make Make ““rigidityrigidity”” & & ““tensiontension””
functions of (x,y)functions of (x,y)

••Tangent discontinuities: Tangent discontinuities: 

••Jump discontinuities:Jump discontinuities:
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• Curve representation:

• Curve deformation energy:

• Equations of motion:

•• Curve representation:Curve representation:

•• Curve deformation energy:Curve deformation energy:

•• Equations of motion:Equations of motion:

Snakes:
Active Contours    
[Kass, Witkin, Terzopoulos, 1987]
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Image Analysis Using Snakes

External forces come from an image

• Image potential: 

External forces come from an imageExternal forces come from an image

•• Image potential: Image potential: 
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Motion Tracking in Video

Time-varying image potentialTimeTime--varying image potentialvarying image potential
),,( tyxP ),,( tyxP

Snake-Based Tracking
(Blake & Isard, Oxford University)(Blake & (Blake & IsardIsard, Oxford University), Oxford University)



Discretization
• Continuous equations of motion

• Discrete equations of motion

•• Continuous equations of motionContinuous equations of motion

•• Discrete equations of motionDiscrete equations of motion
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Mass matrix

Damping matrix
External forces

Stiffness
matrix
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Snake Stiffness Matrix
Finite differences:Finite differences:Finite differences:
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Stable, Implicit Euler 
Time-Integration Method

Solve linear system at each time step

• Efficient skyline storage of 

• LU factorization of 

• Forward / Back substitution solves for         

Solve linear system at each time stepSolve linear system at each time step

•• Efficient skyline storage of Efficient skyline storage of 

•• LU factorization of LU factorization of 

•• Forward / Back substitution solves for         Forward / Back substitution solves for         
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• Surface representation:

• Surface deformation energy:

• Equations of motion:

•• Surface representation:Surface representation:

•• Surface deformation energy:Surface deformation energy:

•• Equations of motion:Equations of motion:

Deformable Surfaces
[Terzopoulos, 1986;  Terzopoulos, Witkin, Kass, 1987]
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Deformable Model Reconstruction

Reconstruction

3D to 2D projection3D to 2D projection3D to 2D projection

Viewpoint

Image

3D model

)( sf Π−∇= P )( sf Π−∇= P



Graphics / Vision

Converse problemsConverse problemsConverse problems

CV“Cooking with Kurt” (1987) Image
Reconstructed 3D Scene

Vegetable Model 
Animation



Medical Image Analysis Tasks
• Segmentation

• Shape modeling

• Matching

• Motion recovery and analysis

• Functional modeling

•• SegmentationSegmentation

•• Shape modelingShape modeling

•• MatchingMatching

•• Motion recovery and analysisMotion recovery and analysis

•• Functional modelingFunctional modeling

Interactive Medical Image 
Segmentation using Snakes
[Carlbom, Terzopoulos, Harris, 1994]

EM neuronal tissue sectionsEM neuronal tissue sectionsEM neuronal tissue sections



Reconstruction of Neuronal Dendrite

Cell interiors stacked in 3DCell interiors stacked in 3DCell interiors stacked in 3D

Visualization of Dendrite

Ray-traced interpolated volumeRayRay--traced interpolated volumetraced interpolated volume



Family of Snakes

Many snakes variantsMany snakes variantsMany snakes variants

Livewire

Hermite Snakes

Fourier Descriptor Snakes

Wavelet Snakes

B-snakes

Active Shape Models

Kalman Snakes

Condesention Snakes

Topologically Adaptive Snakes

Finite Element Snakes

Discrete Snakes

DP Optimal Boundary Tracking

Snakes  (Kass, Witkin, Terzopoulos, 1987)

Dynamic Programming Snakes

• “Livewire” or “Intelligent Scissors”: 
An interactive boundary tracing tool 

•• ““LivewireLivewire”” or or ““Intelligent ScissorsIntelligent Scissors””: : 
An interactive boundary tracing tool An interactive boundary tracing tool 

Level Set Snakes

Level-Set Snakes

Livewire Demo



Limitations of Livewire
• No control of trace between 

seed points; only backtracking

• Many seed points needed for 
complex boundaries

• Nearby strong edges can 
capture trace (on-the-fly training)

• Fundamentally image-based
– cannot bridge gaps
– smoothness not guaranteed

•• No control of trace between No control of trace between 
seed points; only backtrackingseed points; only backtracking

•• Many seed points needed for Many seed points needed for 
complex boundariescomplex boundaries

•• Nearby strong edges can Nearby strong edges can 
capture trace capture trace (on(on--thethe--fly training)fly training)

•• Fundamentally imageFundamentally image--basedbased
–– cannot bridge gapscannot bridge gaps
–– smoothness not guaranteedsmoothness not guaranteed

Combining Snakes and Livewire

“United Snakes”
• Livewire serves for quick initialization of snakes 

– typically requires fewer seed points
• Livewire-initialized snakes quickly lock on boundaries
• Snakes enable adjustment of traces between seeds

– snake provides subpixel accuracy
• Snake energy imposes smoothness and bridges gaps
• Livewire seed points capture user’s knowledge

– can serve as hard or soft constraints on snake

““United SnakesUnited Snakes””
•• Livewire serves for quick initialization of snakes Livewire serves for quick initialization of snakes 

–– typically requires fewer seed pointstypically requires fewer seed points
•• LivewireLivewire--initialized snakes quickly lock on boundariesinitialized snakes quickly lock on boundaries

•• Snakes enable adjustment of traces between seedsSnakes enable adjustment of traces between seeds
–– snake provides snake provides subpixelsubpixel accuracyaccuracy

•• Snake energy imposes smoothness and bridges gapsSnake energy imposes smoothness and bridges gaps

•• Livewire seed points capture userLivewire seed points capture user’’s knowledges knowledge
–– can serve as hard or soft constraints on snakecan serve as hard or soft constraints on snake



Combining Snakes and Livewire

“United Snakes” accrue benefits of both““United SnakesUnited Snakes”” accrue benefits of bothaccrue benefits of both

Dynamic Chest Image Analysis



Vessel Segmentation

Vessel Segmentation



Topologically Adaptive Snakes
(McInerney & Terzopoulos, 1996)

Segmenting Retinal Angiogram
• T-snake flows and bifurcates

Segmenting Retinal AngiogramSegmenting Retinal Angiogram
•• TT--snake flows and bifurcatessnake flows and bifurcates

Initial Model Flow Segmented Angiogram

Retinal Angiogram Segmentation 



Affine Cell Image Decomposition
ACID makes snakes topologically flexible 

• ACID grid continually reparameterizes snake

ACID makes snakes topologically flexible ACID makes snakes topologically flexible 

•• ACID grid continually ACID grid continually reparameterizesreparameterizes snakesnake

T-Snake Segmentation of 
Brain Image



Shrink-Wrap Segmentation

Vertebra Reconstruction



Complex Structure Extraction
Cerebral Vasculature

Lung

Brain

T-Surface Segmentation of Cortex          
[McInerney & Terzopoulos, 1997]



Tongue Tracking in Ultrasound
[Kambhamettu et al, 1999]

Reconstructed LV

LV Reconstruction 

Deformable Balloon in Processed DSR Data



Cardiac LV Motion Tracking

Systolic/Diastolic LV

Computing ejection fractionComputing ejection fractionComputing ejection fraction



Functional Model of the Heart
[Peskin & McQueen]

Artificial Humans          
Scanned Data        Synthetic Faces

Cyberware
Data

Synthesized
Expressions

Range Image Texture Image



Processed range image

RGB texture image

Fitting the Generic Mesh

Feature-based image matching algorithm
localizes facial

features in:

FeatureFeature--based image matching algorithmbased image matching algorithm
localizes faciallocalizes facial

features in:features in:

Sampling Facial Shape

Fitted mesh nodes sample range dataFitted mesh nodes sample range dataFitted mesh nodes sample range data



Textured 3D Geometric Model

Texture map 
coordinates
• Positions of fitted 

mesh nodes in RGB 
texture image

Texture map Texture map 
coordinatescoordinates
•• Positions of fitted Positions of fitted 

mesh nodes in RGB mesh nodes in RGB 
texture imagetexture image

Auxiliary Geometric Models

Eyelid Texture Interpolation



Complete Geometric Model

Neutral expression 
is estimated
Neutral expression Neutral expression 
is estimatedis estimated

Epidermis

Dermis

Muscle Layer

Facial
Anatomy

Skin Model

Muscle Model



35 Muscles
• Levator Oculii
• Corrugators
• Naso-Labial
• Zygomatics
• Obicularis Oris

plus
• Articulate Jaw
• Eyes/Eyelids

35 Muscles35 Muscles
•• LevatorLevator OculiiOculii
•• CorrugatorsCorrugators
•• NasoNaso--LabialLabial
•• ZygomaticsZygomatics
•• ObicularisObicularis OrisOris

plusplus
•• Articulate JawArticulate Jaw
•• Eyes/EyelidsEyes/Eyelids

Facial Muscle Model Structure

Synthetic Face Animation



Real-Time Facial Simulation

Incision on Facial Mesh



Retriangulation Around Incision

Maxillo Surgery



Craniofacial Surgery
[Gladalin, 2002]

Anatomical Structure of the Neck



Biomechanical Modeling

What would Leonardo da Vinci Think of 
This?



Demo: 
Gaze Behavior

Demo: Autonomous Multi-Head 
Interaction



Geometry

Artificial Life Modeling
From physics to intelligenceFrom physics to intelligenceFrom physics to intelligence

PhysicsPhysics

PerceptionPerception

BehaviorBehavior

CognitionCognition

Artificial Fishes



Deformable Organisms
[Hamarneh, McInerney, Terzopoulos, 2001]

Corpus Callosum OrganismCorpus Corpus CallosumCallosum OrganismOrganism
Memory and
prior knowledge

Plan or schedule

Sensors

Skeleton

Muscles 
and limbs

Interactions with
other creatures

Underlying 
medial based Shape 

representation

Muscle actuation causes 
shape deformation

BrainPerception

Perceptual attention
mechanism

Memory and
prior knowledge

Plan or schedule

Sensors

Skeleton

Muscles 
and limbs

Interactions with
other creatures

Underlying 
medial based Shape 

representation

Muscle actuation causes 
shape deformation

BrainPerception

Perceptual attention
mechanism

fornix

2
3N-2

1

genu
spleniumrostrum

body

NN-1

upper/right

lower/left fornix

2
3N-2

1

genu
spleniumrostrum

body

NN-1

upper/right

lower/left

Deformable Organisms



Deformable Organisms

Conclusion
Deformable models
• Powerful technique for extracting geometric models 

of anatomical structures

• Functional models

• Development continues

Deformable modelsDeformable models
•• Powerful technique for extracting geometric models Powerful technique for extracting geometric models 

of anatomical structuresof anatomical structures

•• Functional modelsFunctional models

•• Development continuesDevelopment continues

““Deformable Models in Medical Image Analysis: Deformable Models in Medical Image Analysis: 

A SurveyA Survey””, , Medical Image AnalysisMedical Image Analysis, , 11(2), 1997(2), 1997

See  deformable.comSee  deformable.com



A Tensor Algebraic Framework for Image 
Synthesis, Analysis & Recognition

M. Alex O. Vasilescu
MIT Media Laboratory

Demetri Terzopoulos
University of California, Los Angeles

M. Alex O. M. Alex O. VasilescuVasilescu
MIT Media LaboratoryMIT Media Laboratory

DemetriDemetri TerzopoulosTerzopoulos
University of California, Los AngelesUniversity of California, Los Angeles

Why is Face Recognition Difficult?

Viewpoint changesViewpoint changesViewpoint changes



Illumination ChangesIllumination ChangesIllumination Changes

Why is Face Recognition Difficult?

Appearance-Based Recognition

Recognition of 3D objects (faces) directly from 
their appearance in ordinary images
• PCA / Eigenimages:

– [Sirovich & Kirby 1987]
"Low Dimensional Procedure for the Characterization of Human

Faces"

– [Turk & Pentland 1991]
"Face Recognition Using Eigenfaces"

– [Murase & Nayar 1995]
"Visual learning and recognition of 3D objects from appearance"

Recognition of 3D objects (faces) directly from Recognition of 3D objects (faces) directly from 
their appearance in ordinary imagestheir appearance in ordinary images
•• PCA / PCA / EigenimagesEigenimages::

–– [[SirovichSirovich & Kirby 1987]& Kirby 1987]
"Low Dimensional Procedure for the Characterization of Human"Low Dimensional Procedure for the Characterization of Human

Faces"Faces"

–– [Turk & [Turk & PentlandPentland 1991]1991]
"Face Recognition Using "Face Recognition Using EigenfacesEigenfaces""

–– [[MuraseMurase & & NayarNayar 1995]1995]
"Visual learning and recognition of 3D objects from appearance""Visual learning and recognition of 3D objects from appearance"



Linear Algebra

The algebra of vectors and matrices
• Traditionally of great value in image science

– Fourier transform
– Karhunen-Loeve transform

• Linear methods (PCA, FLD, ICA) model:
– Linear operators over a vector space
– Single-factor variation in image formation
– The linear combination of multiple sources

The algebra of vectors and matricesThe algebra of vectors and matrices
•• Traditionally of great value in image scienceTraditionally of great value in image science

–– Fourier transformFourier transform
–– KarhunenKarhunen--LoeveLoeve transformtransform

•• Linear methods (PCA, FLD, ICA) model:Linear methods (PCA, FLD, ICA) model:
–– Linear operators over a vector spaceLinear operators over a vector space
–– SingleSingle--factor variation in image formationfactor variation in image formation
–– The linear combination of multiple sourcesThe linear combination of multiple sources

Multilinear Algebra

The algebra of higher-order (>2) tensors
• Natural images result from the interaction of multiple factors 

related to
– scene geometry
– Illumination
– Imaging

• Multilinear algebra can explicitly represent multifactor variation
– Multilinear operators over a set of vector spaces

• Multilinear algebra subsumes linear algebra as a special case

• A unifying mathematical framework

The algebra of higherThe algebra of higher--order (>2) tensorsorder (>2) tensors
•• Natural images result from the interaction of multiple factors Natural images result from the interaction of multiple factors 

related torelated to
–– scene geometryscene geometry
–– IlluminationIllumination
–– ImagingImaging

•• MultilinearMultilinear algebra can explicitly represent multifactor variationalgebra can explicitly represent multifactor variation
–– MultilinearMultilinear operators over a operators over a set set of vector spacesof vector spaces

•• MultilinearMultilinear algebra subsumes linear algebra as a special casealgebra subsumes linear algebra as a special case

•• A unifying mathematical frameworkA unifying mathematical framework
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An image is a point in             dimensional spaceAn image is a point in             dimensional spaceAn image is a point in             dimensional space

Images
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Principal components (eigenvectors) of image 
ensemble

Principal components (eigenvectors) of image Principal components (eigenvectors) of image 
ensembleensemble

Eigenimages
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•• Typically computed Typically computed 
using the SVD using the SVD 
AlgorithmAlgorithm



Linear Representation
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Running Sum:
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Eigenfaces
• Facial images

• Eigenfaces basis vectors capture the variability in facial appearance

• Eigenfaces have been successful in simple facial recognition problem
– i.e., frontal images with fixed illumination

•• Facial imagesFacial images

•• EigenfacesEigenfaces basis vectors capture the variability in facial appearancebasis vectors capture the variability in facial appearance

•• EigenfacesEigenfaces have been successful in simple facial recognition problemhave been successful in simple facial recognition problem
–– i.e., frontal images with fixed illuminationi.e., frontal images with fixed illumination



The Problem with Linear (PCA) 
Appearance-Based Recognition Methods

Eigenimages work best for recognition when only a single 
factor – e.g., object identity – is allowed to vary 
• However, natural images are the consequence of multiple factors (or modes) 

related to scene structure, illumination and imaging

EigenimagesEigenimages work best for recognition when only a single work best for recognition when only a single 
factor factor –– e.g., object identity e.g., object identity –– is allowed to vary is allowed to vary 
•• However, natural images are the consequence of However, natural images are the consequence of multiple factorsmultiple factors (or modes) (or modes) 

related to scene structure, illumination and imagingrelated to scene structure, illumination and imaging

Our Approach
[ Vasilescu & Terzopoulos, ECCV 02, ICPR 02, CVPR 03, CVPR 05 ]

A nonlinear appearance-based technique

• Our appearance-based model explicitly accounts for each of the 
multiple factors inherent in image formation

• Multilinear algebra, the algebra of higher order tensors

• Applied to facial images, we call our tensor technique 
“TensorFaces”

A A nonlinearnonlinear appearanceappearance--based techniquebased technique

•• Our appearanceOur appearance--based model based model explicitly accountsexplicitly accounts for each of the for each of the 
multiple factors inherent in image formationmultiple factors inherent in image formation

•• MultilinearMultilinear algebra, the algebra of higher order tensorsalgebra, the algebra of higher order tensors

•• Applied to facial images, we call our tensor technique Applied to facial images, we call our tensor technique 
““TensorFacesTensorFaces””



Linear vs Multilinear Manifolds

Preliminary Recognition Results
[Vasilescu & Terzopoulos, ICPR’02]

88%88%27%27%

Training:Training: 23 people, 5 viewpoints (0,+17,          23 people, 5 viewpoints (0,+17,          
--17,+34,17,+34,--34), 3 illuminations34), 3 illuminations

Testing:Testing: 23 people, 5 viewpoints (0,+17,            23 people, 5 viewpoints (0,+17,            
--17,+34,17,+34,--34), 434), 4thth illuminationillumination

80%80%61%61%

Training:Training: 23 people, 3 viewpoints (0,+34,23 people, 3 viewpoints (0,+34,--34),   34),   
4 illuminations4 illuminations

Testing:Testing: 23 people, 2 viewpoints (+17,23 people, 2 viewpoints (+17,--17),        17),        
4 illuminations (4 illuminations (center,left,right,left+rightcenter,left,right,left+right))

TensorFacesTensorFacesPCAPCAPIE Recognition ExperimentPIE Recognition Experiment



views
illuminations

expressions

people
PIE Database (Weizmann)

Data Organization
Linear/PCA: Data Matrix  D

• Rpixels x images

• a matrix of image vectors

Multilinear: Data Tensor D
• Rpeople x views x illums x express x pixels

• N-dimensional matrix
• 28 people, 45 images/person
• 5 views, 3 illuminations, 

3 expressions per person

Linear/PCA: Linear/PCA: Data Matrix  Data Matrix  D

•• RRpixelspixels x imagesx images

•• a matrix of image vectorsa matrix of image vectors

MultilinearMultilinear: : Data Tensor Data Tensor DD
•• RRpeoplepeople x views x x views x illumsillums x express x pixelsx express x pixels

•• NN--dimensional matrixdimensional matrix
•• 28 people, 45 images/person28 people, 45 images/person
•• 5 views, 3 illuminations, 5 views, 3 illuminations, 

3 expressions per person3 expressions per person
exilvpp ,,,i
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Tensor Decomposition

Complete Dataset

Learning Stage

Background on Tensor Decomposition
• Factor Analysis: 

– Psychometrics, Econometrics, Chemometrics,…

• SVD:
– [Eckart and Young, 1936] (Psychometrika)

“The approximation of one matrix by another of lower rank“

• 3-Way Factor Analysis:
– [Tucker,1966] (Psychometrika)

“Some mathematical notes on three mode factor analysis“

• N-Way Factor Analysis:
– [Harshman, 1970] – Parafac
– [Carrol and Chang, 1970] – Candecomp
– [Kruskal, 1977]
– [Kroonenberg and De Leeuw, 1980]
– [Kapteyn, Neudecker, and Wansbeek, 1986]
– [Franc, 1992]
– [de Lathauwer, 1997]

•• Factor Analysis: Factor Analysis: 
–– Psychometrics, Econometrics, Psychometrics, Econometrics, ChemometricsChemometrics,,……

•• SVD:SVD:
–– [[EckartEckart and Young, 1936]and Young, 1936] ((PsychometrikaPsychometrika))

““The approximation of one matrix by another of lower rankThe approximation of one matrix by another of lower rank““

•• 33--Way Factor Analysis:Way Factor Analysis:
–– [Tucker[Tucker,,1966]1966] ((PsychometrikaPsychometrika))

““Some mathematical notes on three mode factor analysisSome mathematical notes on three mode factor analysis““

•• NN--Way Factor Analysis:Way Factor Analysis:
–– [[HarshmanHarshman, 1970], 1970] –– ParafacParafac
–– [[CarrolCarrol and Chang, 1970]and Chang, 1970] –– CandecompCandecomp
–– [[KruskalKruskal, 1977], 1977]
–– [[KroonenbergKroonenberg and De and De LeeuwLeeuw, 1980], 1980]
–– [[KapteynKapteyn, , NeudeckerNeudecker, and , and WansbeekWansbeek, 1986], 1986]
–– [Franc, 1992][Franc, 1992]
–– [de [de LathauwerLathauwer, 1997], 1997]



Matrix Decomposition - SVD

• A matrix                     has a column and row space  

• SVD orthogonalizes these spaces and decomposes

• Rewrite in terms of mode-n products

•• A matrix                     has a column and row space  A matrix                     has a column and row space  

•• SVD SVD orthogonalizesorthogonalizes these spaces and decomposesthese spaces and decomposes

•• Rewrite in terms of Rewrite in terms of modemode--n productsn products
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ImagesD

(         contains the eigenfaces )
1U

D

Tensor Decomposition
D is a N-dimensional “matrix”, with N spaces
• N-mode SVD is the natural generalization of SVD

• N-mode SVD orthogonalizes these spaces and decomposes D as 
the mode-n product of N-orthogonal spaces

• Core tensor Z governs interaction between mode matrices

• Mode-n matrix  spans the column space of

D D is a is a NN--ddimensional imensional ““matrixmatrix””, with , with N sN spacespaces
•• NN--mode SVD is the natural generalization of SVDmode SVD is the natural generalization of SVD

•• NN--mode SVD mode SVD orthogonalizesorthogonalizes these spaces and decomposes these spaces and decomposes DD as as 
the modethe mode--n product of Nn product of N--orthogonal spacesorthogonal spaces

•• Core tensorCore tensor ZZ governs interaction between mode matricesgoverns interaction between mode matrices

•• ModeMode--n matrix  n matrix  spans the column space ofspans the column space of

NNn UUUU       n 21 2  1    ××××= LL ZD

)(nD
nU



D
321  x   xx 32  1 UUU    Z=

Tensor Decomposition
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N-Mode SVD Algorithm

Two steps:

1. For n = 1,…,N, compute matrix         by computing 
the SVD of the flattened matrix         and           
setting        to be the left matrix of the SVD

2. Solve for the core tensor as follows

Two steps:Two steps:

1.1. For n = 1,For n = 1,……,N, compute matrix         by computing ,N, compute matrix         by computing 
the SVD of the flattened matrix         and           the SVD of the flattened matrix         and           
setting        to be the left matrix of the SVDsetting        to be the left matrix of the SVD

2.2. Solve for the core tensor as followsSolve for the core tensor as follows
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Facial Data Tensor Decomposition
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Computing Uillums

Views
D Images
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• D(illums) - flatten D along the illumination dimension
• Uillums – orthogonalizes the column space of D(illums)



Computing Uviews
Il

lu
m
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Views
D(views)D Images

• D(views) – flatten D along the viewpoint dimension
• Uviews – orthogonalize the column space of D(views)

Computing Upixels

Pi
xe

ls

ImagesD(pixels)

• D(pixels) – flatten D along the pixel dimension

• Upixels – orthogonal column space of D(pixels)

– eigenimages



Multilinear (Tensor) Algebra

Nth-order tensor NIII L××ℜ∈ 21A

nn IJ ×ℜ∈Mmatrix (2nd-order tensor)

mode-n product:

Mn×= AB ( ) ( )nn AMB =where

I1

J1

x1

• The mode-n product is a generalization of the product of two matrices
• It is the product of a tensor with a matrix
• Mode-n product of                                   andNn III x...xx...x1ℜ∈A

I1

I2

I3

I2

J2

J2

I2

J2

I2

= x2

Nnnn IIJII x..xxx.x...x 111 +−ℜ∈B
nn IJ xℜ=M

Mn×= AB     

Mode-n Product

AB M x3

J3

I3

I3

J3

nnNnnn ijiiiii

niNininjnii
n ma ......

......
A

111

111
+−∑=⎟

⎠
⎞⎜

⎝
⎛

+−

× M



Views

Illums.

People

TensorFaces: B = Z x5 Upixels

TensorFaces:
explicitly represent
covariance across
factors

( )
44444444 344444444 21321321

matrixt coefficien
    

matrix basis
   

matrix data

  
expressillums.viewspeople(pixels)pixels(pixels)

T
.UUUUZUD ⊗⊗⊗=

TensorFaces Subsume Eigenfaces

Multilinear Analysis / TensorFaces:MultilinearMultilinear Analysis / TensorFaces:Analysis / TensorFaces:

pixelsxexpressxillums.xviews xpeoplex 51 UUUUU  .
 ZD 432=

( ) T  express                                            U(pixels) Z viewsU⊗illums.U⊗ peopleU⊗=
321

matrix data
(pixels)D

321
matrix basis

   pixelsU

Linear Analysis / Linear Analysis / EigenfacesEigenfaces::



Dimensionality Reduction

  ̂

Iterative dimensionality reduction approach:
• Optimize mode per mode in an iterative way
• Alternating Least Squares (ALS) algorithm improves data fit

Iterative dimensionality reduction approach:Iterative dimensionality reduction approach:
•• Optimize mode per mode in an iterative wayOptimize mode per mode in an iterative way

•• Alternating Least Squares (ALS) algorithm improves data fitAlternating Least Squares (ALS) algorithm improves data fit
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TensorFaces

Mean Sq. Err. = 409.15
3 illum + 11 people param.

33 basis vectors

PCA

Mean Sq. Err. = 85.75
33 parameters

33 basis vectors

Strategic Data Compression = 
Perceptual Quality

Original

176 basis vectors

TensorFaces

6 illum + 11 people param.
66 basis vectors

TensorFaces data reduction in illumination space TensorFaces data reduction in illumination space 
primarily degrades illumination effects (cast primarily degrades illumination effects (cast 
shadows, highlights)shadows, highlights)

•• PCA has PCA has lower mean square errorlower mean square error but but higher perceptual errorhigher perceptual error



Query Image

Tensor Decomposition

Recognized Person

Complete Dataset

Face Recognition

Illum
ination Param
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TensorFaces

ii Ucd =

Linear Representation:

3c+1c 9c+ 28c+=

ii
T cdU =

Projection Operator

U Unknown coefficient vector



Multilinear Representation:Multilinear Representation:
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[Vasilescu & Terzopoulos CVPR’05]
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Response Tensor – Rank (1,…,1)

1. Compute the Projection Tensor:

2. Compute the Response Tensor:

3. Extract the coefficient vectors by factorizing the 
Response Tensor using the N-mode SVD algorithm

Multilinear Projection
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HigherHigher--Order    Order    
StatisticsStatistics

22nd nd --Order Order 
StatisticsStatistics

(covariance)(covariance)

Our Nonlinear Our Nonlinear 
((MultilinearMultilinear) Models) Models

Linear Linear 
ModelsModels

Perspective on 
Multilinear Models

Multilinear PCA
TensorFaces

PCA
Eigenfaces

ICA Multilinear ICA
Independent TensorFaces

[Vasilescu & Terzopoulos, Learning 2004]
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1. For n=1,…,N, compute matrix         by computing 
the SVD of the flattened matrix         and setting        
to be the left matrix of the SVD. Compute        
using ICA. Our new mode matrix is       

2. Solve for the core tensor as follows

T
nn

T
nn VZWK )(
−=

N-Mode ICA
[Vasilescu & Terzopoulos, CVPR 2005]

N-Mode ICA
[Vasilescu & Terzopoulos, CVPR 2005]
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PCA:

TensorFaces:
• Multilinear orthog. decomp.
• Encodes 2nd order statistics



ICA:

Independent TensorFaces:
Multilinear ICA

• Multilinear decomposition
• Encodes higher order statistics

Freiburg U. 3D-Morphable Data
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Results

Data Set - 16,875 
images
• 75 people
• 15 viewpoints
• 15 illuminations

Data Set Data Set -- 16,875 16,875 
imagesimages
•• 75 people75 people
•• 15 viewpoints15 viewpoints
•• 15 illuminations15 illuminations

Training Images Training Images -- 2,7002,700
•• 75 people75 people
•• 6 viewpoints 6 viewpoints 
•• 6 illuminations6 illuminations

Test Images:Test Images:
•• 75 people75 people
•• 9 viewpoints9 viewpoints
•• 9 9 illumsillums

97%97%93%93%89%89%83%83%

IndependentIndependent
TensorFacesTensorFacesTensorFacesTensorFacesICAICAPCAPCA

MultilinearMultilinear ModelsModelsLinear ModelsLinear Models



Illumination Parameters

Query Image

Tensor Decomposition

Recognized Person

Complete Dataset

Partial Image Set for Subject

Complete Image Set for Subject

Person Parameters

Viewpoint Parameters

TensorFaces

Face Recognition

Image Synthesis

Data Decomposition

??

?

Other Applications

• Human Motion Signatures

–3-Mode Decomposition, Recognition, & Synthesis
[Vasilescu ICPR 02, CVPR 01, SIGGRAPH 01]

• Multilinear Image-Based Rendering
[Vasilescu & Terzopoulos, SIGGRAPH 04]

•• Human Motion SignaturesHuman Motion Signatures

–– 33--Mode Decomposition, Recognition, & SynthesisMode Decomposition, Recognition, & Synthesis
[[Vasilescu ICPR 02, CVPR 01, SIGGRAPH 01Vasilescu ICPR 02, CVPR 01, SIGGRAPH 01]]

•• MultilinearMultilinear ImageImage--Based RenderingBased Rendering
[[VasilescuVasilescu & & TerzopoulosTerzopoulos, SIGGRAPH 04], SIGGRAPH 04]



Multilinear Image-Based Rendering

IBR: Rendering based on sparse samples of 
object appearance (images)

[Gortler et al. 1996, Levoy & Hanrahan 1996, …]

• Surface appearance is determined by the complex 
interaction of multiple factors:
– Scene geometry
– Illumination
– Imaging

IBR: Rendering based on sparse samples of IBR: Rendering based on sparse samples of 
object appearance (images)object appearance (images)

[[GortlerGortler et al. 1996, et al. 1996, LevoyLevoy & & HanrahanHanrahan 1996, 1996, ……]]

•• Surface appearance is determined by the complex Surface appearance is determined by the complex 
interaction of multiple factors:interaction of multiple factors:
–– Scene geometryScene geometry
–– IlluminationIllumination
–– ImagingImaging

Bidirectional Texture FunctionBidirectional Texture Function

BTF: Captures the appearance of extended 
textured surfaces with

–Spatially varying reflectance
–Surface mesostructure (3D texture)
–Subsurface scattering
–Etc.

• Generalization of BRDF, which accounts             
only for surface microstructure at a point

BTF:BTF: Captures the appearance of extended Captures the appearance of extended 
textured surfaces withtextured surfaces with

–– Spatially varying reflectanceSpatially varying reflectance
–– Surface Surface mesostructuremesostructure (3D texture)(3D texture)
–– Subsurface scatteringSubsurface scattering
–– Etc.Etc.

•• Generalization of Generalization of BRDFBRDF, which accounts             , which accounts             
only for surface microstructure at a pointonly for surface microstructure at a point



BTFBTFBTF

Reflectance as a function of position on surface, Reflectance as a function of position on surface, 
view direction, and illumination directionview direction, and illumination direction

•• The BTF captures shading and The BTF captures shading and mesostructuralmesostructural selfself--shadowing, shadowing, 
selfself--occlusion, occlusion, interreflectioninterreflection, subsurface scattering, subsurface scattering

),,,,,( iivvBTF yxf φθφθ
position  
on surface
(texel)

view 
direction

illumination 
direction

photometric angles

PlasterPlasterPebblesPebblesConcreteConcrete

BTF Texture Mapping
[Dana et al. 1999]
BTF Texture Mapping
[Dana et al. 1999]

Standard
Texture Mapping

BTF
Texture Mapping



System Diagram

Image Acquisition, 
Pre-processing

&
Organization

Tensor Decomposition                     
&                         

Dimensionality Reduction                  
Rendering
Algorithm

Uviews

Uillums
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Geometry

TensorTextures: 
Multilinear Image-Based Rendering



Rendered Texture for a Planar Surface

Conclusion
Multilinear algebraic framework for computer vision and computer 
graphics
• Tensor approach to the analysis and synthesis of image ensembles

– TensorFaces and TensorTextures
– Multilinear PCA and ICA

• Potentially of interest in all multifactor problems in vision and graphics to which 
PCA has been applied; e.g:

– Deformable models – Active appearance models  [Cootes and Taylor]
– Morphable face models  [Blanz and Vetter]
– Precomputed dynamics  [James and Fatahalian]

• Applications in many other fields of science

MultilinearMultilinear algebraic framework for computer vision and computer algebraic framework for computer vision and computer 
graphicsgraphics
•• Tensor approach to the analysis and synthesis of image ensemblesTensor approach to the analysis and synthesis of image ensembles

–– TensorFacesTensorFaces and and TensorTexturesTensorTextures
–– MultilinearMultilinear PCA and ICAPCA and ICA

•• Potentially of interest in Potentially of interest in allall multifactor problems in vision and graphics to which multifactor problems in vision and graphics to which 
PCA has been applied; PCA has been applied; e.ge.g::

–– Deformable models Deformable models –– Active appearance models  Active appearance models  [[CootesCootes and Taylor]and Taylor]
–– MorphableMorphable face models  face models  [[BlanzBlanz and Vetter]and Vetter]
–– PrecomputedPrecomputed dynamics  dynamics  [James and [James and FatahalianFatahalian]]

•• Applications in many other fields of scienceApplications in many other fields of science
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Tensor Algebra Foundation

Multilinear PCA/ICA
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Additional Information
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