Christian P. Robert

CREST-INSEE and Université Paris Dauphine http://www.ceremade.dauphine.fr/~xian

Joint work with Nicolas Chopin and Jean-Michel Marin

Outline

Introduction

- 2 Importance sampling solutions
- 3 Cross-model solutions
- 4 Nested sampling

Introduction

-Bayes factor

Bayes factor

Definition (Bayes factors)

For testing hypotheses H_0 : $\theta \in \Theta_0$ vs. H_a : $\theta \notin \Theta_0$, under prior

 $\pi(\Theta_0)\pi_0(\theta) + \pi(\Theta_0^c)\pi_1(\theta)\,,$

central quantity

$$B_{01} = \frac{\pi(\Theta_0|x)}{\pi(\Theta_0^c|x)} \Big/ \frac{\pi(\Theta_0)}{\pi(\Theta_0^c)} = \frac{\int_{\Theta_0} f(x|\theta)\pi_0(\theta)d\theta}{\int_{\Theta_0^c} f(x|\theta)\pi_1(\theta)d\theta}$$
[Jeffreys, 1939]

-Introduction

-Bayes factor

Self-contained concept

Outside decision-theoretic environment:

- $\bullet\,$ eliminates impact of $\pi(\Theta_0)$ but depends on the choice of (π_0,π_1)
- Bayesian/marginal equivalent to the likelihood ratio
- Jeffreys' scale of evidence:
 - if $\log_{10}(B_{10}^{\pi})$ between 0 and 0.5, evidence against H_0 weak,
 - if $\log_{10}(B_{10}^{\pi}) \ 0.5$ and 1, evidence substantial,
 - if $\log_{10}(B_{10}^{\pi}) \ 1$ and 2, evidence *strong* and
 - if $\log_{10}(B_{10}^{\pi})$ above 2, evidence *decisive*
- Requires the computation of the marginal/evidence under both hypotheses/models

Introduction

└─ Model choice

Model choice and model comparison

Choice between models

Several models available for the same observation

$$\mathfrak{M}_i: x \sim f_i(x|\theta_i), \qquad i \in \mathfrak{I}$$

▲ロ → ▲周 → ▲目 → ▲目 → □ → ○○○

where $\ensuremath{\mathfrak{I}}$ can be finite or infinite

Introduction

└─ Model choice

Bayesian resolution

Probabilise the entire model/parameter space

- allocate probabilities p_i to all models \mathfrak{M}_i
- define priors $\pi_i(heta_i)$ for each parameter space Θ_i
- compute

$$\pi(\mathfrak{M}_i|x) = \frac{p_i \int_{\Theta_i} f_i(x|\theta_i) \pi_i(\theta_i) \mathrm{d}\theta_i}{\sum_j p_j \int_{\Theta_j} f_j(x|\theta_j) \pi_j(\theta_j) \mathrm{d}\theta_j}$$

 take largest \(\mathcal{m}_i | x)\) to determine "best" model, or use averaged predictive

$$\sum_{j} \pi(\mathfrak{M}_{j}|x) \int_{\Theta_{j}} f_{j}(x'|\theta_{j}) \pi_{j}(\theta_{j}|x) \mathrm{d}\theta_{j}$$

-Introduction

-Model choice

Bayesian resolution

Probabilise the entire model/parameter space

- allocate probabilities p_i to all models \mathfrak{M}_i
- define priors $\pi_i(\theta_i)$ for each parameter space Θ_i

compute

$$\pi(\mathfrak{M}_i|x) = \frac{p_i \int_{\Theta_i} f_i(x|\theta_i) \pi_i(\theta_i) d\theta_i}{\sum_j p_j \int_{\Theta_j} f_j(x|\theta_j) \pi_j(\theta_j) d\theta_j}$$

 take largest \(\mathcal{m}_i | x)\) to determine "best" model, or use averaged predictive

$$\sum_{j} \pi(\mathfrak{M}_{j}|x) \int_{\Theta_{j}} f_{j}(x'|\theta_{j}) \pi_{j}(\theta_{j}|x) \mathrm{d}\theta_{j}$$

-Introduction

-Model choice

Bayesian resolution

Probabilise the entire model/parameter space

- allocate probabilities p_i to all models \mathfrak{M}_i
- define priors $\pi_i(\theta_i)$ for each parameter space Θ_i

compute

$$\pi(\mathfrak{M}_i|x) = \frac{p_i \int_{\Theta_i} f_i(x|\theta_i) \pi_i(\theta_i) \mathrm{d}\theta_i}{\sum_j p_j \int_{\Theta_j} f_j(x|\theta_j) \pi_j(\theta_j) \mathrm{d}\theta_j}$$

 take largest π(𝔅 i|x) to determine "best" model, or use averaged predictive

$$\sum_{j} \pi(\mathfrak{M}_{j}|x) \int_{\Theta_{j}} f_{j}(x'|\theta_{j}) \pi_{j}(\theta_{j}|x) \mathrm{d}\theta_{j}$$

- Introduction

- Model choice

Bayesian resolution

Probabilise the entire model/parameter space

- allocate probabilities p_i to all models \mathfrak{M}_i
- define priors $\pi_i(heta_i)$ for each parameter space Θ_i

compute

$$\pi(\mathfrak{M}_i|x) = \frac{p_i \int_{\Theta_i} f_i(x|\theta_i) \pi_i(\theta_i) \mathrm{d}\theta_i}{\sum_j p_j \int_{\Theta_j} f_j(x|\theta_j) \pi_j(\theta_j) \mathrm{d}\theta_j}$$

• take largest $\pi(\mathfrak{M}_i|x)$ to determine "best" model, or use averaged predictive

$$\sum_{j} \pi(\mathfrak{M}_{j}|x) \int_{\Theta_{j}} f_{j}(x'|\theta_{j}) \pi_{j}(\theta_{j}|x) \mathrm{d}\theta_{j}$$

Introduction

Evidence

Evidence

All these problems end up with a similar quantity, the evidence

$$\mathfrak{Z} = \int \pi(\theta) L(\theta) \, \mathrm{d}\theta,$$

aka the marginal likelihood.

Importance sampling solutions

Regular importance

Bridge sampling

lf

$$\begin{array}{rcl} \pi_1(\theta_1|x) & \propto & \tilde{\pi}_1(\theta_1|x) \\ \pi_2(\theta_2|x) & \propto & \tilde{\pi}_2(\theta_2|x) \end{array}$$

live on the same space, then

$$B_{12} \approx \frac{1}{n} \sum_{i=1}^{n} \frac{\tilde{\pi}_1(\theta_i | x)}{\tilde{\pi}_2(\theta_i | x)} \qquad \theta_i \sim \pi_2(\theta | x)$$

[Gelman & Meng, 1998; Chen, Shao & Ibrahim, 2000]

イロト 不得 トイヨト イヨト ヨー うらぐ

Importance sampling solutions

Regular importance

(Further) bridge sampling

In addition

$$B_{12} = \frac{\int \tilde{\pi}_2(\theta|x)\alpha(\theta)\pi_1(\theta|x)d\theta}{\int \tilde{\pi}_1(\theta|x)\alpha(\theta)\pi_2(\theta|x)d\theta} \qquad \forall \alpha(\cdot)$$

$$\approx \frac{\frac{1}{n_1} \sum_{i=1}^{n_1} \tilde{\pi}_2(\theta_{1i}|x) \alpha(\theta_{1i})}{\frac{1}{n_2} \sum_{i=1}^{n_2} \tilde{\pi}_1(\theta_{2i}|x) \alpha(\theta_{2i})} \qquad \theta_{ji} \sim \pi_j(\theta|x)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 □ のへぐ

Importance sampling solutions

Regular importance

Optimal bridge sampling

The optimal choice of auxiliary function α

$$\alpha^{\star} = \frac{n_1 + n_2}{n_1 \tilde{\pi}_1(\theta|x) + n_2 \tilde{\pi}_2(\theta|x)}$$

leading to

$$\widehat{B}_{12} \approx \frac{\frac{1}{n_1} \sum_{i=1}^{n_1} \frac{\widetilde{\pi}_2(\theta_{1i}|x)}{n_1 \widetilde{\pi}_1(\theta_{1i}|x) + n_2 \widetilde{\pi}_2(\theta_{1i}|x)}}{\frac{1}{n_2} \sum_{i=1}^{n_2} \frac{\widetilde{\pi}_1(\theta_{2i}|x)}{n_1 \widetilde{\pi}_1(\theta_{2i}|x) + n_2 \widetilde{\pi}_2(\theta_{2i}|x)}}$$

Back later!

イロト 不得 トイヨト イヨト ヨー うらぐ

Importance sampling solutions

Harmonic means

Approximating \mathfrak{Z} from a posterior sample

Use of the identity

$$\mathbb{E}^{\pi}\left[\left.\frac{\varphi(\theta)}{\pi(\theta)L(\theta)}\right|x\right] = \int \frac{\varphi(\theta)}{\pi(\theta)L(\theta)} \frac{\pi(\theta)L(\theta)}{\mathfrak{Z}} \,\mathrm{d}\theta = \frac{1}{\mathfrak{Z}}$$

no matter what the proposal $\varphi(\theta)$ is. [Gelfand & Dey, 1994; Bartolucci et al., 2006]

Direct exploitation of MCMC output

▶ RB-RJ

Importance sampling solutions

Harmonic means

Approximating \mathfrak{Z} from a posterior sample

Use of the identity

$$\mathbb{E}^{\pi}\left[\left.\frac{\varphi(\theta)}{\pi(\theta)L(\theta)}\right|x\right] = \int \frac{\varphi(\theta)}{\pi(\theta)L(\theta)} \frac{\pi(\theta)L(\theta)}{\mathfrak{Z}} \, \mathrm{d}\theta = \frac{1}{\mathfrak{Z}}$$

no matter what the proposal $\varphi(\theta)$ is. [Gelfand & Dey, 1994; Bartolucci et al., 2006]

Direct exploitation of MCMC output

▶ RB-RJ

イロト 不得 トイヨト イヨト ヨー ろくぐ

Importance sampling solutions

Harmonic means

Comparison with regular importance sampling

Harmonic mean: Constraint opposed to usual importance sampling constraints: $\varphi(\theta)$ must have lighter (rather than fatter) tails than $\pi(\theta)L(\theta)$ for the approximation

$$\widehat{\mathfrak{Z}_1} = 1 \middle/ \frac{1}{T} \sum_{t=1}^T \frac{\varphi(\theta^{(t)})}{\pi(\theta^{(t)})L(\theta^{(t)})}$$

to have a finite variance.

E.g., use finite support kernels (like Epanechnikov's kernel) for arphi

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ●

Importance sampling solutions

Harmonic means

Comparison with regular importance sampling

Harmonic mean: Constraint opposed to usual importance sampling constraints: $\varphi(\theta)$ must have lighter (rather than fatter) tails than $\pi(\theta)L(\theta)$ for the approximation

$$\widehat{\mathfrak{Z}_1} = 1 \middle/ \frac{1}{T} \sum_{t=1}^T \frac{\varphi(\theta^{(t)})}{\pi(\theta^{(t)})L(\theta^{(t)})}$$

to have a finite variance.

E.g., use finite support kernels (like Epanechnikov's kernel) for φ

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ●

Importance sampling solutions

Harmonic means

Comparison with regular importance sampling (cont'd)

Compare $\widehat{\mathfrak{Z}_1}$ with a standard importance sampling approximation

$$\widehat{\mathfrak{Z}_2} = \frac{1}{T} \sum_{t=1}^T \frac{\pi(\theta^{(t)})L(\theta^{(t)})}{\varphi(\theta^{(t)})}$$

where the $\theta^{(t)}$'s are generated from the density $\varphi(\theta)$ (with fatter tails like t's)

イロト 不得 トイヨト イヨト ヨー ろくぐ

Importance sampling solutions

Harmonic means

Approximating \mathfrak{Z} using a mixture representation

Bridge sampling redux

Design a specific mixture for simulation [importance sampling] purposes, with density

$$\tilde{\varphi}(\theta) \propto \omega_1 \pi(\theta) L(\theta) + \varphi(\theta) \,,$$

where $\varphi(\theta)$ is arbitrary (but normalised) Note: ω_1 is not a probability weight

Importance sampling solutions

Harmonic means

Approximating \mathfrak{Z} using a mixture representation

Bridge sampling redux

Design a specific mixture for simulation [importance sampling] purposes, with density

$$\tilde{\varphi}(\theta) \propto \omega_1 \pi(\theta) L(\theta) + \varphi(\theta) \,,$$

where $\varphi(\theta)$ is arbitrary (but normalised) Note: ω_1 is not a probability weight

Importance sampling solutions

Harmonic means

Approximating \mathfrak{Z} using a mixture representation (cont'd)

Corresponding MCMC (=Gibbs) sampler

At iteration t

(1) Take $\delta^{(t)} = 1$ with probability

$$\omega_1 \pi(\theta^{(t-1)}) L(\theta^{(t-1)}) \Big/ \left(\omega_1 \pi(\theta^{(t-1)}) L(\theta^{(t-1)}) + \varphi(\theta^{(t-1)}) \right)$$

and $\delta^{(t)} = 2$ otherwise;

- ② If $\delta^{(t)} = 1$, generate $\theta^{(t)} \sim \mathsf{MCMC}(\theta^{(t-1)}, \theta^{(t)})$ where $\mathsf{MCMC}(\theta, \theta')$ denotes an arbitrary MCMC kernel associated with the posterior $\pi(\theta|x) \propto \pi(\theta)L(\theta)$;
- ③ If $\delta^{(t)} = 2$, generate $\theta^{(t)} \sim \varphi(\theta)$ independently

Importance sampling solutions

Harmonic means

Approximating \mathfrak{Z} using a mixture representation (cont'd)

Corresponding MCMC (=Gibbs) sampler

At iteration t

(1) Take $\delta^{(t)} = 1$ with probability

$$\omega_1 \pi(\theta^{(t-1)}) L(\theta^{(t-1)}) \Big/ \left(\omega_1 \pi(\theta^{(t-1)}) L(\theta^{(t-1)}) + \varphi(\theta^{(t-1)}) \right)$$

and $\delta^{(t)} = 2$ otherwise;

- (2) If $\delta^{(t)} = 1$, generate $\theta^{(t)} \sim \mathsf{MCMC}(\theta^{(t-1)}, \theta^{(t)})$ where $\mathsf{MCMC}(\theta, \theta')$ denotes an arbitrary MCMC kernel associated with the posterior $\pi(\theta|x) \propto \pi(\theta)L(\theta)$;
- ③ If $\delta^{(t)} = 2$, generate $\theta^{(t)} \sim \varphi(\theta)$ independently

Importance sampling solutions

Harmonic means

Approximating \mathfrak{Z} using a mixture representation (cont'd)

Corresponding MCMC (=Gibbs) sampler

At iteration t

(1) Take $\delta^{(t)} = 1$ with probability

$$\omega_1 \pi(\theta^{(t-1)}) L(\theta^{(t-1)}) \Big/ \left(\omega_1 \pi(\theta^{(t-1)}) L(\theta^{(t-1)}) + \varphi(\theta^{(t-1)}) \right)$$

and $\delta^{(t)} = 2$ otherwise;

- (2) If $\delta^{(t)} = 1$, generate $\theta^{(t)} \sim \mathsf{MCMC}(\theta^{(t-1)}, \theta^{(t)})$ where $\mathsf{MCMC}(\theta, \theta')$ denotes an arbitrary MCMC kernel associated with the posterior $\pi(\theta|x) \propto \pi(\theta)L(\theta)$;
- $\ \ \, \textbf{3} \ \ \, \textbf{If} \ \ \, \delta^{(t)}=2 \text{, generate } \theta^{(t)}\sim \varphi(\theta) \ \, \textbf{independently} \ \ \, \textbf{3}$

Importance sampling solutions

Harmonic means

Evidence approximation by mixtures

Rao-Blackwellised estimate

$$\hat{\xi} = \frac{1}{T} \sum_{t=1}^{T} \omega_1 \pi(\theta^{(t)}) L(\theta^{(t)}) \Big/ \omega_1 \pi(\theta^{(t)}) L(\theta^{(t)}) + \varphi(\theta^{(t)}),$$

converges to $\omega_1 \mathfrak{Z} / \{\omega_1 \mathfrak{Z} + 1\}$ Deduce $\hat{\mathfrak{Z}}_3$ from $\omega_1 \hat{\mathfrak{Z}}_3 / \{\omega_1 \hat{\mathfrak{Z}}_3 + 1\} = \hat{\xi}$ ie

$$\hat{\mathfrak{Z}}_{3} = \frac{\sum_{t=1}^{T} \omega_{1} \pi(\theta^{(t)}) L(\theta^{(t)}) / \omega_{1} \pi(\theta^{(t)}) L(\theta^{(t)}) + \varphi(\theta^{(t)})}{\sum_{t=1}^{T} \varphi(\theta^{(t)}) / \omega_{1} \pi(\theta^{(t)}) L(\theta^{(t)}) + \varphi(\theta^{(t)})}$$

[Bridge sampler]

Importance sampling solutions

Harmonic means

Evidence approximation by mixtures

Rao-Blackwellised estimate

$$\hat{\xi} = \frac{1}{T} \sum_{t=1}^{T} \omega_1 \pi(\theta^{(t)}) L(\theta^{(t)}) \Big/ \omega_1 \pi(\theta^{(t)}) L(\theta^{(t)}) + \varphi(\theta^{(t)}),$$

converges to $\omega_1 \mathfrak{Z} / \{\omega_1 \mathfrak{Z} + 1\}$ Deduce $\hat{\mathfrak{Z}}_3$ from $\omega_1 \hat{\mathfrak{Z}}_3 / \{\omega_1 \hat{\mathfrak{Z}}_3 + 1\} = \hat{\xi}$ ie

$$\hat{\mathfrak{Z}}_{3} = \frac{\sum_{t=1}^{T} \omega_{1} \pi(\theta^{(t)}) L(\theta^{(t)}) / \omega_{1} \pi(\theta^{(t)}) L(\theta^{(t)}) + \varphi(\theta^{(t)})}{\sum_{t=1}^{T} \varphi(\theta^{(t)}) / \omega_{1} \pi(\theta^{(t)}) L(\theta^{(t)}) + \varphi(\theta^{(t)})}$$

[Bridge sampler]

Importance sampling solutions

Chib's solution

Chib's representation

Direct application of Bayes' theorem: given ${\bf x}\sim f_k({\bf x}|\theta_k)$ and $\theta_k\sim \pi_k(\theta_k)$,

$$m_k(\mathbf{x}) = \frac{f_k(\mathbf{x}|\theta_k) \, \pi_k(\theta_k)}{\pi_k(\theta_k|\mathbf{x})} \,,$$

Use of an approximation to the posterior

$$\hat{m}_k(\mathbf{x}) = \frac{f_k(\mathbf{x}|\theta_k^*) \, \pi_k(\theta_k^*)}{\hat{\pi}_k(\theta_k^*|\mathbf{x})} \, .$$

イロト 不得 トイヨト イヨト ヨー うらぐ

Importance sampling solutions

Chib's solution

Chib's representation

Direct application of Bayes' theorem: given $\mathbf{x}\sim f_k(\mathbf{x}|\theta_k)$ and $\theta_k\sim \pi_k(\theta_k)$,

$$m_k(\mathbf{x}) = \frac{f_k(\mathbf{x}|\theta_k) \, \pi_k(\theta_k)}{\pi_k(\theta_k|\mathbf{x})} \,,$$

Use of an approximation to the posterior

$$\hat{m}_k(\mathbf{x}) = \frac{f_k(\mathbf{x}|\theta_k^*) \, \pi_k(\theta_k^*)}{\hat{\pi}_k(\theta_k^*|\mathbf{x})} \,.$$

イロト 不得 トイヨト イヨト ヨー うらぐ

Importance sampling solutions

Chib's solution

Case of latent variables

For missing variable \mathbf{z} as in mixture models, natural Rao-Blackwell estimate

$$\hat{\pi_k}(\theta_k^*|\mathbf{x}) = \frac{1}{T} \sum_{t=1}^T \pi_k(\theta_k^*|\mathbf{x}, \mathbf{z}_k^{(t)}),$$

where the $\mathbf{z}_{k}^{(t)}$'s are the latent variables simulated by a Gibbs sampler.

Importance sampling solutions

Chib's solution

Compensation for label switching

For mixture models, $\mathbf{z}_k^{(t)}$ usually fails to visit all configurations in a balanced way, despite the symmetry predicted by the theory

$$\pi_k(\theta_k | \mathbf{x}) = \pi_k(\sigma(\theta_k) | \mathbf{x}) = \frac{1}{k!} \sum_{\sigma \in \mathfrak{S}} \pi_k(\sigma(\theta_k) | \mathbf{x})$$

for all σ 's in \mathfrak{S}_k , set of all permutations of $\{1, \ldots, k\}$. Consequences on numerical approximation, biased by an order k! Recover the theoretical symmetry by using

$$\tilde{\pi_k}(\theta_k^*|\mathbf{x}) = \frac{1}{T \, k!} \sum_{\sigma \in \mathfrak{S}_k} \sum_{t=1}^T \pi_k(\sigma(\theta_k^*)|\mathbf{x}, \mathbf{z}_k^{(t)}) \,.$$

[Berkhof, Mechelen, & Gelman, 2003]

Importance sampling solutions

Chib's solution

Compensation for label switching

For mixture models, $\mathbf{z}_k^{(t)}$ usually fails to visit all configurations in a balanced way, despite the symmetry predicted by the theory

$$\pi_k(\theta_k | \mathbf{x}) = \pi_k(\sigma(\theta_k) | \mathbf{x}) = \frac{1}{k!} \sum_{\sigma \in \mathfrak{S}} \pi_k(\sigma(\theta_k) | \mathbf{x})$$

for all σ 's in \mathfrak{S}_k , set of all permutations of $\{1, \ldots, k\}$. Consequences on numerical approximation, biased by an order k!Recover the theoretical symmetry by using

$$\tilde{\pi_k}(\theta_k^*|\mathbf{x}) = \frac{1}{T \, k!} \sum_{\sigma \in \mathfrak{S}_k} \sum_{t=1}^T \pi_k(\sigma(\theta_k^*)|\mathbf{x}, \mathbf{z}_k^{(t)}) \, .$$

[Berkhof, Mechelen, & Gelman, 2003]

Cross-model solutions

Reversible jump

Reversible jump

Idea: Set up a proper measure–theoretic framework for designing moves between models \mathfrak{M}_k

[Green, 1995] Create a reversible kernel \mathfrak{K} on $\mathfrak{H} = \bigcup_k \{k\} \times \Theta_k$ such that

$$\int_A \int_B \mathfrak{K}(x,dy) \pi(x) dx = \int_B \int_A \mathfrak{K}(y,dx) \pi(y) dy$$

イロト 不得 トイヨト イヨト ヨー ろくぐ

for the invariant density π [x is of the form $(k, heta^{(k)})]$

Cross-model solutions

Reversible jump

Reversible jump

Idea: Set up a proper measure–theoretic framework for designing moves *between* models \mathfrak{M}_k

[Green, 1995] Create a reversible kernel \mathfrak{K} on $\mathfrak{H} = \bigcup_k \{k\} \times \Theta_k$ such that

$$\int_A \int_B \mathfrak{K}(x,dy) \pi(x) dx = \int_B \int_A \mathfrak{K}(y,dx) \pi(y) dy$$

for the invariant density π [x is of the form $(k, \theta^{(k)})$]

Cross-model solutions

-Reversible jump

Local moves

For a move between two models, \mathfrak{M}_1 and \mathfrak{M}_2 , the Markov chain being in state $\theta_1 \in \mathfrak{M}_1$, denote by $\mathfrak{K}_{1\to 2}(\theta_1, d\theta)$ and $\mathfrak{K}_{2\to 1}(\theta_2, d\theta)$ the corresponding kernels, under the *detailed balance condition*

$$\pi(d\theta_1)\,\mathfrak{K}_{1\to 2}(\theta_1,d\theta) = \pi(d\theta_2)\,\mathfrak{K}_{2\to 1}(\theta_2,d\theta)\,,$$

and take, wlog, $\dim(\mathfrak{M}_2) > \dim(\mathfrak{M}_1)$.

Proposal expressed as

 $\theta_2 = \Psi_{1 \to 2}(\theta_1, v_{1 \to 2})$

where $v_{1\rightarrow 2}$ is a random variable of dimension $\dim(\mathfrak{M}_2) - \dim(\mathfrak{M}_1)$, generated as

$$v_{1\to 2} \sim \varphi_{1\to 2}(v_{1\to 2}).$$

Cross-model solutions

Reversible jump

Local moves

For a move between two models, \mathfrak{M}_1 and \mathfrak{M}_2 , the Markov chain being in state $\theta_1 \in \mathfrak{M}_1$, denote by $\mathfrak{K}_{1\to 2}(\theta_1, d\theta)$ and $\mathfrak{K}_{2\to 1}(\theta_2, d\theta)$ the corresponding kernels, under the *detailed balance condition*

$$\pi(d\theta_1)\,\mathfrak{K}_{1\to 2}(\theta_1,d\theta) = \pi(d\theta_2)\,\mathfrak{K}_{2\to 1}(\theta_2,d\theta)\,,$$

and take, wlog, $\dim(\mathfrak{M}_2) > \dim(\mathfrak{M}_1)$. Proposal expressed as

$$\theta_2 = \Psi_{1 \to 2}(\theta_1, v_{1 \to 2})$$

where $v_{1\rightarrow 2}$ is a random variable of dimension $\dim(\mathfrak{M}_2) - \dim(\mathfrak{M}_1)$, generated as

$$v_{1\to 2} \sim \varphi_{1\to 2}(v_{1\to 2}).$$

Cross-model solutions

Reversible jump

Local moves (2)

In this case, $q_{1\rightarrow 2}(\theta_1, d\theta_2)$ has density

$$\varphi_{1\to 2}(v_{1\to 2}) \left| \frac{\partial \Psi_{1\to 2}(\theta_1, v_{1\to 2})}{\partial(\theta_1, v_{1\to 2})} \right|^{-1},$$

by the Jacobian rule.

Reverse importance link

イロト 不得 トイヨト イヨト ヨー ろくぐ

If probability $\varpi_{1\to 2}$ of choosing move to \mathfrak{M}_2 while in \mathfrak{M}_1 , acceptance probability reduces to

$$\alpha(\theta_1, v_{1 \to 2}) = 1 \wedge \frac{\pi(\mathfrak{M}_2, \theta_2) \, \varpi_{2 \to 1}}{\pi(\mathfrak{M}_1, \theta_1) \, \varpi_{1 \to 2} \, \varphi_{1 \to 2}(v_{1 \to 2})} \left| \frac{\partial \Psi_{1 \to 2}(\theta_1, v_{1 \to 2})}{\partial(\theta_1, v_{1 \to 2})} \right|$$

©Difficult calibration

Cross-model solutions

Reversible jump

Local moves (2)

In this case, $q_{1\rightarrow 2}(\theta_1, d\theta_2)$ has density

$$\varphi_{1\to 2}(v_{1\to 2}) \left| \frac{\partial \Psi_{1\to 2}(\theta_1, v_{1\to 2})}{\partial(\theta_1, v_{1\to 2})} \right|^{-1},$$

by the Jacobian rule.

Reverse importance link

If probability $\varpi_{1\to 2}$ of choosing move to \mathfrak{M}_2 while in \mathfrak{M}_1 , acceptance probability reduces to

$$\alpha(\theta_1, v_{1 \to 2}) = 1 \wedge \frac{\pi(\mathfrak{M}_2, \theta_2) \, \varpi_{2 \to 1}}{\pi(\mathfrak{M}_1, \theta_1) \, \varpi_{1 \to 2} \, \varphi_{1 \to 2}(v_{1 \to 2})} \left| \frac{\partial \Psi_{1 \to 2}(\theta_1, v_{1 \to 2})}{\partial(\theta_1, v_{1 \to 2})} \right|$$

©Difficult calibration
Cross-model solutions

Reversible jump

Local moves (2)

In this case, $q_{1\rightarrow 2}(\theta_1, d\theta_2)$ has density

$$\varphi_{1\to 2}(v_{1\to 2}) \left| \frac{\partial \Psi_{1\to 2}(\theta_1, v_{1\to 2})}{\partial(\theta_1, v_{1\to 2})} \right|^{-1},$$

by the Jacobian rule.

Reverse importance link

If probability $\varpi_{1\to 2}$ of choosing move to \mathfrak{M}_2 while in \mathfrak{M}_1 , acceptance probability reduces to

$$\alpha(\theta_1, v_{1 \to 2}) = 1 \wedge \frac{\pi(\mathfrak{M}_2, \theta_2) \, \varpi_{2 \to 1}}{\pi(\mathfrak{M}_1, \theta_1) \, \varpi_{1 \to 2} \, \varphi_{1 \to 2}(v_{1 \to 2})} \left| \frac{\partial \Psi_{1 \to 2}(\theta_1, v_{1 \to 2})}{\partial(\theta_1, v_{1 \to 2})} \right|$$

©Difficult calibration

Cross-model solutions

Saturation schemes

Alternative

Saturation of the parameter space $\mathfrak{H} = \bigcup_k \{k\} \times \Theta_k$ by creating

- \bullet a model index M
- pseudo-priors $\pi_j(\theta_j|M=k)$ for $j \neq k$

[Carlin & Chib, 1995]

Validation by

$$\pi(M = k|y) = \int P(M = k|y, \theta) \pi(\theta|y) d\theta = \mathfrak{Z}_k$$

where the (marginal) posterior is

$$\begin{aligned} \pi(\theta|y) &= \sum_{k=1}^{D} \pi(\theta, M = k|y) \\ &= \sum_{k=1}^{D} \varrho_k \, m_k(y) \, \pi_k(\theta_k|y) \prod_{j \neq k} \pi_j(\theta_j|M = k) \, . \end{aligned}$$

Cross-model solutions

Saturation schemes

Alternative

Saturation of the parameter space $\mathfrak{H} = \bigcup_k \{k\} \times \Theta_k$ by creating

- a model index M
- pseudo-priors $\pi_j(\theta_j|M=k)$ for $j \neq k$

[Carlin & Chib, 1995]

Validation by

$$\pi(M=k|y) = \int P(M=k|y,\theta)\pi(\theta|y)\mathsf{d}\theta = \mathfrak{Z}_k$$

where the (marginal) posterior is

$$\pi(\theta|y) = \sum_{k=1}^{D} \pi(\theta, M = k|y)$$
$$= \sum_{k=1}^{D} \varrho_k m_k(y) \pi_k(\theta_k|y) \prod_{j \neq k} \pi_j(\theta_j|M = k).$$

Cross-model solutions

└─ Saturation schemes

MCMC implementation

Run a Markov chain $(M^{(t)},\theta_1^{(t)},\ldots,\theta_D^{(t)})$ with stationary distribution $\pi(\theta,M=k|y)$ by

1 Pick $M^{(t)} = k$ with probability $P(\theta^{(t-1)}, M = k|y)$

Q Generate \$\theta_k^{(t-1)}\$ from the posterior \$\pi_k(\theta_k|y)\$ [or MCMC step]
Q Generate \$\theta_j^{(t-1)}\$ (\$j \neq k\$) from the pseudo-prior \$\pi_j(\theta_j|M = k\$)\$
Approximate \$\pi(M = k|y) = \mathcal{J}_k\$ by

$$\check{\varrho}_k(y) \propto \varrho_k \sum_{t=1}^T f_k(y|\theta_k^{(t)}) \pi_k(\theta_k^{(t)}) \prod_{j \neq k} \pi_j(\theta_j^{(t)}|M=k) \\ \Big/ \sum_{\ell=1}^D \varrho_\ell f_\ell(y|\theta_\ell^{(t)}) \pi_\ell(\theta_\ell^{(t)}) \prod_{j \neq \ell} \pi_j(\theta_j^{(t)}|M=\ell)$$

Cross-model solutions

└─ Saturation schemes

MCMC implementation

Run a Markov chain $(M^{(t)}, \theta_1^{(t)}, \dots, \theta_D^{(t)})$ with stationary distribution $\pi(\theta, M = k|y)$ by

 $\textcircled{0} \ \mbox{Pick } M^{(t)} = k \ \mbox{with probability } P(\theta^{(t-1)}, M = k | y)$

- ⁽²⁾ Generate $\theta_k^{(t-1)}$ from the posterior $\pi_k(\theta_k|y)$ [or MCMC step]
- 3 Generate $\theta_j^{(t-1)}$ $(j \neq k)$ from the pseudo-prior $\pi_j(\theta_j | M = k)$

$$\check{\varrho}_k(y) \propto \varrho_k \sum_{t=1}^T f_k(y|\theta_k^{(t)}) \pi_k(\theta_k^{(t)}) \prod_{j \neq k} \pi_j(\theta_j^{(t)}|M=k) \\ \Big/ \sum_{\ell=1}^D \varrho_\ell f_\ell(y|\theta_\ell^{(t)}) \pi_\ell(\theta_\ell^{(t)}) \prod_{j \neq \ell} \pi_j(\theta_j^{(t)}|M=\ell)$$

イロア 不通 アメヨア メヨア ヨー ろくぐ

Cross-model solutions

└─ Saturation schemes

MCMC implementation

Run a Markov chain $(M^{(t)}, \theta_1^{(t)}, \dots, \theta_D^{(t)})$ with stationary distribution $\pi(\theta, M = k|y)$ by

 $\textcircled{0} \ \ \mbox{Pick} \ M^{(t)} = k \ \mbox{with probability} \ P(\theta^{(t-1)}, M = k | y)$

2 Generate θ_k^(t-1) from the posterior π_k(θ_k|y) [or MCMC step]
3 Generate θ_i^(t-1) (j ≠ k) from the pseudo-prior π_j(θ_j|M = k)

Approximate $\pi(M = k|y) = \mathfrak{Z}_k$ by

$$\check{\varrho}_k(y) \propto \varrho_k \sum_{t=1}^T f_k(y|\theta_k^{(t)}) \pi_k(\theta_k^{(t)}) \prod_{j \neq k} \pi_j(\theta_j^{(t)}|M=k) \\ \left/ \sum_{\ell=1}^D \varrho_\ell f_\ell(y|\theta_\ell^{(t)}) \pi_\ell(\theta_\ell^{(t)}) \prod_{j \neq \ell} \pi_j(\theta_j^{(t)}|M=\ell) \right.$$

Cross-model solutions

Implementation error

Scott's (2002) proposal

Suggest estimating P(M = k|y) by

$$\tilde{\varrho}_k(y) \propto \varrho_k \sum_{t=1}^T \left\{ f_k(y|\theta_k^{(t)}) \middle/ \sum_{j=1}^D \varrho_j f_j(y|\theta_j^{(t)}) \right\} \,,$$

based on D simultaneous and independent MCMC chains

$$(\theta_k^{(t)})_t, \qquad 1 \le k \le D,$$

イロト 不得 トイヨト イヨト ヨー ろくぐ

with stationary distributions $\pi_k(\theta_k|y)$ [instead of above joint]

Cross-model solutions

Implementation error

Scott's (2002) proposal

Suggest estimating P(M = k|y) by

$$\tilde{\varrho}_k(y) \propto \varrho_k \sum_{t=1}^T \left\{ f_k(y|\theta_k^{(t)}) \middle/ \sum_{j=1}^D \varrho_j f_j(y|\theta_j^{(t)}) \right\} \,,$$

based on D simultaneous and independent MCMC chains

$$(\theta_k^{(t)})_t, \qquad 1 \le k \le D,$$

イロト 不得 トイヨト イヨト ヨー うらぐ

with stationary distributions $\pi_k(\theta_k|y)$ [instead of above joint]

Cross-model solutions

Implementation error

Congdon's (2006) extension

Selecting flat [prohibited!] pseudo-priors, uses instead

$$\hat{\varrho}_k(y) \propto \varrho_k \sum_{t=1}^T \left\{ f_k(y|\theta_k^{(t)}) \pi_k(\theta_k^{(t)}) \middle/ \sum_{j=1}^D \varrho_j f_j(y|\theta_j^{(t)}) \pi_j(\theta_j^{(t)}) \right\} \,,$$

イロト 不得 トイヨト イヨト ヨー ろくぐ

where again the $\theta_k^{(t)}$'s are MCMC chains with stationary distributions $\pi_k(\theta_k|y)$

Cross-model solutions

Implementation error

Examples

Example (Model choice)

Model $\mathfrak{M}_1: y|\theta \sim \mathcal{U}(0,\theta)$ with prior $\theta \sim \mathcal{E}xp(1)$ is versus model $\mathfrak{M}_2: y|\theta \sim \mathcal{E}xp(\theta)$ with prior $\theta \sim \mathcal{E}xp(1)$. Equal prior weights on both models: $\varrho_1 = \varrho_2 = 0.5$.

Approximations of $\pi(M = 1|y)$: Scott's (2002) (green), and Congdon's (2006) (brown) $(N = 10^6 \text{ simulations}).$

Cross-model solutions

Implementation error

Examples

Example (Model choice)

Model $\mathfrak{M}_1: y|\theta \sim \mathcal{U}(0,\theta)$ with prior $\theta \sim \mathcal{E}xp(1)$ is versus model $\mathfrak{M}_2: y|\theta \sim \mathcal{E}xp(\theta)$ with prior $\theta \sim \mathcal{E}xp(1)$. Equal prior weights on both models: $\varrho_1 = \varrho_2 = 0.5$.

Approximations of $\pi(M = 1|y)$: Scott's (2002) (green), and Congdon's (2006) (brown) $(N = 10^6 \text{ simulations}).$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ●

Cross-model solutions

Implementation error

Examples (2)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□ ● ● ●

Cross-model solutions

Implementation error

Examples (3)

Example (Model choice (3)) Model $\mathfrak{M}_1: y \sim \mathcal{N}(0, 1/\omega)$ with $\omega \sim \mathcal{E}xp(a)$ vs. $\mathfrak{M}_2: \exp(y) \sim \mathcal{E}xp(\lambda)$ with $\lambda \sim \mathcal{E}xp(b)$.

Comparison of Congdon's (2006) (brown and dashed lines) with $\pi(M = 1|y)$ when (a, b) is equal to (.24, 8.9), (.56, .7), (4.1, .46) and (.98, .081), resp. $(N = 10^4$ simulations).

-Nested sampling

Purpose

Nested sampling: Goal

Skilling's (2007) technique using the one-dimensional representation:

$$\mathfrak{Z} = \mathbb{E}^{\pi}[L(\theta)] = \int_0^1 \varphi(x) \, \mathrm{d}x$$

with

$$\varphi^{-1}(l) = P^{\pi}(L(\theta) > l).$$

Note; $\varphi(\cdot)$ is intractable in most cases.

-Nested sampling

- Implementation

Nested sampling: First approximation

Approximate \mathfrak{Z} by a Riemann sum:

$$\widehat{\mathfrak{Z}} = \sum_{i=1}^{j} (x_{i-1} - x_i)\varphi(x_i)$$

where the x_i 's are either:

• deterministic: $x_i = e^{-i/N}$

or random:

$$x_0 = 0, \quad x_{i+1} = t_i x_i, \quad t_i \sim \mathcal{B}e(N, 1)$$

イロト 不得 トイヨト イヨト ヨー ろくぐ

so that $\mathbb{E}[\log x_i] = -i/N$.

└─ Nested sampling

- Implementation

Extraneous white noise

Take

$$\begin{split} \mathfrak{Z} &= \int e^{-\theta} \, \mathrm{d}\theta = \int \frac{1}{\delta} \, e^{-(1-\delta)\theta} \, e^{-\delta\theta} = \mathbb{E}_{\delta} \left[\frac{1}{\delta} \, e^{-(1-\delta)\theta} \right] \\ \hat{\mathfrak{Z}} &= \frac{1}{N} \, \sum_{i=1}^{N} \, \delta^{-1} \, e^{-(1-\delta)\theta_{i}}(x_{i-1} - x_{i}) \,, \quad \theta_{i} \sim \mathcal{E}(\delta) \, \mathbb{I}(\theta_{i} \leq \theta_{i-1}) \end{split}$$

└─ Nested sampling

- Implementation

Extraneous white noise

Take

$$\begin{split} \mathfrak{Z} &= \int e^{-\theta} \, \mathrm{d}\theta = \int \frac{1}{\delta} \, e^{-(1-\delta)\theta} \, e^{-\delta\theta} = \mathbb{E}_{\delta} \left[\frac{1}{\delta} \, e^{-(1-\delta)\theta} \right] \\ \hat{\mathfrak{Z}} &= \frac{1}{N} \, \sum_{i=1}^{N} \delta^{-1} \, e^{-(1-\delta)\theta_{i}}(x_{i-1} - x_{i}) \,, \quad \theta_{i} \sim \mathcal{E}(\delta) \, \mathbb{I}(\theta_{i} \leq \theta_{i-1}) \end{split}$$

< □ > < □ > < Ξ > < Ξ > < Ξ > < Ξ = のへで

└─ Nested sampling

- Implementation

Extraneous white noise

Take

$$\begin{split} \mathbf{\mathfrak{Z}} &= \int e^{-\theta} \, \mathrm{d}\theta = \int \frac{1}{\delta} \, e^{-(1-\delta)\theta} \, e^{-\delta\theta} = \mathbb{E}_{\delta} \left[\frac{1}{\delta} \, e^{-(1-\delta)\theta} \right] \\ \hat{\mathbf{\mathfrak{Z}}} &= \frac{1}{N} \, \sum_{i=1}^{N} \delta^{-1} \, e^{-(1-\delta)\theta_{i}}(x_{i-1} - x_{i}) \,, \quad \theta_{i} \sim \mathcal{E}(\delta) \, \mathbb{I}(\theta_{i} \leq \theta_{i-1}) \end{split}$$

N	deterministic	random	
50	4.64	10.5	-
	4.65	10.5	
100	2.47	4.9	Comparison of variances and MSEs
	2.48	5.02	
500	.549	1.01	
	.550	1.14	

-Nested sampling

Implementation

Nested sampling: Second approximation

Replace (intractable) $\varphi(x_i)$ by φ_i , obtained by

Nested sampling

Start with N values θ_1,\ldots,θ_N sampled from π

At iteration *i*,

- 1) Take $\varphi_i = L(\theta_k)$, where θ_k is the point with smallest likelihood in the pool of θ_i 's
- 2 Replace θ_k with a sample from the prior constrained to $L(\theta) > \varphi_i$: the current N points are sampled from prior constrained to $L(\theta) > \varphi_i$.

-Nested sampling

Implementation

Nested sampling: Second approximation

Replace (intractable) $\varphi(x_i)$ by φ_i , obtained by

Nested sampling

Start with N values θ_1,\ldots,θ_N sampled from π At iteration i_{i}

- ① Take $\varphi_i = L(\theta_k)$, where θ_k is the point with smallest likelihood in the pool of θ_i 's
- 2 Replace θ_k with a sample from the prior constrained to $L(\theta) > \varphi_i$: the current N points are sampled from prior constrained to $L(\theta) > \varphi_i$.

-Nested sampling

Implementation

Nested sampling: Second approximation

Replace (intractable) $\varphi(x_i)$ by φ_i , obtained by

Nested sampling

Start with N values θ_1,\ldots,θ_N sampled from π At iteration i_{i}

- ① Take $\varphi_i = L(\theta_k)$, where θ_k is the point with smallest likelihood in the pool of θ_i 's
- ② Replace θ_k with a sample from the prior constrained to $L(\theta) > \varphi_i$: the current N points are sampled from prior constrained to $L(\theta) > \varphi_i$.

-Nested sampling

Implementation

Nested sampling: Third approximation

Iterate the above steps until a given stopping iteration j is reached: e.g.,

- observe very small changes in the approximation $\widehat{\mathfrak{Z}}$;
- reach the maximal value of $L(\theta)$ when the likelihood is bounded and its maximum is known;
- truncate the integral \mathfrak{Z} at level ϵ , i.e. replace

$$\int_0^1 \varphi(x) \, \mathrm{d}x \qquad \text{with} \qquad \int_\epsilon^1 \varphi(x) \, \mathrm{d}x$$

-Nested sampling

Error rates

Approximation error

$$\begin{aligned} \operatorname{Error} &= \widehat{\mathfrak{Z}} - \mathfrak{Z} \\ &= \sum_{i=1}^{j} (x_{i-1} - x_i) \varphi_i - \int_0^1 \varphi(x) \, \mathrm{d}x = -\int_0^{\epsilon} \varphi(x) \, \mathrm{d}x \\ &+ \left[\sum_{i=1}^{j} (x_{i-1} - x_i) \varphi(x_i) - \int_{\epsilon}^1 \varphi(x) \, \mathrm{d}x \right] \quad \text{(Quadrature Error)} \\ &+ \left[\sum_{i=1}^{j} (x_{i-1} - x_i) \left\{ \varphi_i - \varphi(x_i) \right\} \right] \quad \text{(Stochastic Error)} \end{aligned}$$

[Dominated by Monte Carlo!]

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Nested sampling

Error rates

A CLT for the Stochastic Error

The (dominating) stochastic error is $O_P(N^{-1/2})$:

$$N^{1/2} \{ \mathsf{Stochastic Error} \} \xrightarrow{\mathcal{D}} \mathcal{N} \left(0, V \right)$$

with

$$V = -\int_{s,t\in[\epsilon,1]} s\varphi'(s)t\varphi'(t)\log(s\vee t)\,\mathrm{d}s\,\mathrm{d}t.$$

[Proof based on Donsker's theorem]

The number of simulated points equals the number of iterations j, and is a multiple of N: if one stops at first iteration j such that $e^{-j/N} < \epsilon$, then: $j = N \lceil -\log \epsilon \rceil$.

Nested sampling

Error rates

A CLT for the Stochastic Error

The (dominating) stochastic error is $O_P(N^{-1/2})$:

$$N^{1/2} \{ \mathsf{Stochastic Error} \} \xrightarrow{\mathcal{D}} \mathcal{N} \left(0, V \right)$$

with

$$V = -\int_{s,t\in[\epsilon,1]} s\varphi'(s)t\varphi'(t)\log(s\vee t)\,\mathrm{d}s\,\mathrm{d}t.$$

[Proof based on Donsker's theorem]

The number of simulated points equals the number of iterations j, and is a multiple of N: if one stops at first iteration j such that $e^{-j/N} < \epsilon$, then: $j = N \lceil -\log \epsilon \rceil$.

-Nested sampling

Impact of dimension

Curse of dimension

For a simple Gaussian-Gaussian model of dimension $\dim(\theta) = d$, the following 3 quantities are O(d):

- asymptotic variance of the NS estimator;
- number of iterations (necessary to reach a given truncation error);
- 3 cost of one simulated sample.
- Therefore, CPU time necessary for achieving error level e is

 $O(d^3/e^2)$

-Nested sampling

Impact of dimension

Curse of dimension

For a simple Gaussian-Gaussian model of dimension $\dim(\theta) = d$, the following 3 quantities are O(d):

- asymptotic variance of the NS estimator;
- number of iterations (necessary to reach a given truncation error);
- ③ cost of one simulated sample.

Therefore, CPU time necessary for achieving error level e is

 $O(d^3/e^2)$

-Nested sampling

Impact of dimension

Curse of dimension

For a simple Gaussian-Gaussian model of dimension $\dim(\theta) = d$, the following 3 quantities are O(d):

- asymptotic variance of the NS estimator;
- number of iterations (necessary to reach a given truncation error);
- ③ cost of one simulated sample.

Therefore, CPU time necessary for achieving error level e is

 $O(d^3/e^2)$

-Nested sampling

Impact of dimension

Curse of dimension

For a simple Gaussian-Gaussian model of dimension $\dim(\theta) = d$, the following 3 quantities are O(d):

- asymptotic variance of the NS estimator;
- number of iterations (necessary to reach a given truncation error);
- 3 cost of one simulated sample.

Therefore, CPU time necessary for achieving error level e is

 $O(d^3/e^2)$

Nested sampling

└─ Constraints

Sampling from constr'd priors

Exact simulation from the constrained prior is intractable in most cases!

Skilling (2007) proposes to use MCMC, but:

- this introduces a bias (stopping rule).
- if MCMC stationary distribution is unconst'd prior, more and more difficult to sample points such that L(θ) > l as l increases.

イロト 不得 トイヨト イヨト ヨー ろくぐ

If implementable, then slice sampler can be devised at the same cost!

-Nested sampling

└─ Constraints

Sampling from constr'd priors

Exact simulation from the constrained prior is intractable in most cases!

Skilling (2007) proposes to use MCMC, but:

- this introduces a bias (stopping rule).
- if MCMC stationary distribution is unconst'd prior, more and more difficult to sample points such that $L(\theta) > l$ as l increases.

イロト 不得 トイヨト イヨト ヨー ろくぐ

If implementable, then slice sampler can be devised at the same cost!

Nested sampling

Constraints

Sampling from constr'd priors

Exact simulation from the constrained prior is intractable in most cases!

Skilling (2007) proposes to use MCMC, but:

- this introduces a bias (stopping rule).
- if MCMC stationary distribution is unconst'd prior, more and more difficult to sample points such that $L(\theta) > l$ as l increases.

If implementable, then slice sampler can be devised at the same cost!

-Nested sampling

Constraints

Illustration of MCMC bias

Log-relative error against d (*left*), avg. number of iterations (*right*) vs dimension d, for a Gaussian-Gaussian model with d parameters, when using T = 10 iterations of the Gibbs sampler.

-Nested sampling

Importance variant

A IS variant of nested sampling

Consider instrumental prior $\tilde{\pi}$ and likelihood \tilde{L} , weight function

$$w(\theta) = \frac{\pi(\theta)L(\theta)}{\widetilde{\pi}(\theta)\widetilde{L}(\theta)}$$

and weighted NS estimator

$$\widehat{\mathfrak{Z}} = \sum_{i=1}^{j} (x_{i-1} - x_i)\varphi_i w(\theta_i).$$

イロト 不得 トイヨト イヨト ヨー ろくぐ

Then choose $(\tilde{\pi}, L)$ so that sampling from $\tilde{\pi}$ constrained to $\tilde{L}(\theta) > l$ is easy; e.g. $\mathcal{N}(c, I_d)$ constrained to $\|c - \theta\| < r$.

-Nested sampling

Importance variant

A IS variant of nested sampling

Consider instrumental prior $\tilde{\pi}$ and likelihood \tilde{L} , weight function

$$w(\theta) = \frac{\pi(\theta)L(\theta)}{\widetilde{\pi}(\theta)\widetilde{L}(\theta)}$$

and weighted NS estimator

$$\widehat{\mathfrak{Z}} = \sum_{i=1}^{j} (x_{i-1} - x_i)\varphi_i w(\theta_i).$$

イロト 不得 トイヨト イヨト ヨー ろくぐ

Then choose $(\tilde{\pi}, \tilde{L})$ so that sampling from $\tilde{\pi}$ constrained to $\tilde{L}(\theta) > l$ is easy; e.g. $\mathcal{N}(c, I_d)$ constrained to $||c - \theta|| < r$.

Mixture example

Benchmark: Target distribution

Posterior distribution on (μ, σ) associated with the mixture

$$p\mathcal{N}(0,1) + (1-p)\mathcal{N}(\mu,\sigma),$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

when p is known
Mixture example

Experiment

- n observations with $\mu = 2$ and $\sigma = 3/2$,
- Use of a uniform prior both on (-2, 6) for μ and on (.001, 16) for $\log \sigma^2$.
- occurrences of posterior bursts for $\mu = x_i$
- computation of the various estimates of 3

Mixture example

Experiment (cont'd)

MCMC sample for n = 16 observations from the mixture.

Nested sampling sequence with M = 1000 starting points.

Mixture example

Experiment (cont'd)

MCMC sample for n = 50 observations from the mixture.

Nested sampling sequence with M = 1000 starting points.

Mixture example

Comparison

Monte Carlo and MCMC (=Gibbs) outputs based on $T=10^4$ simulations and numerical integration based on a 850×950 grid in the (μ,σ) parameter space.

Nested sampling approximation based on a starting sample of M=1000 points followed by at least 103 further simulations from the constr'd prior and a stopping rule at 95% of the observed maximum likelihood.

Constr'd prior simulation based on 50 values simulated by random walk accepting only steps leading to a lik'hood higher than the bound

Mixture example

Comparison (cont'd)

Graph based on a sample of 10 observations for $\mu=2$ and $\sigma=3/2$ (150 replicas).

◆ロト ◆御 ト ◆臣 ト ◆臣 ト ○臣 - の々で

Mixture example

Comparison (cont'd)

▲ロ → ▲周 → ▲目 → ▲目 → □ → ○○○

Graph based on a sample of 50 observations for $\mu=2$ and $\sigma=3/2$ (150 replicas).

Mixture example

Comparison (cont'd)

Graph based on a sample of 100 observations for $\mu=2$ and $\sigma=3/2$ (150 replicas).

Mixture example

Comparison (cont'd)

Nested sampling gets less reliable as sample size increases Most reliable approach is mixture $\hat{\mathfrak{Z}}_3$ although harmonic solution $\hat{\mathfrak{Z}}_1$ close to Chib's solution [taken as golden standard] Monte Carlo method $\hat{\mathfrak{Z}}_2$ also producing poor approximations to \mathfrak{Z} (Kernel ϕ used in $\hat{\mathfrak{Z}}_2$ is a t non-parametric kernel estimate with standard bandwidth estimation.)