





# Some applications of $L^{\infty}$ constraints in image processing

### Pierre WEISS

Advisors : Laure Blanc-Féraud, Gilles Aubert

September 15, 2006

### The framework

Many image restoration or decomposition algorithms are formulated as an optimization process :

$$\inf_{u} \{J(u) + \lambda K(u, u_0)\}$$

Where :

- *J* is a convex regularization functional.
- K is a convex data term functional.
- The functionals are often a mixture of  $L^p$  norms.

### Notations

- $||u||_{l^p} = (\sum_i |u_i|_2^p)^{1/p}$
- $||u||_{L^{\infty}} = \max_i(|u_i|_2)$

• 
$$TV(u) = J_1(u) = \sum_i |(\nabla u)_i|_2$$

### Some examples

• Gaussian convolution :

$$\inf_{u} \{ ||(|\nabla u|)||_{L^2}^2 + \lambda ||u - u_0||_{L^2}^2 \}$$

• Rudin-Osher-Fatemi or  $BV - L^2$  model :

$$\inf_{u} \{ TV(u) + \lambda ||u - u_0||_{L^2}^2 \}$$

•  $BV - L^1$  model (Alliney, Nikolova, Chan, Darbon,...) :

$$\inf_{u} \{ TV(u) + \lambda ||u - u_0||_{L^1} \}$$

### The $L^{\infty}$ -norm appears naturally

- Bounded noise.
- Y. Meyer's decomposition.
- Morel and al's axiomatic approach for image inpainting.

#### Though it is fewly used

- Convex but not strictly convex functional  $\rightarrow$  non uniqueness of the solutions.
- As the L<sup>1</sup> norm, more difficult to handle numerically than L<sup>2</sup> or L<sup>p</sup> norms.

 $\rightarrow$  Aim of our work : exploit this norm for some tasks of image processing.

#### General problem

In this talk, we focus on the following problem :

$$\inf_{u \in K} J(u) \tag{1}$$

with K defined as :

$$K = \{ u \in Z, ||u - f||_{\infty} \le \alpha \}$$
(2)

 $Z = \mathbb{R}^n$  (space of images with  $n = n_x n_y$ ) or  $Z = \mathbb{R}^n \times \mathbb{R}^2$  (space of vector fields).

 $\rightarrow$  In general, the solution is not unique.

### Outline of the talk

- A convergent algorithm : the projected subgradient descent.
- 2 Application to Y. Meyer's model.
- Application to  $BV L^p$  problems.
- Application to bounded noises denoising.

### Complexity of the problem

Objective find  $\bar{u}$  such that :

$$\bar{u} = \operatorname{arginf}_{u \in K} J(u) \tag{3}$$

- J convex.
- K compact, convex set.

### Complexity of the problem

Objective find  $\bar{u}$  such that :

$$\bar{u} = \operatorname{arginf}_{u \in K} J(u) \tag{3}$$

- J convex.
- K compact, convex set.

Recall : the subdifferential of J at point u is defined by :

$$\partial J(u) = \{\eta, J(u) + \langle \eta, (x-u) \rangle_Z \leq J(x)\}$$

$$(4)$$

# Algorithmic considerations



### Complexity of the problem

An algorithm generates :

- A sequence  $\{u^k\}$  that is suppose to approach  $\bar{u}$ .
- An associated sequence of subgradients  $\partial J(u^k)$  and of values  $J(u^k)$ .
- At iteration k:  $\overline{J}^k = \min_{i \in \{1,...,k\}} J(u^k)$

### Complexity of the problem

An algorithm generates :

- A sequence  $\{u^k\}$  that is suppose to approach  $\bar{u}$ .
- An associated sequence of subgradients  $\partial J(u^k)$  and of values  $J(u^k)$ .
- At iteration k:  $\overline{J}^k = \min_{i \in \{1,...,k\}} J(u^k)$

To have  $|\bar{J}^k - \bar{J}| \le \epsilon$  we need  $k \ge \lfloor \frac{c}{\epsilon^2} \rfloor$ 

#### An optimal algorithm

The projected subgradient descent is the following process :

$$\begin{cases} u^{0} \in K \\ u^{k+1} = \Pi_{K} (u^{k} - t_{k} \frac{\eta^{k}}{||\eta^{k}||_{2}}) \end{cases}$$
(5)

Here,  $t_k > 0$  for any k,  $\eta^k$  is any element of  $\partial J(u^k)$ .

#### Conditions of applicability

For efficiency of this method :

- $\Pi_K$  must be computable easily.
- We need to be able to compute subgradients.

### An optimal algorithm

If J is Lipschitz continuous :

$$|J(u) - J(v)| \le L||u - v||_2$$
(6)

we can find a parameterless optimal sequence. The projected subgradient descent with step :

$$T_k = \frac{D}{\sqrt{k}}$$

ensures that :

$$\epsilon_k = \bar{J}^k - \bar{J} \le O(1) \frac{LD}{\sqrt{k}} \tag{8}$$

where D is the Euclidean diameter of the set K.

(7)

### An optimal algorithm

If  $\nabla J$  is Lipschitz continuous :

$$||\nabla J(u) - \nabla J(v)||_2 \le L' ||u - v||_2$$
 (9)

then the projected gradient descent :

$$\begin{cases} u^0 \in K\\ u^{k+1} = \Pi_K (u^k - t \nabla J(u^k)) \end{cases}$$
(10)

with constant step  $t = \frac{2}{L'}$  ensures that :

$$d(u^k, U_0) \to 0 \tag{11}$$

## A new numerical solution to Y. Meyer's model

#### The idea of Y. Meyer

Decompose an image in two components f = u + v.

- *u* contains the geometry
- v contains texture and or noise



# A new numerical solution to Y. Meyer's model

### The G norm and the model

Decomposition model :

$$\inf_{u\in BV(\Omega), v\in G, f=u+v} \{ \int_{\Omega} |Du| + \lambda ||v||_{G} \}$$

With :

$$||v||_{G} = \inf_{g} \{ ||g||_{\infty}, div(g) = v, g = (g_{1}, g_{2}), |g| = \sqrt{g_{1}^{2} + g_{2}^{2}} \}$$

# A new numerical solution to Y. Meyer's model

### The G norm and the model

Decomposition model :

$$\inf_{u\in BV(\Omega), v\in G, f=u+v} \{ \int_{\Omega} |Du| + \lambda ||v||_{G} \}$$

With :

$$||v||_{\mathcal{G}} = \inf_{g} \{ ||g||_{\infty}, div(g) = v, g = (g_1, g_2), |g| = \sqrt{g_1^2 + g_2^2} \}$$

#### Definition and properties

If  $f_n 
ightarrow 0$  then  $||f_n||_G 
ightarrow 0$ 

• 
$$||sin(nx)||_{L^2([0,2\pi])} = \pi \quad \forall n \in \mathbb{N}$$

• 
$$||sin(nx)||_{G([0,2\pi])} = 1/n \quad \forall n \in \mathbb{N}$$

#### A new simple method

Use the change of variable u = f - div(g).

 $\rightarrow$  Avoids the need of a penalty optimization method to impose f = u + v.

$$\inf_{u} \{ TV(u) + \lambda \inf_{g} \{ ||g||_{\infty}, div(g) = f - u \} \}$$
  
= 
$$\inf_{g} \{ TV(f - div(g)) + \lambda ||g||_{\infty} \}$$

Y. Meyer's problem is thus reformulated as :

$$\inf_{g,||g||_{\infty} \leq \alpha} \{ TV(f - div(g)) \}$$

Numerical details :

If J(g) = TV(f - div(g)), one element  $\eta$  of  $\partial J(g)$  is given by :

$$\eta = -\nabla div(\Psi) \tag{12}$$

with :

$$(\Psi)_{i} = \begin{cases} \frac{(\nabla(f - div(g))_{i}}{|(\nabla(f - div(g))_{i}|_{2}} & \text{if } |(\nabla(f - div(g))_{i}|_{2} > 0 \\ 0 & \text{otherwise} \end{cases}$$
(13)

#### Numerical details :

The diameter of K is :

$$D = 2\alpha \sqrt{n} \tag{14}$$

*J* is *L*-Lipschitz with :

$$L \le 16\sqrt{n} \tag{15}$$

The complexity of the projected subgradient descent is thus :

$$O(1)\frac{16\alpha n}{\sqrt{k}} \tag{16}$$

It increases linearly with  $\alpha$  and n.

# After 4 seconds (100 iterations)





Pierre WEISS

# After 5 minutes (7500 iterations)





Pierre WEISS

### The problem

We now focus on :

$$\inf_{u} \lambda |u - f|_{\rho}^{\rho} + TV(u) \tag{17}$$

for  $p \in [1, \infty[$ .

- When p = 2, we get Rudin, Osher, Fatemi model.
- When p = 1, we get  $BV L^1$  model.

This problem is difficult, due to the non differentiability of TV.

### Results of duality

For  $p \in ]1,\infty[$ , the dual problem is defined by :

$$\inf_{\{q \in Y, ||q||_{\infty} \le 1\}} < -div(q), f >_X -\beta |div(q)|_{p'}^{p'}$$
(18)

The extremality relations lead to :

$$\bar{u} = f - \beta p' |div(q)|^{p'-2} div(\bar{q})$$
(19)

 $\rightarrow$  We can use a constant step projected gradient descent to solve (18). In practice computation times decrease!

### $BV - L^1$ model and duality

The dual problem of the  $BV - L^1$  problem is given by :

$$\inf_{\{q\in Y, ||q||_{\infty}\leq 1\}} < -div(q), f >_X + \lambda |div(q)|_{\infty}$$

$$(20)$$

The first extremality relations leads to :

$$(\nabla \bar{u})_i = |(\nabla \bar{u})_i|_2 \bar{q}_i \tag{21}$$

 $\Rightarrow ar{q}$  represents the orientation of the level lines of  $ar{u}$ .

### $BV - L^1$ model and duality

The second extremality relation leads to :

$$\bar{u}_i = f_i + \lambda \gamma_i \frac{(-div(\bar{q}))_i}{|(div(\bar{q}))_i|}$$
(22)

With  $\gamma = (\gamma_1, \gamma_2, ..., \gamma_n) \in \mathbb{R}^n$  such that :

$$\begin{cases} \gamma_i \geq 0 \quad \forall i \in \{1, 2, ..., n\} \\ |\gamma|_1 = 1 \\ \gamma_i = 0 \text{ if } |(div(\bar{q}))_i| < |div(\bar{q})|_{\infty} \end{cases}$$
(23)

 $\Rightarrow$  Many pixels remain unchanged!

### $BV - L^1$ model and duality

The second extremality relation leads to :

$$\bar{u}_i = f_i + \lambda \gamma_i \frac{(-div(\bar{q}))_i}{|(div(\bar{q}))_i|}$$
(22)

With  $\gamma = (\gamma_1, \gamma_2, ..., \gamma_n) \in \mathbb{R}^n$  such that :

$$\begin{cases} \gamma_i \geq 0 \quad \forall i \in \{1, 2, ..., n\} \\ |\gamma|_1 = 1 \\ \gamma_i = 0 \text{ if } |(div(\bar{q}))_i| < |div(\bar{q})|_{\infty} \end{cases}$$
(23)

- $\Rightarrow$  Many pixels remain unchanged!
- $\rightarrow$  But, numerical interest seems limited.

### The models studied

In this last part, we focus on two models. The first is :

$$\inf_{\{u,|u-f|_{\infty}\leq\alpha\}}TV(u)$$
(24)

The second is the discretized hypersurface of u:

$$\inf_{\{u,|u-f|_{\infty}\leq\alpha\}}J_2(u) \tag{25}$$

 $J_2(u)$  is the discretized hypersurface of u:

$$J_2(u) := \sum_{i=1}^n \sqrt{|\nabla u|_2^2 + 1}$$
 (26)

#### Uniform white noise a first justification

If f = u + b, with  $b \sim U([-\alpha, \alpha])$ .

If we have a probability on the images  $P(u) = C \exp(-J(u))$ .

Then the Maximum a posteriori (MAP) solution is given by :

$$\inf_{\{u,|u-f|_{\infty}\leq\alpha\}}J(u) \tag{27}$$

### Quantization a second justification

If Q is the  $2\alpha$  quantization operator :

$$Q : \mathbb{R} \to 2\alpha \mathbb{N} \\ u_i \to 2\alpha \lfloor \frac{u}{2\alpha} \rfloor + \alpha$$
(28)

Then :

$$Q^{-1}(f) = \{u, f = Q(u)\} = \{u, |u - f|_{\infty} \le \alpha\}$$
(29)

We can look for the solution of maximal probability in  $Q^{-1}(f)$ .

# $BV - L^{\infty}$ and $MinSurface - L^{\infty}$

#### Uniqueness of the solution

The solution of  $J_2 - L^{\infty}$  is generally unique. The solution of  $BV - L^{\infty}$  is not.

$$\inf_{u,||u_0-u||_{\infty}\leq\alpha} \{\int_{\Omega} |\nabla u| dx\}$$

An example :  $u_0 = x$  on [0, 1].



## $BV - L^{\infty}$ and *MinSurface* $-L^{\infty}$ on a quantized cone



# $BV - L^{\infty}$ and *MinSurface* $-L^{\infty}$ on a quantized image



Pierre WEISS

# $BV - L^{\infty}$ and $MinSurface - L^{\infty}$ on a noisy image



Pierre WEISS

# Conclusion

### Summary

- Proposed a general framework for  $I^\infty$  constraints.
- Showed that the projected subgradient is a really efficient scheme for :
  - Y. Meyer's problem.
  - **2**  $BV I^p$  problems.
  - One of bounded noises.

# Conclusion

### Summary

- Proposed a general framework for  $I^{\infty}$  constraints.
- Showed that the projected subgradient is a really efficient scheme for :
  - Y. Meyer's problem.
  - 2  $BV I^p$  problems.
  - Oenoising of bounded noises.

#### Future...

- Deeper analysis of Y. Meyer's model, to explain its witnessed weaknesses.
- Faster algorithms, based on specific properties of the functions used.

### Thanks a lot for your attention!

# How does Meyer's model react to different frequencies?



Figure: Top : initial function  $sin(\gamma x^2)$ , Middle : geometrical part given by Y. Meyer's model, bottom : oscillating part

### Experimental tests by J.F. Aujol

| Norms / Image  | Geometric | Textured  | Noise     |
|----------------|-----------|-----------|-----------|
| TV             | 64 600    | 1 000 000 | 2 100 000 |
| L <sup>2</sup> | 9 500     | 9 500     | 9 500     |
| G              | 2 000     | 360       | 120       |

