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Notation: i.i.d.: independent and identically distributed

Problem 1 / 9

Let f and g be densities with respect to the Lebesgue measure on R such that
VxeR, f(x)=cf(x) and g(x)=dg(x),

where both positive functions f and g are known and computable, and both constants ¢ and d are unknown. For
questions 1. to 4., we consider the special case of an interval ]a, b[ c R such that

Vx¢la,bl, f(x)=0 and supf(x)=M <oo.

xeR

1. Considering U = (Up,U,) a uniform random point on £ = ]a,b[ x |0, M[, compute the probability
P [Uz < f(Ul)]. Given an i.i.d. sequence UL, ..., U", neN*, of uniform random points on Z, deduce a converging
estimator of ¢, ¢;, and justify the convergence of ¢, in n.
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2. Isthis estimator ¢;, unbiased?

3. Letdf (x) be avectorised R function that computes f(x). Write an R code that computes é,,.




From now on, it is no longer assumed that f is bounded and has bounded support. Nevertheless, we assume
from nowon that {xeR| f(x) =0} < {x e R| g(x) = 0}.

4. Let X be arandom variable with density f. Show that E[§(X)/f(X)] = ¢/d.

5. Given an i.i.d. sequence Xj,..., X,, of random variables with density f, deduce from question 4. a converging
estimator of ¢/d.

~




6. Let a(-) be a positive function on R such that

f a(x) f(x)g(x)dx < +oo.
R
Show that if X is a random variable with density f and Y a random variable with density g, then

E[a)g0)] [E[a )] =c/d.

7. Deduce from the previous question a converging estimator of c/ d based on two sequences Xj,..., X, and
Y1,..., Y, of i.i.d. random variables with density f and g, respectively. Justify the convergence of this estimator
and provide a corresponding R function ratiof (n).




We now assume that d is known. For an arbitrary w > 0, we further consider the special case when the auxiliary
target density h(x) o< f(x) + wg(x) can be simulated, even though its normalising constant is unknown, that is,
there exists an R function mixt(N) that returns N i.i.d. realisations with density h(-).

8. Show that asample from f(-) can be extracted as a random subsample of an existing N-sample from /(-)—for
instance, produced as mixt(N)—. What is the expected size of this subsample as a function of N?

9. Construct a valid algorithm that partitions an N-sample from £(-) into (i) a sample from g(-) and (ii) a sample
from f(-). Deduce a converging estimator of the constant c.




Problem 2 / 7.5

Let 0 < a < 1 be the shape parameter of the Gamma distribution Ga(a, 1), with density

a—

fla) = Lx Lexp{—x} x>0

I'la)

The goal is simulate from this distribution using a Generalized Exponential distribution GE(a, A), with density
a a—1
gxa,)) = 2 (1 - e’xm) e x>0

We aim at sampling from f using the accept-reject algorithm with g(-; &, 1) as proposal density.

1. Provide the CDF attached to g(-; @, 1) and deduce the normalizing constant of g(-; @, 1) is correct.

2. Deduce a practical way to generate a random variable with density g(:; @, A).




3. Show that

fa)= Rx)g(x;a,1) x>0 1)

1
IN'a+1)
with

RG = ) x>0

1-e*
and establish that 0 < R(x) <1 for x = 0.

4. Construct an accept-reject algorithm to simulate f(-; @) using g(:; a, 1) by providing the acceptance bound on
the uniform variate. Indicate the expected number of proposals needed to accept one realisation.

5. Write an executable R code of this algorithm as an R function zeini(N,alpha) with inputs N, the number of
simulations, and alpha, the Ga(a, 1) shape parameter.




6. Since R(-) satisfies (no proof required!)

4—-(1-a)x
—— <R =<
4+(1-a)x 4—ax

deduce a faster accept-reject algorithm and write a corresponding R function squezze(N,alpha).

7. Since the choice A = 1 made above in the proposal is arbitrary, other values of A could lead to a higher ef-
ficiency. Give a precise mathematical meaning to “higher efficiency" and describe how you would run a Monte
Carlo experiment to compare the choices A =1/2 and A = 2. (Bonus: Write the associated R code.)




Problems | / 7

We revisit the simulation of upper truncated Normal N* (a) random variables, a > 0, with density

fx;a) x exp{—x2/2}ﬂ(u,oo) (%) xeR

where the proportionality symbol is applying to both sides as functions of x.

1. Recall here (i) the exact value of the normalizing constant of f(-; @) and (ii) a standard accept-reject algorithm
based on an Exponential proposal translated by a, as seen in class.

2. Derive the density of Z = X2 when X ~ N*(a) and show that an acceptance-rejection simulation of Z is
possible when using as proposal an Exponential E(1/2) random variable translated by a?.




3. Deduce an acceptance-rejection algorithm for the simulation of X ~ N* (a) and provide an associated R func-
tion marsa(N,a) with inputs N, the number of simulations, and a, the N* (a) truncation parameter. (Bonus: Write
a version with no for, no while and no repeat loop.)

4. What is the average acceptance probability p(a) for this algorithm? Given the following asymptotic approxi-
mation (when a goes to co) of the Normal cdf

@(_a) ~ e—az/Z(a—l _ a—g)

give an asymptotic approximation of p(a).
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5. An R experiment on the respective performances of both marsa and truncnorm (the standard algorithm) re-
turns the following execution times:

function user system total

truncnorm 0.329 0.011 0.341

function user system total

mars 0.150 0.024 0.174

What is the conclusion of this comparison?

11



[ Additional space
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