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" Computational harmonic analysis seeks representations of a signal as linear
combinations of basis, frame, dictionary, element :

" Fast calculation of the coefficients ak

" Analyze the signal through the statistical properties of the coefficients

" Approximation theory  uses  the sparsity of the coefficients.

What is a good representation for data?

basis, framecoefficients



Seeking sparse and generic representations

" Sparsity

" Why do we need sparsity?

– data compression
– Feature extraction, detection
– Image restoration

sorted index

few big

many small

Non-linear approximation curve (reconstruction error versus nbr of coeff)

Truncated Fourier series give very good
approximations to smooth functions, but

–Provides poor representation of non
stationary signals or image.

–Provides poor representations of
discontinuous objects (Gibbs effect)
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Wavelets and edges

• many wavelet coefficients
are  needed to account for
edges  ie singularities along
lines or curves :

• need dictionaries of strongly
anisotropic atoms  :

 ridgelets, curvelets, contourlets, bandelettes, etc.



Critical Sampling                            Redundant Transforms

           Pyramidal decomposition (Burt and Adelson)
   (bi-) Orthogonal WT                                 Undecimated Wavelet Transform
   Lifting scheme construction                      Isotropic Undecimated Wavelet Transform
   Wavelet Packets                                        Complex Wavelet Transform
    Mirror Basis                                             Steerable Wavelet Transform
                                                                     Dyadic Wavelet Transform
                                                                     Nonlinear Pyramidal decomposition (Median)

 Multiscale Transforms

New Multiscale Construction
Contourlet                                               Ridgelet
Bandelet                                                  Curvelet (Several implementations)
Finite Ridgelet Transform                       Wave Atom
Platelet
(W-)Edgelet
Adaptive Wavelet



CONTRAST ENHANCEMENT USING THE CURVELET TRANSFORM

Curvelet coefficient

Modified
curvelet 
coefficient
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J.-L Starck, F. Murtagh, E. Candes and D.L. Donoho,  “Gray and Color Image Contrast Enhancement by the Curvelet Transform”,

IEEE Transaction on  Image Processing,  12, 6, 2003.



Contrast Enhancement



F



A difficult issue

Is there any representation that well represents the following image ?



Going further

= +

Lines Gaussians

Redundant Representations

Curvelets Wavelets



How to choose a representation ?

Basis Dictionary

OthersCurvelets

Local DCT Wavelets



Sparse Representation in a
 Redundant Dictionary

Given a signal s, we assume that it is the result of a sparse linear
 combination of atoms from a known dictionary D.
 

Or an approximate decomposition:

 

A dictionary D is defined as a collection of waveforms                , and the goal is
to obtain a representation of a signal s with a linear combination of a small 
number of basis such that:

€ 

φγ( )γ ∈Γ

€ 

s = αγφγ
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Formally, the sparsest coefficients are obtained by solving the optimization problem:  

(P0)   Minimize                         subject to   

It has been proposed (to relax and) to replace the l0 norm by the l1 norm (Chen, 1995):

(P1) Minimize                         subject to   

It can be seen as a kind of convexification of (P0).

It has been shown (Donoho and Huo, 1999) that for certain dictionary, it there
exists a highly sparse solution to (P0), then it is identical to the solution of (P1).
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α 0
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α 1
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s = φα
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s = φα



We consider now  that the dictionary is built of a set of L dictionaries  related
to multiscale transforms,  such wavelets, ridgelet, or curvelets.

Considering L transforms, and         the coefficients relative to the kth transform:

Noting T1,...TL the L transform operators,  we have:

A solution       is obtained by  minimizing a functional of the form:
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φ = φ1,K,φL[ ], α = α1,K,αL{ }, s = φα = φkk=1
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Different Problem Formulation

.We do not need to keep all transforms in memory.

. There are less unknown (because we use non orthogonal
transforms).
.We can easily add some constraints on a given component
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Ck (sk ) =  constraint on the component 
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sk

Morphological  Component  Analysis (MCA)

 We do not need to keep all transforms in memory.
 There are less unknown (because we use non orthogonal transforms).
 We can easily add some constraints on a given component

Compare to a standard matching or basis pursuit:

"Redundant Multiscale Transforms and their Application for Morphological Component Analysis", Advances in Imaging and Electron Physics, 132, 2004.



. Initialize all          to zero

. Iterate t=1,...,Niter

    - Iterate k=1,..,L
             Update the kth part of the current solution by fixing all other parts and minimizing:

Which is obtained by a simple soft/hard thresholding of :
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J(sk ) = s− si − ski=1,i≠k
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  -  Decrease      
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λt

The MCA Algorithm

The MCA algorithm relies on an iterative scheme: at
each iteration, MCA picks in alternately in each basis
the most significant coefficients of a residual term:



How to optimally tune the thresholds ?

 - The thresholds play a key role as they manage the way
coefficients are selected and thus determine the sparsity of the
decomposition.

- As K transforms per iteration are necessary :
  the least number of iterations, the faster the decomposition. 



€ 

r(t ) = s− s1
(t ) − s2

(t )

a few larger coefficients



In practice : an empirical approach:
The « MOM » strategy

In practice, we would like to use an adaptative tuning strategy.
For a union of 2 orthogonal bases, the threshold is selected such that:

That’s why this strategy is called  « Min Of Max » (MOM)

J. Bobin, J.-L. Starck, J. Fadili, Y. Moudden, and D.L. Donoho, "Morphological
Component Analysis: new Results", submitted.



Mom in action



MCA  versus  Basis Pursuit







a) Simulated image (Gaussians+lines)       b) Simulated image + noise                     c)  A trous algorithm            

     d)  Curvelet transform                            e) coaddition c+d                                            f) residual = e-b              



a) A370 b) a trous

c) Ridgelet + Curvelet Coaddition b+c



Galaxy SBS 0335-052

Curvelet A trous WT

Ridgelet



Galaxy SBS 0335-052
10 micron
GEMINI-OSCIR 



The separation task: decomposition of an image
 
into a texture and a natural (piecewise smooth)
scene part.

= +

Separation of Texture from
Piecewise Smooth Content





J.-L. Starck, M. Elad abd D.L. Donoho, "Image Decomposition Via the Combination of Sparse Representation  and a
Variational Approach", IEEE Transaction on Image Processing, 14, 10,  pp 1570--1582, 2005.





Data

Xn X t



on the original image

Edge 
Detection

 on the reconstructed 
piecewise smooth component
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J(s1,K,sL ) = M(s− sk )k=1
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Where M is the mask: M(i,j) = 0  ==> missing data
                                    M(i,j) = 1  ==> good data

Interpolation of Missing Data

€ 

J(Xt ,Xn ) = M(X − Xt − Xn ) 2
2

+ λ( CXn 1 + DXt 1) + γ TV(Xn )

If the data are composed of a piecewise smooth component +  texture

•M. Elad, J.-L. Starck, D.L. Donoho, P. Querre, “Simultaneous Cartoon and Texture Image Inpainting using Morphological Component Analysis (MCA)",
ACHA, Vol. 19, pp. 340-358, November 2005.
•M.J. Fadili, J.-L. Starck, "Sparse Representations and Bayesian Image Inpainting" , SPARS'05, Vol. I, Rennes, France, Nov., 2005.
•M.J. Fadili, J.-L. Starck and  F. Murtagh, "Inpainting and Zooming using Sparse Representations",  submitted.



. Initialize all          to zero

. Iterate j=1,...,Niter

    - Iterate k=1,..,L

     - Update the kth part of the current solution by fixing all other parts and
     minimizing: 

Which is obtained by a simple soft thresholding of :
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Application in Cosmology

WMAP

The cosmic Microwave Background is a relic radiation (with a temperature equals to 2.726 Kelvin) 
emitted 13 billion  years ago when the Universe was about 370000 years old. 



Wavelets, Ridgelets and Curvelets on the Sphere, Astronomy & Astrophysics, 446, 1191-1204, 2006.

MR/S software available at: http://jstarck.free.fr/mrs.html

   Multiscale transforms, Gaussianity tests
   Denoising using Wavelets and Curvelets
   Astrophysical Component Separation (ICA on the Sphere)

Wavelet, Ridgelet and Curvelet on the Sphere :





Inpainting



WHY INPAINTING IS USEFUL FOR THE CMB ?

• Gaussianity test.
•Power estimation with the minimum of correlation.
•Any analysis where the mask is a problem.

Abrial et al, “Inpainting on the Sphere”, Astronomical Data Analysis Conference IV, September 18-20,
Marseille, 2006.



Abrial et al, “Inpainting on the Sphere”, Astronomical Data Analysis Conference IV, September 18-20,
Marseille, 2006.







According to the MCA paradigm, each source is morphologically different from the others.
Each source sk is then well sparse in a specific basis Φk. Thus MMCA aims at solving the
following minimization problem:

Both the source matrix S and the mixing matrix A are estimated alternately for fixed values of
λk from a Maximum A Posteriori.

Defining a multichannel residual Dk :

 the parameters are alternately estimated such that :
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Multichannel MCA (MMCA)
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X = AS     or     Xi = ai,kskk=1

K
∑ ,   ∃Tk such that α k = Tksk is sparse
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 J. Bobin et al, “Morphological Diversity and Source Separation", IEEE Transaction on Signal Processing, Vol
13, 7, pp 409--412, 2006.



. Initialize all          to zero

. Iterate t=1,...,Niter

     - Iterate k=1,..,L

            Update the kth part of the current solution by fixing all other parts and minimizing: 

which is obtained by a simple hard/soft thresholding of 
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The MMCA Algorithm

 -  Decrease      

€ 

λt









Generalized MCA (GMCA)

We now assume that the sources are linear combinations of morphological components
:

GMCA aims at solving the following minimization:
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S = s1,...,sn[ ]
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φ = φ1,1,K,φ1,K[ ],..., φn,1,K,φn,K[ ],[ ], α = Sφ t = α1,1,...,α1,K[ ],..., αn,1,...,αn,K[ ][ ]
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α i,k = Ti,kci,ksuch that                      sparse 

Source: Data: 
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X = x1,...,xm[ ] = AS



. Initialize all          to zero,

. Iterate t=1,...,Niter
      - Iterate i=1,..,NbrSource
            Defining a multichannel residual Di :

€ 

ck

- 
-   Estimation of  the matrix A:

The GMCA Algorithm

 -  Decrease      
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λt+1 = λt −δ

Iterate k=1,..,Kk

      - Least square estimate of ci,k :

      - Minimize:
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A first result (1)

Original
Sources

Mixtures

Noiseless experiment, 4 random mixtures, 4 sources



A first result (2)



SNR = 10.4dB Curvelets + DCT2 mixtures

Sources Mixtures JADE



The source images: 300x300 pixels corresponding to a field
of 12,5x12,5 degres.

CMB DUST SZ



The six simulated HFI Channels  

3.6 dB 4.3 dB 1.4 dB

-3.7 dB 1.25 dB 9.35 dB

(100, 143, 217, 353, 545 and 857 GHz)



Mixing Matrix Estimation Error

GMCA
SMICA

w-JADE

Planck 
noise level



CMB DUST SZ

GMCA

GMCA+CMB constraint

Bobin et al, “CMB and SZ reconstruction using GMCA”, Astronomical Data Analysis Conference IV,
September 18-20,  Marseille, 2006.



Conclusions

• The MMCA algorithm brings a very strong and robust component separation
as long as the  MMCA hypothesis is verified (sources are sparsified in
different bases) i.e. for  morphologically diverse  sources.

. Morphological Diversity and Source Separation", IEEE Trans. on Signal Processing letters, Vol 13, 7,
pp 409--412, 2006.

• GMCA is more general, and can be applied for many applications.

• MCA method can be useful in different applications such texture separation
or inpainting.

.Redundant Multiscale Transforms and their Application for Morphological
Component Analysis, Advances  in Imaging and Electron Physics, 132, 2004.
. Image Decomposition Via the Combination of Sparse Representation and a
Variational Approach, IEEE Transaction on Image Processing, 14, 10,  pp 1570--1582, 2005.
. Simultaneous Cartoon and Texture Image Inpainting using Morphological Component
Analysis (MCA),  ACHA,   19, pp. 340-358, 2005.

More MCA experiments available at http://jstarck.free.fr/mca.html and
Jalal Fadili’s web page (http://www.greyc.ensicaen.fr/~jfadili).


