Image Decomposition

Using Bounded Variation and Homogeneous Besov Spaces

John B. Garnett (jbg@math.ucla.edu) Triet M. Le (tle@math.ucla.edu) Luminita A. Vese (lvese@math.ucla.edu) Department of Mathematics, UCLA

AMS Eastern Sectional Meetting #1009 Annandale-on-Hudson, NY, October 8-9, 2005

Outline

- 1. Variational Image Decomposition.
- 2. Motivation.
	- Mumford-Shah and Rudin-Osher-Fatemi models.
	- Meyer Models with the spaces

$$
G = \text{div}(L^{\infty}), \ F = \text{div}(BMO), \ E = \dot{B}^{-1}_{\infty,\infty}.
$$

- Vese-Osher's approximation of Meyer $G\text{-model.}$
- Osher-Sole-Vese model with \dot{H} \dot{H}^{-1} .
- **Approximation to Meyer F-model.**
- 3. Modeling oscillatory components with Besov spaces.
- 4. Numerical results.

Variational image decomposition

Let f be periodic with the fundamental domain $\Omega = [-\frac{1}{2},\frac{1}{2}]^2 \subset \mathbb{R}^2.$ For short notation, we write X for $X(\Omega).$ A variational method for decomposing f into $u+v$ is given by an energy minimization problem

inf $\inf_{(u,v)\in X_1\times X_2}\left\{{\cal K}(u,v)=F_1(u)+\lambda F_2(v):f=u+v\right\},\hbox{ where }$

- $F_1, F_2 \geq 0$ are functionals on spaces of functions or distributions $X_1,\,X_2,$ respectively.
- $\lambda > 0$ is a tuning parameter.

A good model for ${\mathcal K}$ is given by a choice of X_1 and X_2 so that $F_1(u)$ and $F_2(v)$ are small.

Mumford-Shah (1989)

$$
\inf_{(u,v)\in SBV\times L^2}\left\{\int_{\Omega\setminus J_u}|\nabla u|^2dx+\alpha\mathcal{H}^1(J_u)+\beta\|v\|_{L^2}^2,\ f=u+v\right\}.
$$

- $f \in L^{\infty} \subset L^2$ is split into $u \in SBV$, a piecewise-smooth function with its discontinuity set J_u composed of a union of curves, and $v=f-u\in L^2$ representing noise or texture.
- \bullet \mathcal{H}^1 denotes the 1-dimensional Hausdorff measure,
- \bullet $\alpha, \beta > 0$ are tuning parameters.

With the above notations, the first two terms in the above energy compose $F_1(u)$, while the third term makes $F_2(v)$.

Rudin-Osher-Fatemi (1992)

$$
\inf_{(u,v)\in BV\times L^2}\left\{\int |\nabla u| \ dx + \lambda ||v||_{L^2}^2, \ f = u + v\right\},\
$$

 $\int |\nabla u| \ dx$ denotes $|u|_{BV}$,

• $f \in L^2$ is split into $u \in BV$, a piecewise-smooth function and $v=f-u\in L^2$ representing noise or texture.

$\lambda > 0$ is a tuning parameter.

With the above notation, $F_1(u) = |u|_{BV}$, and $F_2(v) = \|v\|_{L^2}^2.$ Replacing $||v||_{L^2}^2$ with $||v||_{L^1}$ was proposed by Cheon, Paranjpye, Vese and Osher as ^a Summer project, and further analysis by Chan and Esedoglu, Esedoglu and Vixie, and Allard.

Meyer models (2001)

Remark: Oscillatory functions do not have small norms in L^2 **.** In 2001, Y. Meyer proposed

$$
\inf_{(u,v)\in BV\times X_2}\left\{|u|_{BV}+\lambda\|v\|_{X_2},\ \ f=u+v\right\}.
$$

Here X_2 is either $G,\,F,$ or $E.$

 \bullet The space G consists of distributions T which can be written as

$$
T = \text{div}(\vec{g}), \quad \vec{g} = (g_1, g_2) \in (L^{\infty})^2, \text{ with}
$$

$$
||T||_G = \inf \left\{ \left\| \sqrt{(g_1)^2 + (g_2)^2} \right\|_{L^{\infty}} : T = \text{div}(\vec{g}), \ \vec{g} \in (L^{\infty})^2 \right\}.
$$

Meyer (cont.)

 \bullet The space F consists of distributions T which can be written as

$$
T = \text{div}(\vec{g}), \ \ \vec{g} = (g_1, g_2) \in (BMO)^2
$$
, with

 $||T||_F = \inf \{ ||g_1||_{BMO} + ||g_2||_{BMO} : T = \text{div}(\vec{g}), \ \vec{g} \in (BMO)^2 \}.$ We say that f belongs to $BMO,$ if

$$
||f||_{BMO} = \sup_{Q \subset \Omega} \frac{1}{|Q|} \int_Q |f - f_Q| < \infty,
$$

where $Q\subset\Omega$ is a square (with sides parallel with the axis). Here $f_Q = |Q|^{-1} \int_Q f(x,y)$ denotes the mean value of f over the square Q .

Meyer (cont.)

 \bullet We say a generalize function T belongs to the space E if it can be written as $T=\Delta g,$ such that

$$
\sup_{|y|>0} \frac{\|g(.+y)-2g(.)+g(.-y)\|_{L^\infty}}{|y|} < \infty.
$$

- Both $G=$ div (L^{∞}) and $F=$ div (BMO) (as defined previously) consist of first order differences of vector fields in L^∞ and $BMO,$ respectively.
- E (as defined above) consists of second order differences of functions satisfying the Zygmund condition.

Approximating Meyer's G**-model**

Vese-Osher (2003): model oscillatory components as first order differences of vector fields in $L^p,$ for $1\leq p<\infty.$

$$
\inf_{u,\vec{g}} \left\{ |u|_{BV} + \mu \|f - u - \partial_x g_1 - \partial_y g_2\|_{L^2}^2 + \lambda \left\| \sqrt{g_1^2 + g_2^2} \right\|_{L^p} \right\}.
$$

- **•** $f \in L^2$ is decomposed into $u + v + r$, such that $u \in BV$, $v = \textsf{div}(\vec{g}) \in \textsf{div}(L^p)$, and $r = f - u - v \in L^2$ is a residual which is negligible numerically for large $\mu.$
- \bullet μ , $\lambda > 0$ are tuning parameters.
- \bullet Other motivating work on the G space includes Aujol et al, Aubert and Aujol, S. Osher and O. Scherzer, among others.

Osher-Sole-Vese (2003)

- From the standpoint of view of PDE, sometimes second order differences are much more useful than first order differences (a remark made by Zygmund).
- From the point of view of image processing in the PDE/variational approach, S. Osher, A. Sole, and L. Vese were among the first to consider second order differences. They model oscillatory components as $v=\Delta g$, where $g\in \dot{H}^1_2$ $_2^1$. I.e. $v\in \dot{H}$ \dot{H}_2^{-1} .

$$
\inf_{u,v} \left\{ |u|_{BV} + \lambda ||\nabla(\Delta^{-1}v)||_{L^2}^2, \ f = u + v \right\}.
$$

L. Linh and L. Vese (2005) recently considered modeling oscillatory components as $v \in H_2^s$, $s \in \mathbb{R}^-$.

Approximating Meyer's F**-model**

• (Joint work with **L. Vese**), we considered ^a strictly convex variational problem (motivated from **Vese-Osher**):

inf u,\vec{g} $\left\{ \|u|_{BV} + \mu \|f - u - \partial_x g_1 - \partial_y g_2\|_{L^2}^2 + \lambda \left[\|g_1\|_{BMO} + \|g_2\|_{BMO} \right] \right\}$

 \bullet An equivalent isotropic problem by setting $\vec{g} = \nabla \cdot g,$ i.e. v ⁼ ∆^g (motivated from **Osher-Sole-Vese**),

$$
\inf_{u,g} \left\{ |u|_{BV} + \mu \|f - u - \Delta g\|_{L^2}^2 + \lambda \left[\|g_x\|_{BMO} + \|g_y\|_{BMO} \right] \right\}
$$

• Here, $f=u+v+r,$ where $u\in BV,$ $v=\text{\rm div}(\vec{g})=\Delta g\in F,$ and $r\,=\,f\,-\,u\,-\,v\,\in\, L^2$ is a residual. As $\mu\,\rightarrow\,\infty$, These models approach Meyer's $F\mathsf{\textrm{\textbf{-}}model}.$

$v =$ $=\Delta g$ is more preferable

1) R-O-F decomposition (u_1, v_1) , 2) Meyer's F decomposition (u_2, v_2) with $v_2 = \text{div}(\vec{q}), g_i \in BMO$, 3) Meyer's F decomposition (u_3,v_3) with $v_3=\Delta g, \, \nabla g \in (BMO)^2.$

Homogeneous Beso v spaces

Consider the Cauchy-Poisson semi-group

$$
P_t g(x) = (e^{-2\pi t |\xi|} \hat{g}(\xi))^{\vee}(x), \ t > 0, \text{ and } P_0 = I.
$$

Let $\alpha\in\mathbb{R},\,k\in\mathbb{N}_{0}\,\,\ni\,k>\alpha\,1\leq p\leq\infty.$ We say $g\in$ $\dot{B}^\alpha_{p,q}$ if

$$
\|g\|_{\dot{B}^{\alpha}_{p,q}}=\left(\int\left|t^{k-\alpha}\left\|\frac{\partial^k P_t}{\partial t^k}g\right\|_{L^p}\right|^q\frac{dt}{t}\right)^{1/q}<\infty,\ \text{for}\ q<\infty,
$$

$$
\|g\|_{\dot{B}^{\alpha}_{p,\infty}}=\sup_{t\geq 0}\left\{t^{k-\alpha}\left\|\frac{\partial^kP_t}{\partial t^k}g\right\|_{L^p}\right\}<\infty,\ \text{for}\ q=\infty,
$$

For $-2 < \alpha < 0$ we choose $k = 0,$ and $k = 2$ for $0 < \alpha < 2.$

Homogeneous Beso ^v space (cont.)

Denote $I_s v = (-\Delta)^{s/2}$ (v) = $=\left((2\pi |\xi|)^s\hat{v}(\xi)\right)^\vee$, We have

> $I_s: \dot{B}^\alpha_{p,q}$ $\rightarrow \dot{B}^{\alpha-s}_{n,a}$ $\hat{p}_{p,q}^{\alpha-s},\;$ isometrically (injectively).

Define $\tau_\delta f(x)$ $f(\delta x),\ \delta>0.$ We have

$$
\|\tau_\delta f\|_{L^p(\mathbb{R}^n)}=\delta^{-\frac{n}{p}}\|f\|_{L^p(\mathbb{R}^n)}, \text{ and}
$$

$$
\|\tau_\delta f\|_{\dot{B}^{\alpha}_{p,q}(\mathbb{R}^n)}=\delta^{-\frac{n}{p}+\alpha}\|f\|_{\dot{B}^{\alpha}_{p,q}(\mathbb{R}^n)},\ \text{for all}\ 1\leq p,q<\infty.
$$

The following embedding holds,

$$
\dot{B}_{p,q_1}^{\alpha_1}(\mathbb{R}^n) \subset \dot{B}_{p,q_2}^{\alpha_2}(\mathbb{R}^n),
$$
if either $0 < \alpha_2 \le \alpha_1 < 2$, or $\alpha_1 = \alpha_2$ and $1 \le q_1 \le q_2 \le \infty$.

Besov spaces for oscillatory components

 \bullet Meyer's $E\text{-model}$ corresponds to modeling

$$
u \in BV
$$
, and $v = \Delta g$, $g \in \dot{B}^1_{\infty,\infty}$. I.e. $v \in \dot{B}^{-1}_{\infty,\infty}$.

• (Joint work with **J. Garnett** and **L. Vese**) we consider decomposing $f = u + v$, such that

 $u\in BV,\text{ and }v=\Delta g\in\dot{B}$ $\dot{B}^{\alpha-2}_{p,\infty},\ g\in \dot{B}$ $B_{p,\infty}^{\alpha},\ 0<\alpha< 2, 1\leq p\leq \infty,$

with the minimization problems

•
$$
\inf_{u,g} \left\{ \mathcal{J}_a(u,g) = |u|_{BV} + \mu ||f - u - \Delta g||_{L^2}^2 + \lambda ||g||_{\dot{B}_{p,\infty}^{\alpha}} \right\}
$$

• $\inf_u \left\{ \mathcal{J}_e(u) = |u|_{BV} + \lambda ||f - u||_{\dot{B}_{p,\infty}^{\alpha-2}} \right\}$

Numerical computation of \mathcal{J}_a , $p < \infty$

$$
\mathcal{J}_a(u,g) = |u|_{BV} + \mu ||f - u - \Delta g||_{L^2}^2 + \lambda ||g||_{\dot{B}_{p,\infty}^{\alpha}},
$$

=
$$
\int_{\Omega} |\nabla u| + \mu \int_{\Omega} |f - u - \Delta g|^2 + \lambda \sup_{t>0} ||K_t^{\alpha} * g||_{L^p},
$$

where
$$
K_t^{\alpha} = t^{2-\alpha} \frac{\partial^2 P_t}{\partial t^2} = t^{2-\alpha} \left((2\pi |\xi|)^2 e^{-2\pi t |\xi|} \right)^{\vee}
$$
.

In practice, we consider only ^a discrete set

$$
\{t_i = 2.5\tau^i : \ \tau = 0.9, \ i = 1, ..., N = 150\}.
$$

These t_i 's are chosen so that discretely $P_{t_1} (x)$ is a constant and $P_{t_N}\!\left(x \right)$ approximates the Dirac delta function.

Algorithm

- Given an initial guess $\left(u_{0},g_{0}\right) .$
- Compute $\bar{t}_0 = \text{argmax}_{t \in \{t_1, ..., t_N\}} \|K_t^{\alpha} * g_0\|_{L^p}$.
- Suppose (u_n, g_n, \bar{t}_n) is known. Compute (u_{n+1}, g_{n+1}) via

$$
\left(\frac{\partial \mathcal{J}_a}{\partial u}\right), \ 0 = -\nabla \cdot \left(\frac{\nabla u_{n+1}}{|\nabla u_n|}\right) - 2\mu (f - u_{n+1} - \Delta g_n)
$$
\n
$$
\left(\frac{\partial \mathcal{J}_a}{\partial g}\right), \ 0 = -2\mu \Delta (f - u_{n+1} - \Delta g_{n+1}) +
$$
\n
$$
\lambda \left\|K_{\bar{t}_n}^{\alpha} * g_n\right\|_{L^p}^{1-p} K_{\bar{t}_n}^{\alpha} * \left(\left|K_{\bar{t}_n}^{\alpha} * g_n\right|^{p-2} K_{\bar{t}}^{\alpha} * g_n\right)
$$

Suppose
$$
\bar{t}_n = t_k
$$
. Compute
\n
$$
\bar{t}_{n+1} = \text{argmax}_{t \in \{t_{k-1}, t_k, t_{k+1}\}} ||K_t^{\alpha} * g_{n+1}||_{L^p}.
$$
 Continue...

Numerical computation of \mathcal{J}_a , $p = \infty$

$$
\mathcal{J}_a(u,g) = |u|_{BV} + \mu ||f - u - \Delta g||_{L^2}^2 + \lambda ||g||_{\dot{B}^{\alpha}_{\infty,\infty}},
$$

=
$$
\int_{\Omega} |\nabla u| + \mu \int_{\Omega} |f - u - \Delta g|^2 + \lambda \sup_{t>0, h \in L^1} \frac{\langle K_t^{\alpha} * g, h \rangle}{\|h\|_{L^1}}.
$$

• **Algorithm:** The steps are the same as in the previous case, but now at each iteration we need to compute

$$
\bar{h}_n = \operatorname{argmax}_{h \in L^1} \frac{\left\langle K_{\bar{t}_n}^{\alpha} * g_n, h \right\rangle}{\|h\|_{L^1}}, \text{ via}
$$
\n
$$
h_{\tau} = \frac{K_{\bar{t}}^{\alpha} * g}{\|h\|_{L^1}} - \frac{\left\langle K_{\bar{t}}^{\alpha} * g, h \right\rangle h}{\|h\|_{L^1}^2} \frac{h}{\|h\|}.
$$

Numerical computation of \mathcal{J}_e , $p < \infty$

$$
\mathcal{J}_e(u) = |u|_{BV} + \lambda ||f - u||_{\dot{B}_{p,\infty}^{\alpha-2}}
$$

=
$$
\int_{\Omega} |\nabla u| + \lambda \sup_{t>0} ||H_t^{\alpha} * (f - u)||_{L^p},
$$

where
$$
H_t^{\alpha} = t^{2-\alpha} P_t = t^{2-\alpha} (e^{-2\pi t |\xi|})^{\vee}
$$
.
Suppose (u_n, \bar{t}_n) is known. Compute (u_{n+1}, t_{n+1}) via

$$
\bullet \left(\frac{\partial \mathcal{J}_e}{\partial u}\right), \frac{u_{n+1} - u_n}{\Delta \tau} = \nabla \cdot \left(\frac{\nabla u_{n+1}}{|\nabla u_n|}\right) + \lambda \left\| H_{\bar{t}_n}^{\alpha} * (f - u_n) \right\|_{L^p}^{1-p} H_{\bar{t}_n}^{\alpha} * (|H_{\bar{t}_n}^{\alpha} * (f - u_n)|^{p-2} H_{\bar{t}_n}^{\alpha} * (f - u_n)).
$$

•
$$
t_{n+1} = \text{argmax}_{t \in \{t_{k-1}, t_k = \bar{t}_n, t_{k+1}\}} || H_t^{\alpha} * (f - u_{n+1}) ||_{L^p}.
$$

Numerical results

A decomposition using \mathcal{J}_a with $\alpha\,=\,1.5,\ p\,=\,1,\ \mu\,=\,1,$ and $\lambda = 1e-04$.

A decomposition using \mathcal{J}_a with $\alpha\,=\,1.0,\ p\,=\,1,\ \mu\,=\,1,$ and $\lambda = 3e - 03$.

A decomposition using \mathcal{J}_a with $\alpha\,=\,0.5,\ p\,=\,1,\ \mu\,=\,1,$ and $\lambda=0.5$.

A decomposition using \mathcal{J}_a with $\alpha\,=\,0.1,\ p\,=\,1,\ \mu\,=\,1,$ and $\lambda=0.5$.

A decomposition using \mathcal{J}_a with $\alpha=1,~p=\infty,~\mu=10,$ and $\lambda=1$.

A decomposition using \mathcal{J}_e with $\alpha=1,$ $p=1,$ $\lambda=1500.$

Thank You!