Image Decomposition

Using Bounded Variation and Homogeneous Besov Spaces

John B. Garnett (jbg@math.ucla.edu) Triet M. Le (tle@math.ucla.edu) Luminita A. Vese (Ivese@math.ucla.edu) Department of Mathematics, UCLA

AMS Eastern Sectional Meetting #1009 Annandale-on-Hudson, NY, October 8-9, 2005

Outline

- 1. Variational Image Decomposition.
- 2. Motivation.
 - Mumford-Shah and Rudin-Osher-Fatemi models.
 - Meyer Models with the spaces

 $G = \operatorname{div}(L^{\infty}), \ F = \operatorname{div}(BMO), \ E = \dot{B}_{\infty,\infty}^{-1}.$

- Vese-Osher's approximation of Meyer G-model.
- Osher-Sole-Vese model with \dot{H}^{-1} .
- Approximation to Meyer *F*-model.
- 3. Modeling oscillatory components with Besov spaces.
- 4. Numerical results.

Variational image decomposition

Let *f* be periodic with the fundamental domain $\Omega = [-\frac{1}{2}, \frac{1}{2}]^2 \subset \mathbb{R}^2$. For short notation, we write *X* for *X*(Ω). A variational method for decomposing *f* into u + v is given by an energy minimization problem

 $\inf_{(u,v)\in X_1\times X_2} \left\{ \mathcal{K}(u,v) = F_1(u) + \lambda F_2(v) : f = u + v \right\}, \text{ where}$

- $F_1, F_2 \ge 0$ are functionals on spaces of functions or distributions X_1, X_2 , respectively.
- $\lambda > 0$ is a tuning parameter.

A good model for \mathcal{K} is given by a choice of X_1 and X_2 so that $F_1(u)$ and $F_2(v)$ are small.

Mumford-Shah (1989)

$$\inf_{(u,v)\in SBV\times L^2} \left\{ \int_{\Omega\setminus J_u} |\nabla u|^2 dx + \alpha \mathcal{H}^1(J_u) + \beta \|v\|_{L^2}^2, \ f = u + v \right\}.$$

- $f \in L^{\infty} \subset L^2$ is split into $u \in SBV$, a piecewise-smooth function with its discontinuity set J_u composed of a union of curves, and $v = f u \in L^2$ representing noise or texture.
- \mathcal{H}^1 denotes the 1-dimensional Hausdorff measure,

•
$$\alpha, \beta > 0$$
 are tuning parameters.

With the above notations, the first two terms in the above energy compose $F_1(u)$, while the third term makes $F_2(v)$.

Rudin-Osher-Fatemi (1992)

$$\inf_{(u,v)\in BV\times L^2}\left\{\int |\nabla u| \ dx + \lambda \|v\|_{L^2}^2, \ f = u + v\right\},$$

• $\int |\nabla u| \, dx$ denotes $|u|_{BV}$,

■ $f \in L^2$ is split into $u \in BV$, a piecewise-smooth function and $v = f - u \in L^2$ representing noise or texture.

● $\lambda > 0$ is a tuning parameter.

With the above notation, $F_1(u) = |u|_{BV}$, and $F_2(v) = ||v||_{L^2}^2$. Replacing $||v||_{L^2}^2$ with $||v||_{L^1}$ was proposed by Cheon, Paranjpye, Vese and Osher as a Summer project, and further analysis by Chan and Esedoglu, Esedoglu and Vixie, and Allard.

Meyer models (2001)

Remark: Oscillatory functions do not have small norms in L^2 . In 2001, Y. Meyer proposed

$$\inf_{(u,v)\in BV\times X_2} \Big\{ |u|_{BV} + \lambda ||v||_{X_2}, \ f = u + v \Big\}.$$

Here X_2 is either G, F, or E.

• The space G consists of distributions T which can be written as

$$T = \operatorname{div}(\vec{g}), \quad \vec{g} = (g_1, g_2) \in (L^{\infty})^2, \text{ with}$$
$$\|T\|_G = \inf\left\{ \left\| \sqrt{(g_1)^2 + (g_2)^2} \right\|_{L^{\infty}} : \ T = \operatorname{div}(\vec{g}), \ \vec{g} \in (L^{\infty})^2 \right\}.$$

Meyer (cont.)

• The space F consists of distributions T which can be written as

$$T = \operatorname{div}(\vec{g}), \ \vec{g} = (g_1, g_2) \in (BMO)^2, \text{ with}$$

 $||T||_F = \inf \{ ||g_1||_{BMO} + ||g_2||_{BMO} : T = \operatorname{div}(\vec{g}), \ \vec{g} \in (BMO)^2 \}.$ We say that *f* belongs to *BMO*, if

$$||f||_{BMO} = \sup_{Q \subset \Omega} \frac{1}{|Q|} \int_Q |f - f_Q| < \infty,$$

where $Q \subset \Omega$ is a square (with sides parallel with the axis). Here $f_Q = |Q|^{-1} \int_Q f(x, y)$ denotes the mean value of f over the square Q.

Meyer (cont.)

• We say a generalize function T belongs to the space E if it can be written as $T = \Delta g$, such that

$$\sup_{y|>0} \frac{\|g(.+y) - 2g(.) + g(.-y)\|_{L^{\infty}}}{|y|} < \infty.$$

- Both G = div(L[∞]) and F = div(BMO) (as defined previously) consist of first order differences of vector fields in L[∞] and BMO, respectively.
- E (as defined above) consists of second order differences of functions satisfying the Zygmund condition.

Approximating Meyer's *G***-model**

Vese-Osher (2003): model oscillatory components as first order differences of vector fields in L^p , for $1 \le p < \infty$.

$$\inf_{u,\vec{g}} \left\{ \|u\|_{BV} + \mu \|f - u - \partial_x g_1 - \partial_y g_2\|_{L^2}^2 + \lambda \left\| \sqrt{g_1^2 + g_2^2} \right\|_{L^p} \right\}$$

- $f \in L^2$ is decomposed into u + v + r, such that $u \in BV$, $v = \operatorname{div}(\vec{g}) \in \operatorname{div}(L^p)$, and $r = f - u - v \in L^2$ is a residual which is negligible numerically for large μ .
- μ , $\lambda > 0$ are tuning parameters.
- Other motivating work on the G space includes Aujol et al, Aubert and Aujol, S. Osher and O. Scherzer, among others.

Osher-Sole-Vese (2003)

- From the standpoint of view of PDE, sometimes second order differences are much more useful than first order differences (a remark made by Zygmund).
- From the point of view of image processing in the PDE/variational approach, S. Osher, A. Sole, and L. Vese were among the first to consider second order differences. They model oscillatory components as v = ∆g, where g ∈ H₂¹. I.e. v ∈ H₂⁻¹.

$$\inf_{u,v} \left\{ |u|_{BV} + \lambda \|\nabla(\Delta^{-1}v)\|_{L^2}^2, \ f = u + v \right\}.$$

▲ L. Linh and L. Vese (2005) recently considered modeling oscillatory components as $v \in H_2^s$, $s \in \mathbb{R}^-$.

Approximating Meyer's *F***-model**

• (Joint work with L. Vese), we considered a strictly convex variational problem (motivated from Vese-Osher):

 $\inf_{u,\vec{g}} \left\{ |u|_{BV} + \mu ||f - u - \partial_x g_1 - \partial_y g_2 ||_{L^2}^2 + \lambda \left[||g_1||_{BMO} + ||g_2||_{BMO} \right] \right\}$

• An equivalent isotropic problem by setting $\vec{g} = \nabla \cdot g$, i.e. $v = \Delta g$ (motivated from Osher-Sole-Vese),

$$\inf_{u,g} \left\{ |u|_{BV} + \mu ||f - u - \Delta g||_{L^2}^2 + \lambda \left[||g_x||_{BMO} + ||g_y||_{BMO} \right] \right\}$$

• Here, f = u + v + r, where $u \in BV$, $v = \operatorname{div}(\vec{g}) = \Delta g \in F$, and $r = f - u - v \in L^2$ is a residual. As $\mu \to \infty$, These models approach Meyer's *F*-model.

$v = \Delta g$ is more preferable

1) R-O-F decomposition (u_1, v_1) , 2) Meyer's *F* decomposition (u_2, v_2) with $v_2 = \operatorname{div}(\vec{g}), g_i \in BMO$, 3) Meyer's *F* decomposition (u_3, v_3) with $v_3 = \Delta g, \nabla g \in (BMO)^2$.

Homogeneous Besov spaces

Consider the Cauchy-Poisson semi-group

$$P_t g(x) = (e^{-2\pi t|\xi|} \hat{g}(\xi))^{\vee}(x), \ t > 0, \text{ and } P_0 = I.$$

Let $\alpha \in \mathbb{R}$, $k \in \mathbb{N}_0 \ \ni k > \alpha \ 1 \le p \le \infty$. We say $g \in \dot{B}^{\alpha}_{p,q}$ if

$$\|g\|_{\dot{B}^{\alpha}_{p,q}} = \left(\int \left| t^{k-\alpha} \left\| \frac{\partial^k P_t}{\partial t^k} g \right\|_{L^p} \right|^q \frac{dt}{t} \right)^{1/q} < \infty, \text{ for } q < \infty,$$

$$\|g\|_{\dot{B}^{\alpha}_{p,\infty}} = \sup_{t\geq 0} \left\{ t^{k-\alpha} \left\| \frac{\partial^k P_t}{\partial t^k} g \right\|_{L^p} \right\} < \infty, \text{ for } q = \infty,$$

For $-2 < \alpha < 0$ we choose k = 0, and k = 2 for $0 < \alpha < 2$.

Homogeneous Besov space (cont.)

Denote $I_s v = (-\Delta)^{s/2} (v) = ((2\pi |\xi|)^s \hat{v}(\xi))^{\vee}$, We have

 $I_s: \dot{B}^{\alpha}_{p,q} \to \dot{B}^{\alpha-s}_{p,q}, \text{ isometrically (injectively).}$

Define $\tau_{\delta}f(x) = f(\delta x), \ \delta > 0$. We have

$$\|\tau_{\delta}f\|_{L^{p}(\mathbb{R}^{n})} = \delta^{-\frac{n}{p}}\|f\|_{L^{p}(\mathbb{R}^{n})}, \text{ and }$$

$$\|\tau_{\delta}f\|_{\dot{B}^{\alpha}_{p,q}(\mathbb{R}^n)} = \delta^{-\frac{n}{p}+\alpha} \|f\|_{\dot{B}^{\alpha}_{p,q}(\mathbb{R}^n)}, \text{ for all } 1 \le p, q < \infty.$$

The following embedding holds,

$$\dot{B}_{p,q_1}^{\alpha_1}(\mathbb{R}^n) \subset \dot{B}_{p,q_2}^{\alpha_2}(\mathbb{R}^n),$$

If either $0 < \alpha_2 \le \alpha_1 < 2$, or $\alpha_1 = \alpha_2$ and $1 \le q_1 \le q_2 \le \infty.$

Besov spaces for oscillatory components

• Meyer's *E*-model corresponds to modeling

$$u \in BV$$
, and $v = \Delta g$, $g \in \dot{B}^1_{\infty,\infty}$. I.e. $v \in \dot{B}^{-1}_{\infty,\infty}$.

• (Joint work with J. Garnett and L. Vese) we consider decomposing f = u + v, such that

$$u \in BV$$
, and $v = \Delta g \in \dot{B}^{\alpha-2}_{p,\infty}, \ g \in \dot{B}^{\alpha}_{p,\infty}, \ 0 < \alpha < 2, 1 \le p \le \infty$,

with the minimization problems

•
$$\inf_{u,g} \left\{ \mathcal{J}_a(u,g) = |u|_{BV} + \mu ||f - u - \Delta g||_{L^2}^2 + \lambda ||g||_{\dot{B}^{\alpha}_{p,\infty}} \right\}$$

• $\inf_u \left\{ \mathcal{J}_e(u) = |u|_{BV} + \lambda ||f - u||_{\dot{B}^{\alpha-2}_{p,\infty}} \right\}$

Numerical computation of $\mathcal{J}_a, p < \infty$

$$\mathcal{J}_{a}(u,g) = |u|_{BV} + \mu ||f - u - \Delta g||_{L^{2}}^{2} + \lambda ||g||_{\dot{B}_{p,\infty}^{\alpha}},$$
$$= \int_{\Omega} |\nabla u| + \mu \int_{\Omega} |f - u - \Delta g|^{2} + \lambda \sup_{t>0} ||K_{t}^{\alpha} * g||_{L^{p}},$$

where
$$K_t^{\alpha} = t^{2-\alpha} \frac{\partial^2 P_t}{\partial t^2} = t^{2-\alpha} \left((2\pi |\xi|)^2 e^{-2\pi t |\xi|} \right)^{\vee}$$
.

In practice, we consider only a discrete set

$$\{t_i = 2.5\tau^i: \tau = 0.9, i = 1, ..., N = 150\}.$$

These t_i 's are chosen so that discretely $P_{t_1}(x)$ is a constant and $P_{t_N}(x)$ approximates the Dirac delta function.

Algorithm

- Given an initial guess (u_0, g_0) .
- Compute $\bar{t}_0 = \operatorname{argmax}_{t \in \{t_1, ..., t_N\}} \|K_t^{\alpha} * g_0\|_{L^p}$.
- Suppose $(u_n, g_n, \overline{t}_n)$ is known. Compute (u_{n+1}, g_{n+1}) via

$$\left(\frac{\partial \mathcal{J}_a}{\partial u}=\right), \ 0=-\nabla \cdot \left(\frac{\nabla u_{n+1}}{|\nabla u_n|}\right)-2\mu(f-u_{n+1}-\Delta g_n)$$
$$\left(\frac{\partial \mathcal{J}_a}{\partial g}=\right), \ 0=-2\mu\Delta(f-u_{n+1}-\Delta g_{n+1})+$$
$$\left\|K_{\bar{t}_n}^{\alpha}*g_n\right\|_{L^p}^{1-p}K_{\bar{t}_n}^{\alpha}*\left(\left|K_{\bar{t}_n}^{\alpha}*g_n\right|^{p-2}K_{\bar{t}}^{\alpha}*g_n\right)$$

Suppose $\overline{t}_n = t_k$. Compute $\overline{t}_{n+1} = \operatorname{argmax}_{t \in \{t_{k-1}, t_k, t_{k+1}\}} \|K_t^{\alpha} * g_{n+1}\|_{L^p}$. Continue...

Numerical computation of $\mathcal{J}_a, p = \infty$

$$\mathcal{J}_a(u,g) = |u|_{BV} + \mu \|f - u - \Delta g\|_{L^2}^2 + \lambda \|g\|_{\dot{B}^{\alpha}_{\infty,\infty}},$$
$$= \int_{\Omega} |\nabla u| + \mu \int_{\Omega} |f - u - \Delta g|^2 + \lambda \sup_{t>0, h\in L^1} \frac{\langle K_t^{\alpha} * g, h \rangle}{\|h\|_{L^1}}.$$

• Algorithm: The steps are the same as in the previous case, but now at each iteration we need to compute

$$\bar{h}_n = \operatorname{argmax}_{h \in L^1} \frac{\left\langle K_{\bar{t}_n}^{\alpha} * g_n, h \right\rangle}{\|h\|_{L^1}}, \text{ via}$$
$$h_{\tau} = \frac{K_{\bar{t}}^{\alpha} * g}{\|h\|_{L^1}} - \frac{\left\langle K_{\bar{t}}^{\alpha} * g, h \right\rangle}{\|h\|_{L^1}^2} \frac{h}{|h|}.$$

Numerical computation of $\mathcal{J}_e, p < \infty$

$$\mathcal{J}_e(u) = |u|_{BV} + \lambda ||f - u||_{\dot{B}^{\alpha-2}_{p,\infty}}$$
$$= \int_{\Omega} |\nabla u| + \lambda \sup_{t>0} ||H^{\alpha}_t * (f - u)||_{L^p},$$

. \/

where
$$H_t^{\alpha} = t^{2-\alpha} P_t = t^{2-\alpha} \left(e^{-2\pi t |\xi|} \right)^{\vee}$$
.
Suppose (u_n, \overline{t}_n) is known. Compute (u_{n+1}, t_{n+1}) via

•
$$\left(\frac{\partial \mathcal{J}_e}{\partial u}=\right), \ \frac{u_{n+1}-u_n}{\Delta \tau}=\nabla \cdot \left(\frac{\nabla u_{n+1}}{|\nabla u_n|}\right)+$$

 $\lambda \left\|H_{\bar{t}_n}^{\alpha}*(f-u_n)\right\|_{L^p}^{1-p}H_{\bar{t}_n}^{\alpha}*\left(|H_{\bar{t}_n}^{\alpha}*(f-u_n)|^{p-2}H_{\bar{t}_n}^{\alpha}*(f-u_n)\right).$

•
$$t_{n+1} = \operatorname{argmax}_{t \in \{t_{k-1}, t_k = \bar{t}_n, t_{k+1}\}} \|H_t^{\alpha} * (f - u_{n+1})\|_{L^p}$$
.

Numerical results

A decomposition using \mathcal{J}_a with $\alpha = 1.5$, p = 1, $\mu = 1$, and $\lambda = 1e - 04$.

A decomposition using \mathcal{J}_a with $\alpha = 1.0$, p = 1, $\mu = 1$, and $\lambda = 3e - 03$.

A decomposition using \mathcal{J}_a with $\alpha = 0.5$, p = 1, $\mu = 1$, and $\lambda = 0.5$.

A decomposition using \mathcal{J}_a with $\alpha = 0.1$, p = 1, $\mu = 1$, and $\lambda = 0.5$.

A decomposition using \mathcal{J}_a with $\alpha = 1$, $p = \infty$, $\mu = 10$, and $\lambda = 1$.

A decomposition using \mathcal{J}_e with $\alpha = 1$, p = 1, $\lambda = 1500$.

Thank You!