

#### MIDO - Master 1 Mathématiques & Applications, 2024–2025

**Monte Carlo Methods** 

Final Exam - 11/01/2025

2H00 – DOCUMENTS AND CALCULATOR PROHIBITED

| Ex. 1 | Ex. 2 Ex. 3 |     | Total |
|-------|-------------|-----|-------|
| / 9   | / 7.5       | / 7 | / 20  |



/9

Problems are independent. Answers need be written on this document. There is sufficient space alloted to each question for accomodating a proper answer. If needed, additional space is available at the end of the booklet.

Notation: *i.i.d.*: independent and identically distributed

### **Problem 1**

Let *f* and *g* be densities with respect to the Lebesgue measure on  $\mathbb{R}$  such that

 $\forall x \in \mathbb{R}, \quad f(x) = c\tilde{f}(x) \text{ and } g(x) = d\tilde{g}(x),$ 

where both positive functions  $\tilde{f}$  and  $\tilde{g}$  are known and computable, and both constants *c* and *d* are unknown. For **questions 1. to 4.**, we consider the special case of an interval  $]a, b[ \subset \mathbb{R}$  such that

 $\forall x \notin ]a, b[, \quad \tilde{f}(x) = 0 \quad \text{and} \quad \sup_{x \in \mathbb{R}} \tilde{f}(x) = M < \infty.$ 

**1.** Considering  $U = (U_1, U_2)$  a uniform random point on  $\mathscr{R} = ]a, b[\times]0, M[$ , compute the probability  $\mathbb{P}[U_2 \leq \tilde{f}(U_1)]$ . Given an *i.i.d.* sequence  $U^1, \ldots, U^n, n \in \mathbb{N}^*$ , of uniform random points on  $\mathscr{R}$ , deduce a converging estimator of *c*,  $\hat{c}_n$ , and justify the convergence of  $\hat{c}_n$  in *n*.

... /1.5

| TO<br>BE<br>FOLDED                                            |                                                                |
|---------------------------------------------------------------|----------------------------------------------------------------|
|                                                               |                                                                |
| <b>2.</b> Is this estimator $\hat{c}_n$ unbiased?             |                                                                |
| /0.5                                                          |                                                                |
|                                                               |                                                                |
|                                                               |                                                                |
|                                                               |                                                                |
|                                                               |                                                                |
|                                                               |                                                                |
|                                                               |                                                                |
|                                                               |                                                                |
| <b>3.</b> Let $df(x)$ be a vectorised R function that compute | s $\tilde{f}(x)$ . Write an R code that computes $\hat{c}_n$ . |
| /1                                                            |                                                                |
|                                                               |                                                                |
|                                                               |                                                                |
|                                                               |                                                                |
|                                                               |                                                                |
|                                                               |                                                                |
|                                                               |                                                                |

| $\frac{0.5}{0.5}$ . Given an <i>i.i.d.</i> sequence $X_1, \dots, X_n$ of random variables with density $f$ , deduce from question 4. a convergent stimator of $c/d$ . | Let X be a rar        | dom variable with density           | f. Show that $\mathbb{E}\left[\tilde{g}(X)\right]$ | /f(X)] = c/d.             |                                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------------------------------|----------------------------------------------------|---------------------------|---------------------------------|
| Given an <i>i.i.d.</i> sequence $X_1,, X_n$ of random variables with density $f$ , deduce from question 4. a convergent stimator of $c/d$ .                           | /0.5                  |                                     |                                                    |                           |                                 |
| Given an <i>i.i.d.</i> sequence $X_1, \ldots, X_n$ of random variables with density $f$ , deduce from question 4. a converginitator of $c/d$ .                        | 7                     |                                     |                                                    |                           |                                 |
| Given an <i>i.i.d.</i> sequence $X_1,, X_n$ of random variables with density $f$ , deduce from question <b>4.</b> a convergitimator of $c/d$ .                        |                       |                                     |                                                    |                           |                                 |
| Given an <i>i.i.d.</i> sequence $X_1,, X_n$ of random variables with density $f$ , deduce from question <b>4.</b> a convergitimator of $c/d$ .                        |                       |                                     |                                                    |                           |                                 |
| Given an <i>i.i.d.</i> sequence $X_1,, X_n$ of random variables with density $f$ , deduce from question <b>4.</b> a convergitimator of $c/d$ .                        |                       |                                     |                                                    |                           |                                 |
| Given an <i>i.i.d.</i> sequence $X_1, \ldots, X_n$ of random variables with density <i>f</i> , deduce from question <b>4</b> . a convergentiator of $c/d$ .           |                       |                                     |                                                    |                           |                                 |
| Given an <i>i.i.d.</i> sequence $X_1,, X_n$ of random variables with density $f$ , deduce from question <b>4</b> . a convergitimator of $c/d$ .                       |                       |                                     |                                                    |                           |                                 |
| Given an <i>i.i.d.</i> sequence $X_1, \ldots, X_n$ of random variables with density $f$ , deduce from question <b>4</b> . a convergent timator of $c/d$ .             |                       |                                     |                                                    |                           |                                 |
| Given an <i>i.i.d.</i> sequence $X_1, \ldots, X_n$ of random variables with density $f$ , deduce from question <b>4</b> . a convergent timator of $c/d$ .             |                       |                                     |                                                    |                           |                                 |
| Given an <i>i.i.d.</i> sequence $X_1,, X_n$ of random variables with density $f$ , deduce from question <b>4</b> . a converginitizator of $c/d$ .                     |                       |                                     |                                                    |                           |                                 |
| Given an <i>i.i.d.</i> sequence $X_1,, X_n$ of random variables with density $f$ , deduce from question <b>4.</b> a converginitimator of $c/d$ .                      |                       |                                     |                                                    |                           |                                 |
| Given an <i>i.i.d.</i> sequence $X_1,, X_n$ of random variables with density $f$ , deduce from question <b>4</b> . a convergentiation of $c/d$ .                      |                       |                                     |                                                    |                           |                                 |
| Given an <i>i.i.d.</i> sequence $X_1,, X_n$ of random variables with density <i>f</i> , deduce from question <b>4</b> . a convergentimator of $c/d$ .                 |                       |                                     |                                                    |                           |                                 |
| Given an <i>i.i.d.</i> sequence $X_1,, X_n$ of random variables with density $f$ , deduce from question <b>4.</b> a convergentimator of $c/d$ .                       |                       |                                     |                                                    |                           |                                 |
| Given an <i>i.i.d.</i> sequence $X_1,, X_n$ of random variables with density <i>f</i> , deduce from question <b>4</b> . a convergentimator of $c/d$ .                 |                       |                                     |                                                    |                           |                                 |
| timator of <i>c/d.</i>                                                                                                                                                | Given an <i>i.i.d</i> | sequence $X_1, \ldots, X_n$ of rand | lom variables with d                               | lensity $f$ , deduce from | m question <b>4.</b> a convergi |
| /0.5                                                                                                                                                                  | stimator of $c/d$ .   |                                     |                                                    |                           |                                 |
|                                                                                                                                                                       | /0.5                  |                                     |                                                    |                           |                                 |
|                                                                                                                                                                       | / 0.0                 |                                     |                                                    |                           |                                 |
|                                                                                                                                                                       |                       |                                     |                                                    |                           |                                 |
|                                                                                                                                                                       |                       |                                     |                                                    |                           |                                 |
|                                                                                                                                                                       |                       |                                     |                                                    |                           |                                 |
|                                                                                                                                                                       |                       |                                     |                                                    |                           |                                 |
|                                                                                                                                                                       |                       |                                     |                                                    |                           |                                 |
|                                                                                                                                                                       |                       |                                     |                                                    |                           |                                 |
|                                                                                                                                                                       |                       |                                     |                                                    |                           |                                 |
|                                                                                                                                                                       |                       |                                     |                                                    |                           |                                 |
|                                                                                                                                                                       |                       |                                     |                                                    |                           |                                 |
|                                                                                                                                                                       |                       |                                     |                                                    |                           |                                 |
|                                                                                                                                                                       |                       |                                     |                                                    |                           |                                 |
|                                                                                                                                                                       |                       |                                     |                                                    |                           |                                 |
|                                                                                                                                                                       |                       |                                     |                                                    |                           |                                 |
|                                                                                                                                                                       |                       |                                     |                                                    |                           |                                 |
|                                                                                                                                                                       |                       |                                     |                                                    |                           |                                 |
|                                                                                                                                                                       |                       |                                     |                                                    |                           |                                 |
|                                                                                                                                                                       |                       |                                     |                                                    |                           |                                 |
|                                                                                                                                                                       |                       |                                     |                                                    |                           |                                 |
|                                                                                                                                                                       |                       |                                     |                                                    |                           |                                 |

**6.** Let  $\alpha(\cdot)$  be a positive function on  $\mathbb{R}$  such that

$$\int_{\mathbb{R}} \alpha(x) \tilde{f}(x) \tilde{g}(x) \mathrm{d}x < +\infty.$$

Show that if X is a random variable with density f and Y a random variable with density g, then

$$\mathbb{E}\left[\alpha(X)\tilde{g}(X)\right] / \mathbb{E}\left[\alpha(Y)\tilde{f}(Y)\right] = c / d$$

..... /1

**7.** Deduce from the previous question a converging estimator of c/d based on two sequences  $X_1, \ldots, X_n$  and  $Y_1, \ldots, Y_n$  of *i.i.d.* random variables with density f and g, respectively. Justify the convergence of this estimator and provide a corresponding R function ratiof (n).

..... /2

We now assume that d is known. For an arbitrary  $\omega > 0$ , we further consider the special case when the auxiliary target density  $h(x) \propto \tilde{f}(x) + \omega g(x)$  can be simulated, even though its normalising constant is unknown, that is, there exists an R function mixt(N) that returns N i.i.d. realisations with density  $h(\cdot)$ .

**8.** Show that a sample from  $f(\cdot)$  can be extracted as a random subsample of an existing *N*-sample from  $h(\cdot)$ —for instance, produced as mixt(N)—. What is the expected size of this subsample as a function of *N*?

| /1                             |                                                                                                                                                                                             |
|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                |                                                                                                                                                                                             |
|                                |                                                                                                                                                                                             |
|                                |                                                                                                                                                                                             |
|                                |                                                                                                                                                                                             |
|                                |                                                                                                                                                                                             |
|                                |                                                                                                                                                                                             |
|                                |                                                                                                                                                                                             |
|                                |                                                                                                                                                                                             |
| <b>9.</b> Cons from $f(\cdot)$ | struct a valid algorithm that partitions an <i>N</i> -sample from $h(\cdot)$ into (i) a sample from $g(\cdot)$ and (ii) a sample . Deduce a converging estimator of the constant <i>c</i> . |
| /1                             |                                                                                                                                                                                             |
|                                |                                                                                                                                                                                             |
|                                |                                                                                                                                                                                             |
|                                |                                                                                                                                                                                             |
|                                |                                                                                                                                                                                             |
|                                |                                                                                                                                                                                             |
|                                |                                                                                                                                                                                             |
|                                |                                                                                                                                                                                             |
|                                |                                                                                                                                                                                             |
|                                |                                                                                                                                                                                             |
|                                |                                                                                                                                                                                             |
|                                |                                                                                                                                                                                             |

### **Problem 2**

Let  $0 < \alpha < 1$  be the shape parameter of the Gamma distribution Ga( $\alpha$ , 1), with density

$$f(x; \alpha) = \frac{1}{\Gamma(\alpha)} x^{\alpha - 1} \exp\{-x\} \qquad x > 0$$

7.5

..... /

The goal is simulate from this distribution using a Generalized Exponential distribution  $GE(\alpha, \lambda)$ , with density

$$g(x; \alpha, \lambda) = \frac{\alpha}{\lambda} \left( 1 - e^{-x/\lambda} \right)^{\alpha - 1} e^{-x/\lambda} \qquad \lambda, x > 0$$

We aim at sampling from *f* using the accept-reject algorithm with  $g(\cdot; \alpha, \lambda)$  as proposal density.

**1.** Provide the CDF attached to  $g(\cdot; \alpha, \lambda)$  and deduce the normalizing constant of  $g(\cdot; \alpha, \lambda)$  is correct.

..... / 0.5

| <b>2.</b> Deduce a practical way to generate a random variable with density $g(\cdot; c$ | 2. | Deduce a p | practical way | o generate a | random | variable with | n density | $g(\cdot; \alpha,$ | λ) |
|------------------------------------------------------------------------------------------|----|------------|---------------|--------------|--------|---------------|-----------|--------------------|----|
|------------------------------------------------------------------------------------------|----|------------|---------------|--------------|--------|---------------|-----------|--------------------|----|

..... /0.5

| <b>3.</b> Show               | y that                                                                                                                                                                                                                   |
|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                              | $f(x;\alpha) = \frac{1}{\Gamma(\alpha+1)} R(x)g(x;\alpha,1)  x > 0 \tag{1}$                                                                                                                                              |
| with                         | $R(x) = \left(\frac{x}{1 - e^{-x}}\right)^{\alpha - 1}  x > 0$                                                                                                                                                           |
| and estab                    | blish that $0 < R(x) \le 1$ for $x \ge 0$ .                                                                                                                                                                              |
| /1                           |                                                                                                                                                                                                                          |
|                              |                                                                                                                                                                                                                          |
|                              |                                                                                                                                                                                                                          |
|                              |                                                                                                                                                                                                                          |
|                              |                                                                                                                                                                                                                          |
|                              |                                                                                                                                                                                                                          |
|                              |                                                                                                                                                                                                                          |
|                              |                                                                                                                                                                                                                          |
|                              |                                                                                                                                                                                                                          |
|                              |                                                                                                                                                                                                                          |
| <b>4.</b> Constant the unifo | truct an accept-reject algorithm to simulate $f(\cdot; \alpha)$ using $g(\cdot; \alpha, 1)$ by providing the acceptance bound on rm variate. Indicate the expected number of proposals needed to accept one realisation. |
| /1                           |                                                                                                                                                                                                                          |
|                              |                                                                                                                                                                                                                          |
|                              |                                                                                                                                                                                                                          |
|                              |                                                                                                                                                                                                                          |
|                              |                                                                                                                                                                                                                          |
|                              |                                                                                                                                                                                                                          |
|                              |                                                                                                                                                                                                                          |
| <b>5.</b> Write simulation   | e an executable R code of this algorithm as an R function zeini(N,alpha) with inputs N, the number of ons, and alpha, the Ga( $\alpha$ , 1) shape parameter.                                                             |
| /1                           |                                                                                                                                                                                                                          |
|                              |                                                                                                                                                                                                                          |
|                              |                                                                                                                                                                                                                          |
|                              |                                                                                                                                                                                                                          |
|                              |                                                                                                                                                                                                                          |
|                              |                                                                                                                                                                                                                          |

| <b>6.</b> Since $R(\cdot)$ satisfies (no proof required!)                                                                                                                                                                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $4-(1-\alpha)x = B(x) = 4+\alpha x$                                                                                                                                                                                                   |
| $\frac{1}{4 + (1 - \alpha)x} \ge \pi(x) \le \frac{1}{4 - \alpha x}$                                                                                                                                                                   |
| deduce a faster accept-reject algorithm and write a corresponding R function squezze(N,alpha).                                                                                                                                        |
|                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                       |
| 7. Since the choice $\lambda = 1$ made above in the proposal is arbitrary, other values of $\lambda$ could lead to a higher ef-                                                                                                       |
| ficiency. Give a precise mathematical meaning to "higher efficiency" and describe how you would run a Monte Carlo experiment to compare the choices $\lambda = 1/2$ and $\lambda = 2$ . ( <b>Bonus:</b> Write the associated R code.) |
| /2.5                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                       |

## Problem 3

..... /7

We revisit the simulation of upper truncated Normal  $N^+(a)$  random variables, a > 0, with density

 $f(x; a) \propto \exp\{-x^2/2\}\mathbb{I}_{(a,\infty)}(x) \qquad x \in \mathbb{R}$ 

where the proportionality symbol is applying to both sides as functions of x.

**1.** Recall here (i) the exact value of the normalizing constant of  $f(\cdot; a)$  and (ii) a standard accept-reject algorithm based on an Exponential proposal translated by *a*, **as seen in class**.

| <br>/1.5 |
|----------|
|          |

| 5 |
|---|
|   |
|   |
|   |
|   |
|   |
|   |

| <b>3.</b> Deduce an acceptance-rejection algorithm for the simulation of $X \sim N^+(a)$ and provide an associated R function marsa(N,a) with inputs N, the number of simulations, and a, the $N^+(a)$ truncation parameter. ( <b>Bonus:</b> Write a version with no for, no while and no repeat loop.) |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| /1.5                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                         |
| <b>4.</b> What is the average acceptance probability $\rho(a)$ for this algorithm? Given the following asymptotic approxi-                                                                                                                                                                              |
| mation (when a goes to $\infty$ ) of the Normal cdf                                                                                                                                                                                                                                                     |
| $\Phi(-a) \approx e^{-a^2/2} (a^{-1} - a^{-3})$                                                                                                                                                                                                                                                         |
| give an asymptotic approximation of $\rho(a)$ .                                                                                                                                                                                                                                                         |
| /1.5                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                         |

5. An R experiment on the respective performances of both marsa and truncnorm (the standard algorithm) returns the following execution times: function user system total truncnorm 0.329 0.011 0.341 function user system total mars 0.150 0.024 0.174 What is the conclusion of this comparison?

0.5 ..... /

# Additional space