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Introduction

Bayes factor

Bayes factor

Definition (Bayes factors)

For testing hypotheses H0 : θ ∈ Θ0 vs. Ha : θ 6∈ Θ0, under prior

π(Θ0)π0(θ) + π(Θc
0)π1(θ) ,

central quantity

B01 =
π(Θ0|x)

π(Θc
0|x)

/
π(Θ0)

π(Θc
0)

=

∫

Θ0

f(x|θ)π0(θ)dθ

∫

Θc
0

f(x|θ)π1(θ)dθ

[Jeffreys, 1939]
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Introduction

Bayes factor

Self-contained concept

Outside decision-theoretic environment:

eliminates impact of π(Θ0) but depends on the choice of
(π0, π1)

Bayesian/marginal equivalent to the likelihood ratio

Jeffreys’ scale of evidence:

if log
10

(Bπ

10
) between 0 and 0.5, evidence against H0 weak,

if log
10

(Bπ

10
) 0.5 and 1, evidence substantial,

if log
10

(Bπ

10
) 1 and 2, evidence strong and

if log
10

(Bπ

10
) above 2, evidence decisive

Requires the computation of the marginal/evidence under
both hypotheses/models
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Introduction

Model choice

Model choice and model comparison

Choice between models

Several models available for the same observation

Mi : x ∼ fi(x|θi), i ∈ I

where I can be finite or infinite
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Introduction

Model choice

Bayesian resolution
Probabilise the entire model/parameter space

allocate probabilities pi to all models Mi

define priors πi(θi) for each parameter space Θi

compute

π(Mi|x) =

pi

∫

Θi

fi(x|θi)πi(θi)dθi

∑

j

pj

∫

Θj

fj(x|θj)πj(θj)dθj

take largest π(Mi|x) to determine “best” model,
or use averaged predictive

∑

j

π(Mj |x)

∫

Θj

fj(x
′|θj)πj(θj |x)dθj
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Introduction

Evidence

Evidence

All these problems end up with a similar quantity, the evidence

Z =

∫
π(θ)L(θ) dθ,

aka the marginal likelihood.
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Importance sampling solutions

Regular importance

Bridge sampling

If
π1(θ1|x) ∝ π̃1(θ1|x)
π2(θ2|x) ∝ π̃2(θ2|x)

live on the same space, then

B12 ≈
1

n

n∑

i=1

π̃1(θi|x)

π̃2(θi|x)
θi ∼ π2(θ|x)

[Gelman & Meng, 1998; Chen, Shao & Ibrahim, 2000]
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Importance sampling solutions

Regular importance

(Further) bridge sampling

In addition

B12 =

∫
π̃2(θ|x)α(θ)π1(θ|x)dθ

∫
π̃1(θ|x)α(θ)π2(θ|x)dθ

∀ α(·)

≈

1

n1

n1∑

i=1

π̃2(θ1i|x)α(θ1i)

1

n2

n2∑

i=1

π̃1(θ2i|x)α(θ2i)

θji ∼ πj(θ|x)
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Importance sampling solutions

Regular importance

Optimal bridge sampling

The optimal choice of auxiliary function α

α⋆ =
n1 + n2

n1π̃1(θ|x) + n2π̃2(θ|x)

leading to

B̂12 ≈

1

n1

n1∑

i=1

π̃2(θ1i|x)

n1π̃1(θ1i|x) + n2π̃2(θ1i|x)

1

n2

n2∑

i=1

π̃1(θ2i|x)

n1π̃1(θ2i|x) + n2π̃2(θ2i|x)

Back later!
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Importance sampling solutions

Harmonic means

Approximating Z from a posterior sample

Use of the identity

E
π

[
ϕ(θ)

π(θ)L(θ)

∣∣∣∣ x

]
=

∫
ϕ(θ)

π(θ)L(θ)

π(θ)L(θ)

Z
dθ =

1

Z

no matter what the proposal ϕ(θ) is.
[Gelfand & Dey, 1994; Bartolucci et al., 2006]

Direct exploitation of MCMC output
RB-RJ
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Importance sampling solutions

Harmonic means

Comparison with regular importance sampling

Harmonic mean: Constraint opposed to usual importance sampling
constraints: ϕ(θ) must have lighter (rather than fatter) tails than
π(θ)L(θ) for the approximation

Ẑ1 = 1

/
1

T

T∑

t=1

ϕ(θ(t))

π(θ(t))L(θ(t))

to have a finite variance.
E.g., use finite support kernels (like Epanechnikov’s kernel) for ϕ
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Importance sampling solutions

Harmonic means

Comparison with regular importance sampling (cont’d)

Compare Ẑ1 with a standard importance sampling approximation

Ẑ2 =
1

T

T∑

t=1

π(θ(t))L(θ(t))

ϕ(θ(t))

where the θ(t)’s are generated from the density ϕ(θ) (with fatter
tails like t’s)
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Importance sampling solutions

Harmonic means

Approximating Z using a mixture representation

Bridge sampling redux

Design a specific mixture for simulation [importance sampling]
purposes, with density

ϕ̃(θ) ∝ ω1π(θ)L(θ) + ϕ(θ) ,

where ϕ(θ) is arbitrary (but normalised)
Note: ω1 is not a probability weight
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Importance sampling solutions

Harmonic means

Approximating Z using a mixture representation (cont’d)

Corresponding MCMC (=Gibbs) sampler

At iteration t

1 Take δ(t) = 1 with probability

ω1π(θ(t−1))L(θ(t−1))

/ (
ω1π(θ(t−1))L(θ(t−1)) + ϕ(θ(t−1))

)

and δ(t) = 2 otherwise;

2 If δ(t) = 1, generate θ(t) ∼ MCMC(θ(t−1), θ(t)) where
MCMC(θ, θ′) denotes an arbitrary MCMC kernel associated
with the posterior π(θ|x) ∝ π(θ)L(θ);

3 If δ(t) = 2, generate θ(t) ∼ ϕ(θ) independently
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Importance sampling solutions
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Importance sampling solutions

Harmonic means

Evidence approximation by mixtures

Rao-Blackwellised estimate

ξ̂ =
1

T

T∑

t=1

ω1π(θ(t))L(θ(t))

/
ω1π(θ(t))L(θ(t)) + ϕ(θ(t)) ,

converges to ω1Z/{ω1Z + 1}
Deduce Ẑ3 from ω1Ẑ3/{ω1Ẑ3 + 1} = ξ̂ ie

Ẑ3 =

∑T
t=1 ω1π(θ(t))L(θ(t))

/
ω1π(θ(t))L(θ(t)) + ϕ(θ(t))

∑T
t=1 ϕ(θ(t))

/
ω1π(θ(t))L(θ(t)) + ϕ(θ(t))

[Bridge sampler]
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Importance sampling solutions

Chib’s solution

Chib’s representation

Direct application of Bayes’ theorem: given x ∼ fk(x|θk) and
θk ∼ πk(θk),

mk(x) =
fk(x|θk)πk(θk)

πk(θk|x)
,

Use of an approximation to the posterior

m̂k(x) =
fk(x|θ

∗
k)πk(θ

∗
k)

π̂k(θ
∗
k|x)

.
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Importance sampling solutions

Chib’s solution

Case of latent variables

For missing variable z as in mixture models, natural Rao-Blackwell
estimate

π̂k(θ
∗
k|x) =

1

T

T∑

t=1

πk(θ
∗
k|x, z

(t)
k ) ,

where the z
(t)
k ’s are the latent variables simulated by a Gibbs

sampler.
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Importance sampling solutions

Chib’s solution

Compensation for label switching

For mixture models, z
(t)
k usually fails to visit all configurations in a

balanced way, despite the symmetry predicted by the theory

πk(θk|x) = πk(σ(θk)|x) =
1

k!

∑

σ∈S

πk(σ(θk)|x)

for all σ’s in Sk, set of all permutations of {1, . . . , k}.
Consequences on numerical approximation, biased by an order k!
Recover the theoretical symmetry by using

π̃k(θ
∗
k|x) =

1

T k!

∑

σ∈Sk

T∑

t=1

πk(σ(θ∗k)|x, z
(t)
k ) .

[Berkhof, Mechelen, & Gelman, 2003]



On some computational methods for Bayesian model choice

Importance sampling solutions

Chib’s solution

Compensation for label switching

For mixture models, z
(t)
k usually fails to visit all configurations in a

balanced way, despite the symmetry predicted by the theory

πk(θk|x) = πk(σ(θk)|x) =
1

k!

∑

σ∈S

πk(σ(θk)|x)

for all σ’s in Sk, set of all permutations of {1, . . . , k}.
Consequences on numerical approximation, biased by an order k!
Recover the theoretical symmetry by using

π̃k(θ
∗
k|x) =

1

T k!

∑

σ∈Sk

T∑

t=1

πk(σ(θ∗k)|x, z
(t)
k ) .

[Berkhof, Mechelen, & Gelman, 2003]



On some computational methods for Bayesian model choice

Cross-model solutions

Reversible jump

Reversible jump

Idea: Set up a proper measure–theoretic framework for designing
moves between models Mk

[Green, 1995]
Create a reversible kernel K on H =

⋃
k{k} × Θk such that

∫

A

∫

B
K(x, dy)π(x)dx =

∫

B

∫

A
K(y, dx)π(y)dy

for the invariant density π [x is of the form (k, θ(k))]
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Cross-model solutions

Reversible jump

Local moves
For a move between two models, M1 and M2, the Markov chain
being in state θ1 ∈ M1, denote by K1→2(θ1, dθ) and K2→1(θ2, dθ)
the corresponding kernels, under the detailed balance condition

π(dθ1)K1→2(θ1, dθ) = π(dθ2)K2→1(θ2, dθ) ,

and take, wlog, dim(M2) > dim(M1).
Proposal expressed as

θ2 = Ψ1→2(θ1, v1→2)

where v1→2 is a random variable of dimension
dim(M2) − dim(M1), generated as

v1→2 ∼ ϕ1→2(v1→2) .
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Cross-model solutions

Reversible jump

Local moves (2)

In this case, q1→2(θ1, dθ2) has density

ϕ1→2(v1→2)

∣∣∣∣
∂Ψ1→2(θ1, v1→2)

∂(θ1, v1→2)

∣∣∣∣
−1

,

by the Jacobian rule.
Reverse importance link

If probability ̟1→2 of choosing move to M2 while in M1,
acceptance probability reduces to

α(θ1, v1→2) = 1∧
π(M2, θ2)̟2→1

π(M1, θ1)̟1→2 ϕ1→2(v1→2)

∣∣∣∣
∂Ψ1→2(θ1, v1→2)

∂(θ1, v1→2)

∣∣∣∣ .

c©Difficult calibration
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Cross-model solutions

Saturation schemes

Alternative
Saturation of the parameter space H =

⋃
k{k} × Θk by creating

a model index M
pseudo-priors πj(θj |M = k) for j 6= k

[Carlin & Chib, 1995]

Validation by

π(M = k|y) =

∫
P (M = k|y, θ)π(θ|y)dθ = Zk

where the (marginal) posterior is

π(θ|y) =
D∑

k=1

π(θ, M = k|y)

=
D∑

k=1

̺k mk(y)πk(θk|y)
∏

j 6=k

πj(θj |M = k) .
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Cross-model solutions

Saturation schemes

MCMC implementation

Run a Markov chain (M (t), θ
(t)
1 , . . . , θ

(t)
D ) with stationary

distribution π(θ, M = k|y) by

1 Pick M (t) = k with probability P (θ(t−1), M = k|y)

2 Generate θ
(t−1)
k from the posterior πk(θk|y) [or MCMC step]

3 Generate θ
(t−1)
j (j 6= k) from the pseudo-prior πj(θj |M = k)

Approximate π(M = k|y) = Zk by

ˇ̺k(y) ∝ ̺k

T∑

t=1

fk(y|θ
(t)
k )πk(θ

(t)
k )

∏

j 6=k

πj(θ
(t)
j |M = k)

/ D∑

ℓ=1

̺ℓ fℓ(y|θ
(t)
ℓ )πℓ(θ

(t)
ℓ )

∏

j 6=ℓ

πj(θ
(t)
j |M = ℓ)
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j |M = ℓ)



On some computational methods for Bayesian model choice

Cross-model solutions

Implementation error

Scott’s (2002) proposal

Suggest estimating P (M = k|y) by

˜̺k(y) ∝ ̺k

T∑

t=1



fk(y|θ

(t)
k )

/ D∑

j=1

̺j fj(y|θ
(t)
j )



 ,

based on D simultaneous and independent MCMC chains

(θ
(t)
k )t , 1 ≤ k ≤ D ,

with stationary distributions πk(θk|y) [instead of above joint]
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Cross-model solutions

Implementation error

Congdon’s (2006) extension

Selecting flat [prohibited!] pseudo-priors, uses instead

ˆ̺k(y) ∝ ̺k

T∑

t=1



fk(y|θ

(t)
k )πk(θ

(t)
k )

/ D∑

j=1

̺j fj(y|θ
(t)
j )πj(θ

(t)
j )



 ,

where again the θ
(t)
k ’s are MCMC chains with stationary

distributions πk(θk|y)



On some computational methods for Bayesian model choice

Cross-model solutions

Implementation error

Examples

Example (Model choice)

Model M1 : y|θ ∼ U(0, θ) with prior θ ∼ Exp(1) is versus model
M2 : y|θ ∼ Exp(θ) with prior θ ∼ Exp(1). Equal prior weights on
both models: ̺1 = ̺2 = 0.5.

Approximations of π(M = 1|y):

Scott’s (2002) (green), and

Congdon’s (2006) (brown)

(N = 106 simulations).
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Cross-model solutions

Implementation error

Examples (2)

Example (Model choice (2))

Normal model M1 : y ∼ N (θ, 1) with θ ∼ N (0, 1) vs. normal
model M2 : y ∼ N (θ, 1) with θ ∼ N (5, 1)

Comparison of both

approximations with

π(M = 1|y): Scott’s (2002)

(green and mixed dashes) and

Congdon’s (2006) (brown and

long dashes) (N = 104

simulations).
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Cross-model solutions

Implementation error

Examples (3)

Example (Model choice (3))

Model M1 : y ∼ N (0, 1/ω) with ω ∼ Exp(a) vs.
M2 : exp(y) ∼ Exp(λ) with λ ∼ Exp(b).

Comparison of Congdon’s (2006)

(brown and dashed lines) with

π(M = 1|y) when (a, b) is equal

to (.24, 8.9), (.56, .7), (4.1, .46)

and (.98, .081), resp. (N = 104

simulations).



On some computational methods for Bayesian model choice

Nested sampling

Purpose

Nested sampling: Goal

Skilling’s (2007) technique using the one-dimensional
representation:

Z = E
π[L(θ)] =

∫ 1

0
ϕ(x) dx

with
ϕ−1(l) = P π(L(θ) > l).

Note; ϕ(·) is intractable in most cases.



On some computational methods for Bayesian model choice

Nested sampling

Implementation

Nested sampling: First approximation

Approximate Z by a Riemann sum:

Ẑ =

j∑

i=1

(xi−1 − xi)ϕ(xi)

where the xi’s are either:

deterministic: xi = e−i/N

or random:

x0 = 0, xi+1 = tixi, ti ∼ Be(N, 1)

so that E[log xi] = −i/N .



On some computational methods for Bayesian model choice

Nested sampling

Implementation

Extraneous white noise

Take

Z =

∫
e−θ dθ =

∫
1

δ
e−(1−δ)θ e−δθ = Eδ

[
1

δ
e−(1−δ)θ

]

Ẑ =
1

N

N∑

i=1

δ−1 e−(1−δ)θi(xi−1 − xi) , θi ∼ E(δ) I(θi ≤ θi−1)

N deterministic random
50 4.64 10.5

4.65 10.5
100 2.47 4.9

2.48 5.02
500 .549 1.01

.550 1.14

Comparison of variances and MSEs
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On some computational methods for Bayesian model choice

Nested sampling

Implementation

Nested sampling: Second approximation

Replace (intractable) ϕ(xi) by ϕi, obtained by

Nested sampling

Start with N values θ1, . . . , θN sampled from π
At iteration i,

1 Take ϕi = L(θk), where θk is the point with smallest
likelihood in the pool of θi’s

2 Replace θk with a sample from the prior constrained to
L(θ) > ϕi: the current N points are sampled from prior
constrained to L(θ) > ϕi.
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Nested sampling

Implementation

Nested sampling: Third approximation

Iterate the above steps until a given stopping iteration j is
reached: e.g.,

observe very small changes in the approximation Ẑ;

reach the maximal value of L(θ) when the likelihood is
bounded and its maximum is known;

truncate the integral Z at level ǫ, i.e. replace

∫ 1

0
ϕ(x) dx with

∫ 1

ǫ
ϕ(x) dx



On some computational methods for Bayesian model choice

Nested sampling

Error rates

Approximation error

Error = Ẑ − Z

=

j∑

i=1

(xi−1 − xi)ϕi −

∫ 1

0
ϕ(x) dx = −

∫ ǫ

0
ϕ(x) dx

+

[
j∑

i=1

(xi−1 − xi)ϕ(xi) −

∫ 1

ǫ
ϕ(x) dx

]
(Quadrature Error)

+

[
j∑

i=1

(xi−1 − xi) {ϕi − ϕ(xi)}

]
(Stochastic Error)

[Dominated by Monte Carlo!]
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Nested sampling

Error rates

A CLT for the Stochastic Error

The (dominating) stochastic error is OP (N−1/2):

N1/2 {Stochastic Error}
D
→ N (0, V )

with

V = −

∫

s,t∈[ǫ,1]
sϕ′(s)tϕ′(t) log(s ∨ t) dsdt.

[Proof based on Donsker’s theorem]

The number of simulated points equals the number of iterations j,
and is a multiple of N : if one stops at first iteration j such that
e−j/N < ǫ, then: j = N⌈− log ǫ⌉.
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On some computational methods for Bayesian model choice

Nested sampling

Impact of dimension

Curse of dimension

For a simple Gaussian-Gaussian model of dimension dim(θ) = d,
the following 3 quantities are O(d):

1 asymptotic variance of the NS estimator;

2 number of iterations (necessary to reach a given truncation
error);

3 cost of one simulated sample.

Therefore, CPU time necessary for achieving error level e is

O(d3/e2)
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On some computational methods for Bayesian model choice

Nested sampling

Constraints

Sampling from constr’d priors

Exact simulation from the constrained prior is intractable in most
cases!

Skilling (2007) proposes to use MCMC, but:

this introduces a bias (stopping rule).

if MCMC stationary distribution is unconst’d prior, more and
more difficult to sample points such that L(θ) > l as l
increases.

If implementable, then slice sampler can be devised at the same
cost!



On some computational methods for Bayesian model choice

Nested sampling

Constraints

Sampling from constr’d priors

Exact simulation from the constrained prior is intractable in most
cases!

Skilling (2007) proposes to use MCMC, but:

this introduces a bias (stopping rule).

if MCMC stationary distribution is unconst’d prior, more and
more difficult to sample points such that L(θ) > l as l
increases.

If implementable, then slice sampler can be devised at the same
cost!



On some computational methods for Bayesian model choice

Nested sampling

Constraints

Sampling from constr’d priors

Exact simulation from the constrained prior is intractable in most
cases!

Skilling (2007) proposes to use MCMC, but:

this introduces a bias (stopping rule).

if MCMC stationary distribution is unconst’d prior, more and
more difficult to sample points such that L(θ) > l as l
increases.

If implementable, then slice sampler can be devised at the same
cost!



On some computational methods for Bayesian model choice

Nested sampling

Constraints

Illustration of MCMC bias

Log-relative error against d (left), avg. number of iterations (right)
vs dimension d, for a Gaussian-Gaussian model with d parameters,
when using T = 10 iterations of the Gibbs sampler.
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Nested sampling

Importance variant

A IS variant of nested sampling

Consider instrumental prior π̃ and likelihood L̃, weight function

w(θ) =
π(θ)L(θ)

π̃(θ)L̃(θ)

and weighted NS estimator

Ẑ =

j∑

i=1

(xi−1 − xi)ϕiw(θi).

Then choose (π̃, L̃) so that sampling from π̃ constrained to
L̃(θ) > l is easy; e.g. N (c, Id) constrained to ‖c − θ‖ < r.
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On some computational methods for Bayesian model choice

Mixture example

Benchmark: Target distribution

Posterior distribution on (µ, σ) associated with the mixture

pN (0, 1) + (1 − p)N (µ, σ) ,

when p is known
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Mixture example

Experiment

n observations with
µ = 2 and σ = 3/2,

Use of a uniform prior
both on (−2, 6) for µ
and on (.001, 16) for
log σ2.

occurrences of posterior
bursts for µ = xi

computation of the
various estimates of Z
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Mixture example

Experiment (cont’d)

MCMC sample for n = 16
observations from the mixture.

Nested sampling sequence

with M = 1000 starting points.
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Mixture example

Experiment (cont’d)

MCMC sample for n = 50
observations from the mixture.

Nested sampling sequence

with M = 1000 starting points.



On some computational methods for Bayesian model choice

Mixture example

Comparison

Monte Carlo and MCMC (=Gibbs) outputs based on T = 104

simulations and numerical integration based on a 850 × 950 grid in
the (µ, σ) parameter space.
Nested sampling approximation based on a starting sample of
M = 1000 points followed by at least 103 further simulations from
the constr’d prior and a stopping rule at 95% of the observed
maximum likelihood.
Constr’d prior simulation based on 50 values simulated by random
walk accepting only steps leading to a lik’hood higher than the
bound
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Mixture example

Comparison (cont’d)

Graph based on a sample of 10 observations for µ = 2 and
σ = 3/2 (150 replicas).
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Mixture example

Comparison (cont’d)

Graph based on a sample of 50 observations for µ = 2 and
σ = 3/2 (150 replicas).
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Mixture example

Comparison (cont’d)

Graph based on a sample of 100 observations for µ = 2 and
σ = 3/2 (150 replicas).
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Mixture example

Comparison (cont’d)

Nested sampling gets less reliable as sample size increases
Most reliable approach is mixture Ẑ3 although harmonic solution
Ẑ1 close to Chib’s solution [taken as golden standard]
Monte Carlo method Ẑ2 also producing poor approximations to Z

(Kernel φ used in Ẑ2 is a t non-parametric kernel estimate with
standard bandwidth estimation.)
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