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Abstract

When the markets are dynamically complete and without imperfections there are three equiva-
lent approaches in order to price a given asset: the arbitrage approach through the existence of a
risk-neutral density, the utility approach through a utility maximization program and the equilib-
rium approach through the market clearing conditions. When there are imperfections these three
approaches lead to different results. This special issue explores these three approaches and their
possible links. In this introduction we present an overview of the main contributions in this field as
well as the main techniques and results. In particular, we introduce the other papers of this issue and
we compare them quickly to the existing literature. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

The theory of asset pricing takes its roots in the Arrow–Debreu model (see, for instance,
Debreu (1959), Chapter 7), the Black and Scholes (1973) formula, and the Cox and Ross
(1976) linear pricing model. This theory and its link to arbitrage has been formalized in a
general framework by Harrison and Kreps (1979), Harrison and Pliska (1981, 1983), and
Duffie and Huang (1986). In these models, security markets are assumed to be frictionless:
securities can be sold short in unlimited amounts, the borrowing and lending rates are
equal, and there is no-transaction cost. The main result is that the price process of traded
securities is arbitrage free if and only if there exists some equivalent probability measure
that transforms it into a martingale, when normalized by the numeraire. Contingent claims
can then be priced by taking the expected value of their (normalized) payoff with respect
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to any equivalent martingale measure. If this value is unique, the claim is said to be priced
by arbitrage and it can be perfectly hedged (i.e. duplicated) by dynamic trading. When the
markets are dynamically complete, there is only one such a martingale-probability measure
and any contingent claim is priced by arbitrage. The weight of each state of the world for
this probability measure can be interpreted as the state price of the economy (the prices of
US$ 1 tomorrow in that state of the world) as well as the marginal utilities (for consumption
in that state of the world) of rational agents maximizing their expected utility.

When there are frictions, including dynamic market incompleteness, the characterization
of the no-arbitrage (NA) condition is no more equivalent to the existence of a unique equiv-
alent martingale measure. More precisely, for each kind of imperfection, the equivalent
martingale-measure condition is replaced by a weaker one: equivalent supermartingale-
measure condition, equivalent submartingale-measure condition, absolutely continuous
martingale-measure condition, etc. Besides, we generally have, more than one measure sat-
isfying these conditions. Furthermore, when there are frictions, even if a contingent claim
can be duplicated by dynamic trading, it is not necessarily possible to price it by arbitrage.
However, arbitrage bounds can be computed, for arbitrary contingent claims, taking the ex-
pected value of their (normalized) payoff with respect to all the measures that characterize
the absence of arbitrage opportunities. These bounds are the minimum amount it costs to
hedge the claim and the maximum amount that can be borrowed against it using dynamic
strategies. These are the tightest bounds that can be inferred on the price of a contingent
claim without knowing the agent’s preferences. The determination of these bounds in a
dynamic setting leads to a maximization (and/or minimization) program, and, in a dynamic
setting, is often transformed into a stochastic optimal control problem. The main assump-
tion in these models is, in fact, a necessary condition for the existence of an equilibrium:
the NA condition. These preference-free theories give results of great generality without
specifying the equilibrium in its full details.

Another important class of valuation theories makes assumptions on preferences and
derives more specific pricing restrictions than the preference-free theory does, even in the
presence of imperfections. The price of a given contingent claim, for these theories, is just
the expected value of its (normalized) terminal payoff with respect to a probability measure,
whose density is proportional to the marginal utility (for consumption) of the considered
agent. From a mathematical point of view, starting with a given utility function, the problem
is to write the first-order conditions of the agent’s utility maximization program, taking into
account the potential imperfections in the description of the budget constraints and/or of the
strategies in order to characterize the marginal utility for consumption at the final date. In
a multi-period setting, this maximization problem is a stochastic optimal control problem.
The main advantage of this approach is that it leads to a unique price for a given contingent
claim. The main drawback is that this price depends on the choice of the utility function and
on the agent endowment. If the utility function belongs to a given connected class of utility
functions, we will obtain an interval of possible prices for that claim. More specifically,
if the considered class is the set of all von Neumann–Morgenstern (VNM) increasing and
concave utility functions, the set of possible prices is exactly the set obtained with the
arbitrage approach as shown by Jouini and Kallal (1999). The unique way to obtain tighter
bounds with the utility-maximization approach seems then to consider specific functions,
or specific sets of functions, smaller than the set of all the VNM ones.
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In fact, there is an interesting link between the two approaches. Since the arbitrage upper
bound for a given contingent claim is equal to the minimum amount it costs to hedge it,
taking the market frictions into account, the agent’s problem (maximization of the utility
provided by the terminal payoff among the strategies satisfying a given dynamic budget
constraint) can be transformed into a static problem where we maximize the utility among
the set of contingent claims satisfying a budget constraint where the classical price functional
is replaced by the arbitrage upper bound functional. If we have, for instance, an explicit
formula for the arbitrage upper bound, it suffices then to solve a static maximization problem
instead of the initial stochastic dynamic control problem. The characterization of the NA
assumption is, therefore, crucial in order to solve the contingent claim pricing problem as
well as to solve the individual utility maximization problem of each agent in the economy.
The last step, if we want to explore all the implications of the Arrow–Debreu model in this
financial setting is then to write the equilibrium conditions in order to ensure that all the
individual solutions are “compatible”.

2. The no-arbitrage (NA) condition

Let (Ω,F, P ) be a probability space and(Ft )t≥0 be a filtration which models our infor-
mation structure. This filtration is supposed to satisfy the usual conditions, i.e. the filtration
is right continuous andF0 contains all negligible sets (ifB ⊂ A ∈ F andP(A) = 0 then
B ∈ F0). We also suppose that the sigma-algebraF = ∪t≥0Ft , and we consider a real
valued semi-martingaleS, which models the price process for the marketed claims. In the
next, we will denote the real line byR and byR+ the set of non-negative ones. Let us define,
as in Delbaen and Schachermayer (1994), an admissible strategy as follows

Definition 1. Let a be a positive real number. AnS-integrable predictable processH, is
calleda-admissible ifH(0) = 0, and(H · S) ≥ −a (i.e. for all t ∈ R+, the stochastic
integral(H · S)t ≥ −a almost everywhere).H is called admissible if it is admissible for
somea ∈ R+.

This admissibility condition can be interpreted as a bounded losses condition for strategies
with a zero initial investment.

We consider, as in Stricker (1990), the convex coneK0 in the spaceL0 of equivalent
classes of measurable functions, defined up to equality almost everywhere, given by

K0 = {(H · S)∞|H admissible, and (H · S)∞ = lim
t→∞(H · S)t exists a.s.}.

The setK0 is then the set of all terminal payoffs obtained through some admissible
strategy.

Definition 2. We say that the semi-martingaleS satisfies the condition of NA, if
K0 ∩ L+

0 = {0}.
SinceK0 represents the set of all admissible terminal payoffs the NA condition amounts

to say that it is impossible to obtain a non-negative, non-zero payoffs with a zero initial
investment.
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We assume that it is possible to separateK0 andL+
0 in the sense that there exists a non-zero

linear functionalf and a real numberc such thatf (K0) ≤ c andf (L+
0 ) > c and let us

assume that the separating functionalf admits a representation as an expectation operator
with respect to a probability measureQ, then under the NA condition,Q is equivalent to
P andEQ[f ] ≤ 0 for eachf in K0. In particular, for eachs < t , B ∈ Fs , α ∈ R, we have
α(St − Ss)1B ∈ K0, therefore,EQ[(St − Ss)1B ] = 0, andQ is a martingale measure forS.

Unfortunately, the NA condition is seldom sufficient to apply a separation theorem. In
the case whereS is locally bounded we have the following

Theorem 1 (Delbaen and Schachermayer, 1994).Let S be a locally bounded real valued
semi-martingale. There is an equivalent local martingale measure Q for S if and only if
(K0 − L0+) ∩ L∞ ∩ L∞+ = {0} (whereL∞ is the space of bounded measurable functions
and where the closure is taken with respect to the norm-topology ofL∞).

This last condition is called no free-lunch with vanishing risk (NFLVR) and deals with
sequences of strategies such that the negative parts of their terminal payoff tends to zero
uniformly instead of strategies with non-negative terminal payoff as in the NA condition.
Remark that the main difference between these two conditions lies in the fact that we have
to consider a closure. Indeed, the condition [(K0 − L0+) ∩ L∞] ∩ L∞+ = {0} is weaker than
(K0 − L0+) ∩ L0+ = {0}, which is equivalent to the NA conditionK0 ∩ L0+ = {0}.

If, in the previous condition, we replace the norm-topology closure by theσ(L∞, L1)

topology closure (whereL1 is the space of all integrableF-measurable functions) we obtain a
version of the NFL condition introduced by Kreps (1981), and the existence of an equivalent
local martingale measure is obtained for a bounded càdlàg, and adapted processS.

Other intermediary concepts, as the NFLBR condition (where the closure is defined
as the set of weak∗-limits and where the negative parts of the terminal payoffs tend to
zero in probability and remains uniformly bounded), have been introduced in the lit-
erature and permit to obtain results similar to the previous theorem in different con-
texts: finite time set and NA condition with Dalang et al. (1990) (see Schachermayer
(1992), Kabanov and Kramkov (1994a) and Rogers (1995) for elementary proofs), in-
finite but discrete time set with Schachermayer (1994), continuous and bounded pro-
cesses in continuous time with Delbaen (1992). Harrison and Kreps (1979) and Harrison
and Pliska (1981) used the concept of simple strategies. Kreps (1981) used a concept of
“no free-lunch” involving the convergence of nets or generalized sequences. Duffie and
Huang (1986) and Stricker (1990) usedLp convergence. Lakner (1993) used convergence
in Orlicz spaces. Furthermore, it appears that the class of semi-martingales is the most
general one compatible with this kind of results. Indeed, from the work of Föllmer and
Schweizer (1992) and Ansel and Stricker (1992, 1993, 1994) we know that no free-lunch
conditions imply, in some sense, thatS is a semi-martingale. Conversely, the existence
of an equivalent-martingale measure forS implies, by Girsanov’s theorem, thatS is a
semi-martingale.

As in Harrison and Kreps (1979) and Kreps (1981) and for a given contingent claim,
we define the arbitrage pricing interval as the set of all the prices that are compatible with
the no free-lunch condition, i.e. introducing this contingent claim at one of these prices
does not create free-lunches. In all the mentioned papers, it appears that this set is equal to
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the set of expected values of the considered claim terminal payoff with respect to all the
probability-measures which characterize the absence of free-lunch.

When there is no imperfection, the cash-flow spaceΦ can be identified withK0. In case
of short-sale constraints, it can he identified with

{(H · S)∞|H admissible, H ≥ 0, and (H · S)∞ = lim
t→∞ (H · S)t exists a.s.},

and when there are short-selling costs, it can be identified with{
(H · S − H ′ · S′)∞

∣∣∣∣∣ (H, H ′) admissible, (H, H ′) ≥ 0,

and(H · S − H ′ · S′)∞ exists a.s.,

}

whereS(resp.S′) models the long (resp. short) position returns. When there are transaction
costs,Φ can be identified with

{(H · S)∞ − λV (H · S)|H admissible, and (H · S)∞ exists a.s.},
whereV represents the total variation of(H ·S) andλ the magnitude of the transaction costs.
Jouini and Kallal (1995a,b) (see also Jouini, 1997) characterized the absence of arbitrage
opportunities in these different situations. Other contributions on related subjects are due to
Kabanov and Kramkov (1994b), Shirakawa and Konno (1995), Kusuoka (1995), Cvitanic̀
and Karatzas (1996), Cvitanic̀ et al. (1999), Kabanov (1999). The differences between
all these references are in the choice of the topology (or no topology) in order to define
the concept of free-lunch, the choice of a space of admissible strategies (discrete strategies,
simple strategies, etc.) and finally the choice of possible imperfections (or no imperfection).
This choice is summarized by the choice of a convex cone contained inK0 − L0+ instead
of K0 − L0+ itself in order to model the opportunity set. In this context, it is easier to find
a separating hyperplane between that set (or its closure with respect to some topology) and
L∞+ . Jouini and Kallal (1999) extended the arbitrage, viability and equilibrium classical
results to that setting mainly by assuming that the opportunity set is a convex cone (or even
a convex set) and the pricing rule is sublinear. In this issue, Kabanov and Stricker (2001)
propose a generalization of Jouini and Kallal’s (1995a) result to the important case of a
multi-asset market model where the transaction costs are defined for each kind of transaction
between any pair of assets. They use the geometric formalism developed previously by
Kabanov (1999) and they characterize the absence of arbitrage opportunities in terms of
martingale-like measures. Their result is established in a discrete time and finite set of states
of the world framework and they only deal with arbitrages and not with free-lunches.

In order to take a large set of possible frictions into account Carassus and Jouini (1997,
1998, 2000) in discrete time or in a deterministic setting, Jouini and Napp (2000) and
Jouini et al. (2000) in continuous time propose to deal directly with the space of possible
cash-flows instead of the space of terminal payoffs and they provide a characterization of the
no free-lunch assumption in terms of the existence of a separating functional. Napp (2001)
develops an arbitrage pricing theory and a super-replication concept in this cash-flow space.

However, all these results are obtained under a convexity condition on the space of attain-
able payoffs. This last assumption is not satisfied in economies with fixed costs, i.e. with
transaction costs which are not proportional to the size of the transactions. In this framework,
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the terminal payoff of a strategyH is (H · S)∞ + c(H), wherec is a bounded non-linear
function of the strategyH, instead of(H ·S)∞ as in the classical case. Therefore, it is easy to
understand that large scale transactions willkill the transaction cost effect and that the char-
acterization of the no-arbitrage condition should be an asymptotic version of the classical
one. Jouini et al. (2001) prove that this characterization is in terms of absolutely continuous
martingale measures and show that the existence of such a measure is necessary but not suffi-
cient and that we need the existence of a family of such measures each one associated with a
given date and a given event at that date in order to characterize the absence of free-lunches.

3. The utility maximization problem

Before Merton’s (1969) paper, most models of portfolio selection only considered one
period. Furthermore, the investment decision by households was viewed in two parts: (a) the
“consumption-saving” choice where the individual decides how much income and wealth
to allocate into current consumption and how much to save for future consumption, and (b)
the “portfolio-selection” choice where the investor decides how to allocate savings among
the available investment opportunities. Merton (1969) examined “the combined problem of
optimal portfolio selection and consumption rules for an individual in a continuous-time
model where his income is generated by returns on assets and these returns or instantaneous
‘growth rates’ are stochastic”.

The original analysis of Merton’s model is based on the Hamilton–Jacobi–Bellman (HJB)
equation and requires an underlying Markov state process. After the papers of Harrison
and Kreps (1979) and Harrison and Pliska (1981, 1983), and their characterization of the
no-arbitrage assumption in terms of the existence of martingale-measures, Pliska (1986),
Cox and Huang (1989, 1991) and Karatzas et al. (1987) used this methodology in order
to analyze this consumption–investment problem. This new approach is based on duality
arguments and permits to transform the initial dynamic problem into a static one and to
solve it without assuming any “Markov” condition.

Let us now introduce the main results related to this problem.
Let (Ω, F, P) be a fixed probability space andTTT denote the interval [0,T], on which we

are going to treat our problem:T corresponds to the terminal date for all economic activity
under consideration. All processes that we shall encounter in this section are defined onTTT .

We consider a market consisting in one bond andN assets. More precisely, the primitive
market model is the same as in Karatzas (1989), except that we consider here dividends
paying assets.

We adopt a model for the market consisting of one bond with price at timet denoted by
S0

t satisfying the differential equations:

dS0
t = S0

t rt dt, S0
0 = 1, (1)

andN stocks with prices at timet denoted by theN-dimensional vector2 St satisfying

2 All vectors are column vectors and transposition is denoted by∗. We denote the non-negative real number∑n
i=1(Z

i)2 by ||Z||2.
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dSt = St [(bt − δt ) dt + σt dWt ], S0 = 1. (2)

Here,W = {(W1
t , . . . , WN

t )}∗; t ∈ TTT } is aN-dimensional Brownian motion on a proba-
bility space (Ω, F, P) and(Ft )t∈TTT denotes theP-augmentation of the natural filtration gener-
ated byW. We assume that the sample paths ofWspecify completely all the distinguishable
events, which mathematically entailFT = F . Since standard Brownian motions start from
zero with probability one,F0 is trivial. We will denote the set of(Ft )t∈TTT -progressively
measurable processes byL2

d(TTT ) {Ψt ; t ∈ TTT } taking values inRd such that

∫ T

0
||Ψt ||2 dt < ∞ a.s. P .

Assumption l. The real-valued interest rate process{rt ; t ∈ TTT }, theN-dimensional process
{bt ; t ∈ TTT }, theN-dimensional dividend yield process{δt ; t ∈ TTT } as well as the volatility
(N × N )-matrix-valued process{σt ; t ∈ TTT } are supposed to be progressively measurable
with respect to(Ft )t∈TTT and bounded uniformly in (t, ω) in TTT × Ω.

Under this assumption,3 Eq. (2) admits a unique real-valued,(Ft )t∈TTT -adapted, continu-
ous solution{St ; t ∈ TTT }, satisfyingE

[
supt∈TTT S2

t

]
< ∞.

Assumption 2. For allt inTTT , the volatility matrixσ t has full rankNand the norm of(σt )
−1

is uniformly bounded.

Therefore, aN-dimensional processθ = {θt ; t ∈ TTT } can be defined by4

θt ≡ (σt )
−1[(bt − rt1N)] P a.s., 0 ≤ t ≤ T .

With the above assumptions,θ is (Ft )t∈TTT -progressively measurable and uniformly
bounded.

We shall also introduce the discounted price processS̃ = {S̃t ; t ∈ TTT } defined byS̃t =
St exp

∫ t

0(δs − rs) ds for all t in TTT . Using Itô’s Lemma, we easily get thatS̃ is the unique
solution of the following stochastic differential equation:

dS̃t = S̃t [(bt − rt ) dt + σt dWt ] = S̃t σt [θt dt + dWt ], S̃0 = 1.

Notice that assets prices can fluctuate in an almost arbitrary, not necessarily Markovian
way.

We know that in such a model, there exists a unique equivalent probability measureP̄

defined on (Ω, F, P) that makes the full process̃S a martingale for(Ft )t∈TTT . It is given by5

dP̄

dP
= εT (−θ).

3 See for instance Karatzas and Shreve (1998).
4 As usual, 1d denotes thed-dimensional vector whose component are equal to 1.
5 For anyRd -valued processΨ = {Ψt ; t ∈ TTT } in L2

d (TTT ), let the real-valued processε(Ψ ) = {εt (Ψ ); t ∈ TTT }
denote the exponential local martingale given for eacht inTTT byεt (Ψ ) = exp

{∫ t

0 (Ψs)
∗ dWs − (1/2)

∫ t

0 ||Ψs ||2 ds
}
.
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We then have6 dS̃ = diag[S̃t ]σt dW
p̄
t , where{Wp̄

t ; t ∈ TTT } is theP̄ -Brownian motion for
(Ft )t∈TTT defined byWp̄

t ≡ Wt +
∫ t

0θs ds for all t inTTT (see Girsanov’s Theorem). We shall de-
note in the following, the martingale process{E[(dP̄ /dP)|Ft ]; t ∈ TTT }byM̄ = {M̄t ; t ∈ TTT }.

In the context of the above market-model, consider an agent who starts out with an initial
capitalx and can decide of the amountsπt = (π1

t , . . . , πN
t ) that he invests at timet in the

different assets, and of the ratect at which he withdraws funds for consumption. Assuming
that at each timet, sales and dividends must finance purchases and consumption, the corre-
sponding wealth process, denoted byX

x;π,c
t , satisfies the following stochastic differential

equation.

First self-financing condition :
dX

x;π,c
t = ∑N

i=0
πi

t

Si
t

(dSi
t + δi

t S
i
t dt) − ct dt.

X
x;π,c
0 = x,

(3)

which can be rewritten as follows

Second self-financing condition :
dX

x;π,c
t = [rtX

π,c
t − ct ] dt + (πt )

∗σt dW
p̄
t .

X
x;π,c
0 = x.

(4)

The set of investment–consumption strategies (π ,c) satisfying the previous self-financing
condition and the following no-bankruptcy condition is called the admissible strategies set
and denoted byAAA(x)

No-bankruptcy condition : ∀t ∈ TTT , X
x;π,c
t ≥ 0,

This last condition amounts to saying that at each timet, the investor must be able to
cover his debts, see for example Karatzas et al. (1987) or Duffie (1992) where the same
assumption is made.

Under the self-financing condition, the process

Y ≡
{

exp

(
−

∫ t

0
rs ds

)
X

x;π,c
t +

∫ t

0
exp

(
−

∫ s

0
ru du

)
cs ds; t ∈ TTT

}
,

consisting in the current discounted wealth plus the total discounted consumption is a
P̄ -supermartingale (Fatou’s Lemma). It is then easy to see that the market excludes any
arbitrage opportunity which turns out to be characterized in our context by the existence of
a pair (π , c) in AAA (0) such thatP [X0;π,c

T > 0] > 0).
LetBBB denote the set of pairs (X, c) wherec is an adapted non-negative consumption rate

process andX is a non-negativeFT -measurable random variable describing the terminal
wealth. An agent is represented by a utility functionU: BBB → R, given by

U(c, X) = E

[∫ T

0
u(t, ct ) dt + V (X)

]
,

whereu andV satisfy the following assumption.

6 If Z = (Z1, . . . , Zn) denotes a vector inRn, then diagZ denotes the (n × n) diagonal matrix whose diagonal
entries are the components ofZ.
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Assumption 3. The functionV: R+ → R is7 C1on (0,∞), strictly increasing, strictly
concave and satisfies Inada conditions (i.e. infxV

′
j (x) = 0 and supxV

′
j (x) = +∞). The

function uj : TTT × R+ → R is C0,1 on TTT × R∗+, strictly increasing, strictly concave and
satisfies Inada conditions.

Under Assumption 3, we shall denote the derivative ofu(t, ·) by uc(t, ·) and the inverse
function ofuc(t, ·) by Iu(t, ·), which is a strictly decreasing continuous function on (0,∞)
in (0, ∞). We shall also denote the inverse function ofV ′(·) by IV .

The considered agent has an initial endowmentx and tries to maximize his utilityU (c,
X) on both his consumption over the time-intervalTTT and his terminal wealth. The optimal
demand (c)∗ of the agent in the consumption commodity as well as his optimal portfolio
(π )∗ are determined by the optimization problem:

sup
(π,c)∈AAA(x)

U(c, X
xj ;π,c

T ) = sup
(X,c)∈BBB

U(c, X).

Adapting the proofs of Duffie (1992) and Karatzas (1989), we get that

Proposition 2. A pair (c∗, X∗) in BBB is optimal for an agent with an initial endowment x if
and only if there exists a constantγ ∗ > 0 such that

c∗(t) = Iu

(
t,

1

γ ∗ exp

(
−

∫ t

0
rs ds

)
M̄t

)
, 0 ≤ t ≤ T a.s. P . (5)

X∗ = IV

(
exp

(
−

∫ T

0
rs ds

)
M̄T

)
. (6)

E

[∫ T

0
exp

(
−

∫ t

0
rsds

)
M̄t c

∗(t) dt + exp

(
−

∫ T

0
rs ds

)
M̄T X∗

]
= x. (7)

This last proposition permits to solve explicitly the agent’s optimization program. Huang
and Pagès (1992) extended this methodology to the infinite horizon framework. Karatzas
et al. (1986) provided explicit computations in that framework assuming constant coef-
ficients in the price evolution equations. He and Pearson (1991a,b) and Karatzas et al.
(1991) extended the methodology to incomplete markets and proved that the optimal
investment–consumption plan is given, as in the classical case, by the inverse of the marginal
utility evaluated at the random variable which is optimal for a well-defined dual problem.
Cvitanìc and Karatzas (1992) used the same approach in order to solve the problem when
there is convex constraints on the strategies (short-sales constraints, borrowing constraints,
etc.). Fleming and Zariphopoulou (1991) solved the problem assuming different borrowing
and lending rates. Cuoco (1997) and El Karoui and Jeanblanc-Picqué (1998) considered
random endowment streams. Cvitanic̀ and Ma (1996) and Cuoco and Cvitanic̀ (1998) gen-
eralized these results in the context of a “large investor”. In that context, the strategy of the
investor has a direct non-linear impact on the price dynamics. The main technique in all

7 As usual, a functionF: TTT × R → R is said to be of classCm,n if the mth derivative of:TTT → R and thenth
derivative ofF(t, ·): R → R exist and are continuous.



176 E. Jouini / Journal of Mathematical Economics 35 (2001) 167–183

these references consists in embedding the original problem into a family of perfect (linear)
“fictitious” markets, where security prices dynamics are modified and agents receive an
additional stochastic “endowment” reflecting the non-linearity in the market price of risk.
The fictitious markets are designed in such a way that the optimal policy in one of them
coincides with that in the actual, non-linear market.

Using the partial differential equations (PDE) approach, Dumas and Luciano (1989) first
formulated the problem in the presence of transaction costs. The main contributions in
this context are Davis and Norman (1990), Fleming et al. (1990) and Shreve and Soner
(1994).

When there are imperfections, the utility maximization approach can be used in order to
provide pricing formulas for new contingent claims. There are mainly two methods. The
first one, initiated by Hodges and Neuberger (1989) in the transaction costs setting, consists
in using the marginal utility of the considered agent at his optimal consumption–investment
plan as a state-price density. The second method, initiated by Davis (1994) consists in
comparing the optimal utility levelsVx with a deterministic initial endowmentx andV∗
with a stochastic endowment equal to the payoff of the considered claim. The “fair” price
x is then defined by the equation:

V
x = V∗.

Papers along these lines include Constantinides (1986), Panas (1993), Davis et al. (1993),
Davis and Panas (1994), Davis and Zariphopoulou (1995), Cvitanic̀ and Karatzas (1996),
Constantinides and Zariphopoulou (1997), Kramkov and Schachermayer (1997) and Barles
and Soner (1998).

In this issue, Cvitanic̀ and Wang (2001) show that the martingale–duality approach
adopted in the frictionless model works also in the transaction costs framework and prove
that the optimal terminal wealth is given as the inverse of marginal utility evaluated at the
random variable which is optimal for an appropriately defined dual problem. They prove
the existence of a solution for this dual problem and doing so they resolve a question left
open by Cvitanìc and Karatzas (1996). A similar problem is studied by Deelstra et al. (2000)
where the utility functions are defined onRd instead ofR.

Framstad et al. (2001) considers also the transaction costs framework but in a jump diffu-
sion market. Using a viscosity solution approach, they show that the solution of the problem
in that context has the same form as in the pure diffusion case: there is a no-transaction
cone such that it is optimal to make no-transactions as long as the wealth position remains
in that cone and to trade on the boundary. Bellamy (2001) solves the same problem but
assuming market incompleteness instead of the presence of transaction costs and using a
HJB approach.

Using filtering techniques, Lakner (1995) considers utility maximization problems where
the agent must estimate the mean rate of return of the assets. In this issue, Dokuchaev and
Zhou (2001) considers the case where the stock appreciation rates are not observable and
where the strategies depend only on the known distribution of these rates and on the cur-
rent prices. Furthermore, they use general utility–loss functions (including mean-variance
criteria and goal achieving problems) and they consider some lower and upper constraints
on the terminal wealth. The problem is solved by means of backward stochastic differential
equations as well as a dual formulation.
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Finally, we want to mention another family of optimization problems related to the
contingent claims pricing: the hedging problems. These problems are not represented in
this special issue but are studied by many papers in the recent literature. The main problem
in all these papers is to compute the hedging price of a given contingent claim with respect
to a given hedging criterion. If we assume that the agents want to minimize the downside
risk, then the hedging price is equal to the super-replication price and its computation leads
to solve a stochastic-control-based problem as in the pioneering paper of El Karoui and
Quenez (1991, 1995). If we assume that the agents want to minimize the quadratic risk
then we have to solve the mean-variance hedging problem and we refer to Föllmer and
Schweizer (1992) or Schachermayer (1993) for a survey about related results.

4. The equilibrium

Models of competitive equilibrium go back to Walras (1874). The first complete proof for
the existence of an equilibrium in an economy with finitely many commodities was given by
Arrow and Debreu (1954). In the Chapter 7 of Debreu (1959), the author explains how this
model permits to take into account dynamic markets with uncertainty. Bewley (1972) studied
the competitive equilibrium in an infinite-dimensional commodity space, namelyL∞ and
Mas-Colell (1986) generalized Bewley’s results to Hausdorff locally convex, topological
vector spaces under a “uniform properness condition” on the agent’s preferences. Araujo and
Monteiro (1989a,b) and Duffie and Zame (1989) proved independently the existence of an
equilibrium without Mas-Colell’s uniform properness condition. Dana et al. (1997) extended
Mas Colell’s result to topological locally solid Riesz spaces under a local non-satiation
condition weaker than the uniform properness one. Aase (1992) and Bernis (2000) applied
these results to the reinsurance markets.

All the previous models does not take explicitely into account dynamic security trading.
Models where the agents achieve equilibrium allocations by trading in securities like the
capital asset pricing model (CAPM) or the consumption-based capital asset pricing model
(CCAPM) can be found in the literature going back to Merton (1971), Cox et al. (1985),
Duffie and Huang (1985), Huang (1987) and Karatzas et al. (1990).

The link between these two approaches is made by Duffie and Huang (1985) where
the authors explain how an Arrow–Debreu equilibrium can be implemented by trading
in securities. This role of securities was, in fact, already recognized by Arrow (1952).
The difference between the two approaches is illustrated by Cuoco (1997) where the budget
constraints are associated to all the possible equilibrium prices (all the risk-neutral measures)
instead of a unique budget constraint associated to the equilibrium price as in the classical
general equilibrium model.

In Karatzas et al. (1990), all agents are endowed in units of the same perishable commod-
ity, which arrives at some time-varying random rate. Agents may consume their endowment
as it arrives, they may sell some portion of it to other agents, or they may buy extra endow-
ment from other agents. The endowment, however, cannot be stored, and agents wish to
hedge the variability in their endowment process by trading with one another.

In this model all the prices are in term of a unique consumption good. When the market is
complete it is equivalent to assume that the agents receive their endowment initially rather
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than over time. In that case and in order to have a stochastic total wealth, we assume that
the consumption good is produced by the firms and distributed as dividends among the
shareholders. The equilibrium condition imposes then a total consumption equal to the total
supply of the consumption good and a total investment in each firm equal to the total value
in term of consumption good of that firm.

With the notations of Jouini and Napp (1998), the mathematical description of the model
is the following. LetE be an economy withn agents indexed byj = 1, . . . , n and let us
assume that thejth agent has an initial wealthxj and a utility function:Uj : BBB → R given
by

Uj(c, X) = E

(∫ T

0
uj (t, ct ) dt + Vj (X)

)
,

whereuj andVj satisfy our Assumption 3. As previously each agent maximizes his utility
level over the set of admissible strategies. More precisely, thejth agent problem is

sup
(π,c)∈AAA(xj )

Uj (c, X
xj ;π,c

T ).

In this framework an equilibrium consists in anN-dimensional price processS and
trading–consumption choices(π∗

j ; c∗
j )1≤j≤n which are optimal for the agents, i.e.

(π∗
j ; c∗

j ) ∈ arg max
(π,c)∈AAA(xj )

Uj (c, X
xj ;π,c

T ),

and such that for allt in TTT , the following market clearing conditions hold almost surely:

n∑
j=1

(c∗
j )t = δt · 1N,

n∑
j=1

(π∗
j )it = qiSi

t , i = 0, . . . , N,

n∑
j=1

X
π∗

j ,c∗
j

t = St .

whereqi is the number of firmi outstanding shares.
Note that the last condition is redundant with the two previous ones by the self-financing

condition.
In Karatzas et al. (1990) it is shown that under mild conditions a unique equilibrium

exists. In this issue, Chiarolla and Haussmann (2001) specializes and extends the Karatzas
et al. (1990) model to a situation where the endowment streams of the agents are denomi-
nated in money, not in goods, and are not exogenous. The labor provided by the agents to
a firm produces the consumable good through a production function. The agents have then
to choose a consumption and a leisure levels in order to maximize their utility function.
Furthermore, the firm defines the level of employment by a profit maximization program.
The utility functions of the agents depend then on two control variables and the main contri-
bution of this paper is to extend the classical one-dimensional approach to this framework.
The authors provide first-order necessary conditions for equilibrium, and derive from there
the existence of such an equilibrium. They also solve explicitly two examples.

Basak and Croitoru (2001) exploit the equilibrium conditions in order to analyze the
taxation impact on the asset prices. They consider a simple two agents model and use
the “fictitious” market techniques described in the previous section in order to solve the
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individual utility maximization problem. The main difficulty is due to the presence of two
redundant assets but with different taxation rules. The redundancy adds an extra step in
the agent’s problem once he has chosen his risk exposure, he must decide how to allocate
that risk between the two securities. The authors establish general necessary conditions for
equilibrium and show, in particular, that arbitrage opportunities still exist at the optimum.
They characterize this “mispricing” and they provide an analysis of its equilibrium role.
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