1. Deformable and Functional Models In Medical Image Analysis

2. A Tensor Algebraic Framework for Image Synthesis, Analysis & Recognition

Demetri Terzopoulos

Computer Science Department University of California, Los Angeles

Deformable Models

A powerful, model-based medical image analysis approach

- Proposed in computer vision and graphics
- Actively explored in medical image analysis
- Combine bottom-up and top-down analysis
- Accommodate shape & motion constraints/variability
- Incorporate a priori anatomical knowledge
- Support intuitive interaction mechanisms

Computing Visible Surfaces from Scattered Visual Data [Terzopoulos, 1984]

Thin-plate spline under tension

Motion Tracking in Video

Discretization

Continuous equations of motion

$$\mu \ddot{\mathbf{c}} + \gamma \dot{\mathbf{c}} - \frac{\partial}{\partial u} \left(w_1 \frac{\partial \mathbf{c}}{\partial u} \right) + \frac{\partial^2}{\partial u^2} \left(w_2 \frac{\partial \mathbf{c}^2}{\partial u^2} \right) = \mathbf{f}$$

• Discrete equations of motion

Snake Stiffness Matrix									
Finite differences: $\mathbf{c}_{i} = \mathbf{c}(ih); i = 0, \dots, N-1$ $\frac{\partial \mathbf{c}}{\partial u} \approx \frac{\mathbf{c}_{i+1} - \mathbf{c}_{i}}{h}$ $\frac{\partial^{2} \mathbf{c}}{\partial u^{2}} \approx \frac{\mathbf{c}_{i+1} - 2\mathbf{c}_{i} + \mathbf{c}_{i-1}}{h^{2}}$	K =	$egin{bmatrix} a_0\b_0\c_0\c_{N-2}\b_{N-1} \end{pmatrix}$	$egin{array}{c} b_0 & a_1 & \ b_1 & \ c_1 & \ c_{N-1} & \end{array}$	$egin{array}{c} c_0 \ b_1 \ a_2 \ b_2 \ \ddots \ . \end{array}$	$egin{array}{ccc} c_1 \ b_2 \ a_3 \ \ddots \ c_{_{N-5}} \end{array}$	$egin{array}{c} c_2 \ b_3 \ \ddots \ b_{N-4} \ c_{N-4} \end{array}$	$egin{array}{c} c_3 \ \ddots \ a_{N-3} \ b_{N-3} \ c_{N-3} \end{array}$	$c_{\scriptscriptstyle N-2}$ \ddots $b_{\scriptscriptstyle N-3}$ $a_{\scriptscriptstyle N-2}$ $b_{\scriptscriptstyle N-2}$	$egin{array}{c c} b_{N-1} & & \\ c_{N-1} & & \\ c_{N-3} & & \\ b_{N-2} & & \\ a_{N-1} & & \\ \end{array}$
	$\begin{aligned} a_{i} &= \frac{w_{1:i-1} + w_{1:i}}{h^{2}} + \frac{w_{2:i-1} + 4w_{2:i} + w_{2:i+1}}{h^{4}} \\ b_{i} &= -\frac{w_{1:i}}{h^{2}} - \frac{2w_{2:i} + 2w_{2:i+1}}{h^{4}} \\ c_{i} &= \frac{w_{2:i+1}}{h^{4}} \end{aligned} \qquad \qquad$								

Stable, Implicit Euler Time-Integration Method

Solve linear system at each time step

$$\mathbf{A}^{(t)} \, \mathbf{\dot{c}}^{(t+\delta t)} = \mathbf{\dot{c}}^{(t)} + \mathbf{g}^{(t)}$$
$$\mathbf{c}^{(t+\delta t)} = dt \, \mathbf{\dot{c}}^{(t+\delta t)} + \mathbf{c}^{(t)}$$

- Efficient skyline storage of $\mathbf{A}^{(t)}$
- LU factorization of $\mathbf{A}^{(t)}$
- Forward / Back substitution solves for $\mathbf{c}^{\bullet(t+\delta t)}$

Deformable Model Reconstruction

Graphics / Vision

Converse problems

"Cooking with Kurt" (1987)

Image

CV Reconstructed 3D Scene

Medical Image Analysis Tasks

- Segmentation
- Shape modeling
- Matching
- Motion recovery and analysis
- Functional modeling

Reconstruction of Neuronal Dendrite

Cell interiors stacked in 3D

Limitations of Livewire

- No control of trace between seed points; only backtracking
- Many seed points needed for complex boundaries
- Nearby strong edges can capture trace (on-the-fly training)
- Fundamentally image-based
 - cannot bridge gaps
 - smoothness not guaranteed

Combining Snakes and Livewire

"United Snakes"

- Livewire serves for quick initialization of snakes
 typically requires fewer seed points
- Livewire-initialized snakes quickly lock on boundaries
- Snakes enable adjustment of traces between seeds
 snake provides subpixel accuracy
- Snake energy imposes smoothness and bridges gaps
- Livewire seed points capture user's knowledge
 can serve as hard or soft constraints on snake

Combining Snakes and Livewire

"United Snakes" accrue benefits of both

Dynamic Chest Image Analysis

Copologically Adaptive Snakes (McInerney & Terzopoulos, 1996) **Segmenting Retinal Angiogram** • T-snake flows and bifurcates

Initial Model

Flow

Segmented Angiogram

Affine Cell Image Decomposition

ACID makes snakes topologically flexible

ACID grid continually reparameterizes snake

T-Snake Segmentation of Brain Image

Shrink-Wrap Segmentation

T-Surface Segmentation of Cortex [McInerney & Terzopoulos, 1997]

Tongue Tracking in Ultrasound [Kambhamettu et al, 1999]

Cardiac LV Motion Tracking

Systolic/Diastolic LV

Computing ejection fraction

Functional Model of the Heart

[Peskin & McQueen]

Fitting the Generic Mesh

Feature-based image matching algorithm

localizes facial features in:

Processed range image

RGB texture image

Sampling Facial Shape

Fitted mesh nodes sample range data

Textured 3D Geometric Model

Texture map coordinates

 Positions of fitted mesh nodes in RGB texture image

Auxiliary Geometric Models

Complete Geometric Model

Facial Muscle Model Structure

35 Muscles

- Levator Oculii
- Corrugators
- Naso-Labial
- Zygomatics
- Obicularis Oris

plus

- Articulate Jaw
- Eyes/Eyelids

Synthetic Face Animation

Real-Time Facial Simulation

Craniofacial Surgery [Gladalin, 2002]

Anatomical Structure of the Neck

Biomechanical Modeling

What would Leonardo da Vinci Think of This?

Deformable Organisms [Hamarneh, McInerney, Terzopoulos, 2001]

Deformable Organisms

Conclusion

Deformable models

- Powerful technique for extracting geometric models of anatomical structures
- Functional models
- Development continues

"Deformable Models in Medical Image Analysis: A Survey", *Medical Image Analysis*, **1**(2), 1997 See deformable.com

A Tensor Algebraic Framework for Image Synthesis, Analysis & Recognition

M. Alex O. Vasilescu MIT Media Laboratory

Demetri Terzopoulos University of California, Los Angeles

Why is Face Recognition Difficult?

Illumination Changes

Appearance-Based Recognition

Recognition of 3D objects (faces) directly from their appearance in ordinary images

- PCA / Eigenimages:
 - -[Sirovich & Kirby 1987]
 - "Low Dimensional Procedure for the Characterization of Human Faces"
 - -[Turk & Pentland 1991]

"Face Recognition Using Eigenfaces"

- -[Murase & Nayar 1995]
 - "Visual learning and recognition of 3D objects from appearance"

Linear Algebra

The algebra of vectors and matrices

- Traditionally of great value in image science
 - Fourier transform
 - Karhunen-Loeve transform
- Linear methods (PCA, FLD, ICA) model:
 - Linear operators over a vector space
 - Single-factor variation in image formation
 - The linear combination of multiple sources

Multilinear Algebra

The algebra of higher-order (>2) tensors

- Natural images result from the interaction of multiple factors related to
 - scene geometry
 - Illumination
 - Imaging
- Multilinear algebra can explicitly represent multifactor variation
 Multilinear operators over a set of vector spaces
- Multilinear algebra subsumes linear algebra as a special case
- A unifying mathematical framework

The Problem with Linear (PCA) Appearance-Based Recognition Methods

Eigenimages work best for recognition when only a single factor – e.g., object identity – is allowed to vary

However, natural images are the consequence of *multiple factors* (or modes) related to scene structure, illumination and imaging

Our Approach [Vasilescu & Terzopoulos, ECCV 02, ICPR 02, CVPR 03, CVPR 05]

A nonlinear appearance-based technique

- Our appearance-based model *explicitly accounts* for each of the multiple factors inherent in image formation
- Multilinear algebra, the algebra of higher order tensors
- Applied to facial images, we call our tensor technique "TensorFaces"

Linear vs Multilinear Manifolds

Preliminary Recognition Results [Vasilescu & Terzopoulos, ICPR'02]

PIE Recognition Experiment	PCA	TensorFaces
Training: 23 people, 3 viewpoints (0,+34,-34), 4 illuminations		
<i>Testing:</i> 23 people, 2 viewpoints (+17,-17), 4 illuminations (center,left,right,left+right)	61%	80%
Training: 23 people, 5 viewpoints (0,+17, -17,+34,-34), 3 illuminations		
Testing: 23 people, 5 viewpoints (0,+17, -17,+34,-34), 4 th illumination	27%	88%

Background on Tensor Decomposition

- Factor Analysis: - Psychometrics, Econometrics, Chemometrics,...
- SVD:
 - [Eckart and Young, 1936] (Psychometrika) "The approximation of one matrix by another of lower rank"
- 3-Way Factor Analysis:
 - [Tucker, 1966] (Psychometrika) "Some mathematical notes on three mode factor analysis"
- N-Way Factor Analysis:
 - [Harshman, 1970] Parafac
 - [Carrol and Chang, 1970] Candecomp

 - [Kroonenberg and De Leeuw, 1980]
 [Kapteyn, Neudecker, and Wansbeek, 1986]
 [Franc, 1992]
 [de Lathauwer, 1997]

N-Mode SVD Algorithm

Two steps:

- 1. For n = 1,...,N, compute matrix \mathbf{U}_n by computing the SVD of the flattened matrix $\mathbf{D}_{(n)}$ and setting \mathbf{U}_n to be the left matrix of the SVD
- 2. Solve for the core tensor as follows

$$\mathcal{Z} = \mathcal{D} \times_{1} \mathbf{U}_{1}^{\mathsf{T}} \times_{2} \mathbf{U}_{2}^{\mathsf{T}} \cdots \times_{n} \mathbf{U}_{n}^{\mathsf{T}} \cdots \times_{N} \mathbf{U}_{N}^{\mathsf{T}}$$

Dimensionality Reduction

Iterative dimensionality reduction approach:

- · Optimize mode per mode in an iterative way
- Alternating Least Squares (ALS) algorithm improves data fit

Strategic Data Compression = **Perceptual Quality** TensorFaces data reduction in illumination space primarily degrades illumination effects (cast shadows, highlights) TensorFaces PCA TensorFaces Original 6 illum + 11 people param. 3 illum + 11 people param. 33 parameters 176 basis vectors 66 basis vectors 33 basis vectors 33 basis vectors • PCA has lower mean square error but higher perceptual error

Perspective on Multilinear Models					
	Linear Models	Our Nonlinear (Multilinear) Models			
2 nd - Order Statistics (covariance)	PCA Eigenfaces	Multilinear PCA TensorFaces			
Higher-Order Statistics	ICA	Multilinear ICA Independent TensorFaces			
		[Vasilescu & Terzopoulos, Learning 2004]			

Results						
Data Set - 16,875 images • 75 people • 15 viewpoints • 15 illuminations		Training Images - 2 • 75 people • 6 viewpoints • 6 illuminations	Test Images: • 75 people • 9 viewpoints • 9 illums			
	Linear	Models	Multiline	lultilinear Models		
	PCA	ICA	TensorFaces	Independent TensorFaces		
	83%	<mark>89%</mark>	93%	97%		

Multilinear Image-Based Rendering

IBR: Rendering based on sparse samples of object appearance (images)

[Gortler et al. 1996, Levoy & Hanrahan 1996, ...]

- Surface appearance is determined by the complex interaction of multiple factors:
 - Scene geometry
 - Illumination
 - Imaging

Bidirectional Texture Function

BTF: Captures the appearance of extended textured surfaces with

- Spatially varying reflectance
- Surface mesostructure (3D texture)
- -Subsurface scattering
- -Etc.
- Generalization of BRDF, which accounts only for surface microstructure at a point

BTF

Reflectance as a function of position on surface, view direction, and illumination direction

 $f_{BTF}(x, y, \theta_v, \phi_v, \theta_i, \phi_i)$

position on surface (texel) illumination direction

photometric angles

• The BTF captures shading and mesostructural self-shadowing, self-occlusion, interreflection, subsurface scattering

view

direction

BTF Texture Mapping [Dana et al. 1999]						
	Concrete	Pebbles	Plaster			
Standard Texture Mapping						
BTF Texture Mapping						

Conclusion

Multilinear algebraic framework for computer vision and computer graphics

- Tensor approach to the analysis and synthesis of image ensembles
 - TensorFaces and TensorTextures
 - Multilinear PCA and ICA
- Potentially of interest in *all* multifactor problems in vision and graphics to which PCA has been applied; e.g:
 - Deformable models Active appearance models [Cootes and Taylor]
 - Morphable face models [Blanz and Vetter]
 - Precomputed dynamics [James and Fatahalian]
- Applications in many other fields of science

Additional Information

www.media.mit.edu/~maov terzopoulos.com

Acknowledgement:

Funded by the Technical Support Working Group (TSWG) of the US Department of Defense