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Abstract

We revisit a result by Coron and Guerrero stating that the one-dimensional transport-diffusion
equation
ut + Mug — euge = 0in (0,7) x (0, L),
controlled by the left Dirichlet boundary value is zero-controllable at a bounded cost as ¢ — 07,
when T'>4.3L/M if M > 0 and when T > 57.2 L/|M| if M < 0. By a completely different method,
relying on complex analysis, we prove that this still holds when 7" > 4.2 L/M if M > 0 and when
T>61L/|M|if M <O0.

1 Introduction

Let us fix L > 0 and M # 0. We consider the following transport-diffusion equation:

us + Muy, — euz, = 01in (0,7) x (0, L),
Ujt=0 = U0 in (OaL)a (1)
u\a::O = v(t) in (OvT)7 u|m:L =0in (O7T)a

In the above equation v is a boundary control and ¢ is a small positive parameter, intended to tend to
Zero.

The problem which we consider for this parabolic equation is connected to the zero-controllability.
We recall that the problem of zero-controllability is to determine whether it is possible given a time
T > 0 and an initial data ug in L?(0,L), to find a control v € L?(0,T) such that the corresponding
solution of (1) satisfies

uw(T,z) =0 for all z € [0, L]. (2)

The controllability of parabolic equations in dimension 1, such as the one considered here for fixed
g > 0, was established by Fattorini and Russell [6]. The controllability of parabolic equation in higher
dimensions was established independently by Fursikov and Imanuvilov (see [7]) and Lebeau and Robbiano
(see [13]) in slightly different frameworks, and with different methods (both using the so-called Carleman
estimates, though).

In this paper, we investigate the cost of the control in the vanishing viscosity limit ¢ — 0%, and in
particular to determine in which situation it is possible to obtain a control which remains bounded as
e — 07. We will say that the system is uniformly zero-controllable if this property is satisfied.

A motivation for studying the controllability of a transport equation in the vanishing viscosity limit,
comes from the topic of the control of systems of conservation laws, in the context of weak entropy
solutions, see for instance [1, 2, 4, 8]. These solutions are discontinuous solutions (admitting shocks),
which can be obtained via a vanishing viscosity limit. It is hence interesting in order to understand
better the control properties of these equations, to know how the control behaves for small but not zero
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viscosity. Of course the linear model which we consider here is the simplest possible example of scalar
conservation law. A first example of controllability result of a nonlinear conservation law in the vanishing
viscosity limit was given in [9].

The problem under view was first introduced and studied by Coron and Guerrero [5]. Next Guerrero
and Lebeau [10] extended some of the results of [5] in arbitrary dimension and with a variable vector
field M. In these papers, it is proven that if the vector field M is such that the transport equation is not
controllable (because there is a characteristic of M which stays in the domain without reaching the control
zone w) then the size of the control can grow as e“/¢. On the other side, if all the characteristics stay
sufficiently long in the control zone w or outside 2, then the system uniformly zero-controllable. These
results require that T is large enough, and in particular in [5] it is proven that in the one-dimensional
case that (1) is uniformly zero-controllable when M > 0 provided that T' > 4.3L/M, and when M < 0
provided that T' > 57.2L/|M]|. Clearly the transport equation (¢ = 0) is controllable for T' > L/|M|
(this time being optimal), so one could expect that in both cases the uniform controllability to hold
for any time T' > L/|M]|. A very surprising result of [5] is that when M < 0, the control can blow up
exponentially for any T' < 2L/| M|, while this is shown only for times 7" < L/M when M > 0 (which is
much more intuitive).

What we establish in this paper is that we can improve the times 4.3 L/M and 57.2 L/| M| of Coron and
Guerrero’s paper toT > 4.2 L/M and T > 6.1 L/| M| respectively. Also (and perhaps more importantly),
our proof is of completely different nature. Coron and Guerrero used a Carleman estimate to prove the
observability inequality of the adjoint problem, and showed that the explosive nature of the constant
coming from this Carleman estimate as ¢ — 01 can be compensated by the constant of a dissipation
estimate (the solution of (1) or its adjoint equation naturally decreases for T' > 1/|M|, exponentially in
—1/e as ¢ — 0T), provided that T is large enough. Here, our method is closer to Russell’s harmonic
analysis approch to some controllability problems (see in particular Fattorini-Russell [6] and Russell
[18]). The observation inequality for the adjoint system is connected to a question concerning sum of
exponentials. This requires the construction of some bi-orthogonal family to the family of exponentials,
which relies on the Paley-Wiener theorem. Some analogous methods can be found for instance in [20, 22,
21, 16, 23], but here the core of the proof is slightly different and relies on the construction of a complex
“multiplier” due to Beurling and Malliavin [3].

Precisely, we show the following result.

Theorem 1. Given M # 0 and T > 0, the system (1) is uniformly zero-controllable in the sense that
there exist constants k > 0 and K > 0 such that for any ug € L?(0,L), any ¢ € (0,1), there eists
v € L2(0,T) such that the solution of (1) satisfies (2), and moreover

K
lollzo.m) < K exp (= Z)luollzsqo.n), (3)
provided that:
T>42 L if M >0 (4)
297 ) ,
L
T>61—if M <0. (5)
| M|

Remark 1. The conjecture that the optimal times should be 1/M and 2/|M| is hence still open. We
believe that the complex analytic technique could be a good approach to solve the problem, probably by
finding a more accurate complex multiplier.

2 Notations and preliminaries

2.1 Observability inequality

It is a standard fact (see Lions [15] and Russell [18]) that proving Theorem 1 is equivalent to establish an
observability inequality for the adjoint equation with a constant as in (3). Precisely the adjoint equation



is the following
ot + Mz +epr =01in (0,7) x (0, L),
¢=0o0n (0,7) x {0,L}, (6)
QO(T) ) = or in (Oa L)
It is then sufficient to show that for some x > 0 and K > 0, one has for any ¢ € (0,1) and any
o1 € L*(0, L), one has

K
(0. )llz20.0) < K exp (= Z) 1020, Ol 0.1)- (7)

2.2 The operator —MJ, — cd?,

To diagonalize the operator
P:=-MJ, —d?

T

it suffices to remark that

Bgz(e%u) =% Q2 u+ —0pu+ —u |,
€ 4e?

that is to say with the obvious notation for the multiplication operator

Max

.  M?
P=—ce 5 002, 06 +——1Id. (8)
e 4e

It follows that P is diagonalizable in L?(0, L), with eigenvectors
M k
ex(z) == V2exp ( - 2—:) sin (%) (9)

for k € N\ {0} and corresponding eigenvalues

kK*m?  M?

A=
the family {ex, k¥ € N\ {0}} being a Hilbert basis of L?(0,L) for the L2((07L);exp(%)dx) scalar
product:

(10)

<u,v >= /OL exp (%)u(m)v(x) dx. (11)

3 Proof of Theorem 1

3.1 General strategy

The strategy to prove Theorem 1 is connected to the method of moments, see for instance [6, 16, 18, 20,
21, 22]. The idea is to construct a biorthogonal family in L?(0,7T) to the family of exponentials

t— exp(—Ap (T —1)). (12)
By the change of variables t — T — t, we can of course consider the family of exponentials
t — exp(—Agt). (13

)

To that purpose, as in the complex-analytic proof of the Miintz-Szdsz theorem (see for instance [17, 19])

the idea is to construct a suitable family Ji(z) of entire functions of exponential type (see e.g. [12]),
satisfying

Ji(—iXj) = 0jx, (14)

where ;5 is the Kronecker symbol. Then using the Paley-Wiener theorem we deduce our biorthogonal

family ¢, as the inverse Fourier transform of Ji(z) (up to a translation in time). The family J(z)
is constructed from a single entire function having simple poles at (—i\p)gem (0} This function is



naturally constructed as a Weierstrass product (which turns out to be explicit here), multiplied by a
function (which we will designate as a “multiplier”) intended to make Jj of relevant exponential type
and with suitable behaviour on the real axis. Such a method can be traced back to Paley and Wiener
[17]. The construction of the multiplier which we employ here follows the work of Beurling and Malliavin
[3].

Once the biorthogonal family is constructed with suitable estimates, obtaining the observability
inequality (7) is rather straightforward.

We develop these main steps in the following subsections.

3.2 The Weierstrass product ¢

An entire function having the k2, k € N\ {0} as its simple zeros is the following one:

(-5 =0 &
k=1

which is an entire function (despite the square roots). Now one can construct a function having simple
zeros exactly at {—idg, k€ N\ {0} } by

B(z) = ™ <} o IZ[) . (16)

L _ M2
Ve 1z 4e

It is elementary to see that ® is of exponential type, and even satisfies

[B(:)] < COLe)exp(—Z v/ as 2] — +oc (17)
A good candidate for Ji(z) would be
®(2)
D' (—idg)(z +iXg)’

but precisely because of (17), one could show by the Phragmen-Lindelof method that such a function
cannot be bounded on the real line, and hence it cannot be used directly to construct the family 1 by
inverse Fourier transform. We must use a multiplier to “mollify” the function on the real line without
perturbing too much the behavior at the above zeros.

(18)

3.3 Beurling and Malliavin’s multiplier

We follow Beurling and Malliavin’s construction [3] (see also Koosis [12, Chapter X]). We fix

T
- L 1
o 1)
and 5 .
L:=L+ac/*and L := L + 2as"/4, (20)

with « a positive real number independent of ¢ to be chosen later.
Let us introduce

L
m™/2e

Vt. (21)

s(t) = at —

oo x2
/0 log‘l -z
/ log

0

Using that ([3, p. 294])

dt” = |z|"7 cot L; for 0 <y <2, (22)

we see that )
T

1
t2

ds(t) = —%m (23)




We notice that s is increasing for ¢ larger than

. 2
A::2€< ) . (24)

2 (L
B::4A=E<T> , (25)

which satisfies s(B) = 0. Now one defines v as the restriction of the measure ds(t) to the interval
[B, +00). Let us underline that this measure is positive.
Next we introduce for z € C:
(o)
dv(t) = / log
B

U(z) = /Ooolog
g(2) = /OOO log (1 _ i) dv(t) = /: log (1 _ i) ds(t). (27)

By “atomizing” the measure dv in the above integral, we can define

Ul(z) := /000 log

where [-] denotes the integer part and where

Nt

We also introduce

2

z
=%

2

z
=%

ds(t), (26)

and for z € C\ R

2

L2

| ) (28)

v(t) = /O du. (29)

In the same way as previously we introduce

h(z) = /OOO log (1 - i) dl(t). (30)

U(z) = Re(g(z)) and U(z) = Re(h(2)).

The main advantage of U (and h) over U is that now exp(h(z)) is an entire function. Indeed, calling
{pr, k € N} the discrete set in R consisting of the discontinuities of the function ¢ — [v(t)], we have

Of course,

exp(h(z2)) = ] <1 - ZQ) . (31)

2
keN H

The convergence of this product is quite straightforward.
Finally, the multiplier which we will use is the following:

f(z) :=exp(h(z —1)). (32)

3.4 Estimates on the multiplier

Before constructing the functions Jj, themselves, let us prove some lemmas which will be useful to obtain
properties on f.

Lemma 1. For z € R, one has R
L
Ux) < ———=+/|z| + C1aB, 33

where Cy is the following positive (and finite) constant
1 2
Cy = fmin/ log
z€R Jy

x
1= | d(t- Vi) ~2.34 < 2.35. (34)




Proof. Following (23), we have

i B
U+ =lel = = [ o

which immediately gives (34) after the change of variable ¢ — ¢/B. Now that the constant C} is finite
follows from explicit integration:

2
T
17t72 dS,

2

1
/0 log |1 — % d(t —Vt) = —m/a?—i—xln’ii’ - ﬁln‘ﬁjﬂ +2+y/zarctan(y/z).  (35)
O
Lemma 2. For Im(z) < 0, we have
U(z) = —walm(z) — l/ Im(z)U(1) dt. (36)
T ) |zt

Proof. This is essentially [12, Vol. I, Theorem G.1, p. 47] (see also [12, Vol. II, p. 161]). We recall this
result for the reader’s convenience.

Theorem 2. Let f(z) be analytic in Im(z) > 0 and at the points of the real axis. Suppose that

log|f(2)| < O(lz),

forIm(z) > 0 and |z| large, and that

dxr < oco.

/+°° log" |f ()]

oo 122

Then if f(z) has no zeros in Im(z) > 0,

1 [°° Im(z)lo t
log|f(z)|:.AIm(z)+f/ ()—gg()'dt,
T™J-—x |Z - t‘
there where | )
A = limsup M.
y——+00 Yy
We notice that for any y € R we have
o0 y2
U (iy) :/ log 1—|—t—2 dv,
0
so that using
v(t)
T — a ast — 400,
and integrating by parts we deduce
u
lim sup Ultiy) = 7a, (37)

y—+oo  EY

Now applying Theorem 2 to exp(g(—z)) would yield the result, except that U is not analytic at the
points of the real axis. But this is just a matter of considering exp(g(—z — 7)) for small 7 > 0 and
passing to the limit by dominated convergence.

O

Lemma 3. For z € R, one has

Uz — i) <7Ta+C’1aB—\/L2>Em. (38)



Proof. We apply (33) and (36); since

o0 1 o0 1
——dt = — _dt=m,
/_oo|x—z'—t|2 /_m1+|x—t|2 "

o0
ﬂdt

Tzt

This can be cut into two integrals which are computed in a standard way via the respective changes of

variable u = v/t and u = /—¢:

there is left to compute

/OO VE g T
o 1+ (z—1t)? VoIt a2 — 2z
0 v —t m

dt = .
coo L+ (2 —1)? Vov1+ 22 + 22

By considering x > 0 and z < 0 we see that

(\/2\/1+x2+2x+\/2\/1+:r2—2x> > 24/|z|,

and the result follows. O

and

Lemma 4. We have for z = x +1iy € C:

/ log
0

Proof. This is [12, Vol. II, Lemma, p. 162]. O

2

1- 2
t2 2|yl 2max(|zl, y])

Lemma 5. Denote )

1
Gly) == / log |1+ % | d(t ~ V). (40)
0
For any y € R one has
00 2
/ log |1+ % dt = my, (41)
0
00 2
Y
/O log |1+ 5 dvVt = m\/2|y), (42)
B 2
V0 ge— upa (Y
/0 log 1—1—15—2 ds = aBG (B) (43)

Proof. These are easily obtained by integration by parts and change of variable, and noting s(B) = 0. O

Lemma 6. For all y € R one has

o0 y2 e8] y2 y2
/ log (1 + t2> d[s] = / log [ 1+ t2) ds — log (1 + B2) . (44)
B B

Proof. By integrating by parts, recalling that s(B) = 0 and using 0 < s(¢) — [s(¢)] < 1, we obtain

/]Eoolog(l—i—‘i) d([s] — ) /Booat [1og<1+3£
42

WV

\V
m\g
»
S
o]
7 N
—



The conclusion of this paragraph is the following
Proposition 1. The function U constructed above satisfies the following properties for some C' > 0:
L

Vr € R, Uz —i < —
(x — 1) o

Vx| +aBCy +log™ (|z|) 4+ 7a, (45)
- (s L y? Y
Yy € U > waly| — —A/|y| — + L) - Z).
y € R™, U(iy) > maly| e ly| — log (1 B2> aBG (B) (46)

Proof. Estimate (45) is a direct consequence of Lemmata 3 and 4, while estimate (46) follows from
Lemmata 5 and 6 and the fact that y — U (iy) is monotonous on R~. O

3.5 The biorthogonal family
Now we introduce the function for any k € N\ {0}:

~ - D(2) f(2)
Jk(z) T (I)/(—Z)\k)(z + Z)\k) f(_ZAk) .

The construction of Paragraph 3.3 was performed in order to get the following result.

(47)

Proposition 2. For any k € N\ {0}, the function Jy is an entire function of exponential type Ta.
Moreover for € > 0 small enough independent of k, it satisfies on the real line

. LIM| 1 T L a2
< S (O - Oy — = —/ .
|Jk((E)| \Cexp ( 2% + 71_(01 C2)T6 2)\k+ \@ Ak) (1+|$D (48)
where
Cy:=—G(2) ~ 1.97 > 1.95. (49)

Proof. That Jj, is an entire function follows from the fact that ® is entire and has only simple zeros at
—iA, and that f is an entire function with f(—i);) # 0. From (18), we see that in order to prove that
Jj, is of exponential type ma = T/2, it is sufficient to prove that f is of exponential type ma. That h
satisfies |h(2)| < Cexp(malz|) is a consequence of Theorem 2 and (37) being valid for U. It follows that
f is also of exponential type T'/2.

Now let us turn to estimate (48). Using (16) and the fact that fory € R™, z € R + Im(\/ix + y—ix)

is maximal at x = 0, we infer
LIM]|

exp (M + L /lal)

Le-1/2 |g2 4 My |4

[@(2)] <

Using (45), we infer

LM| _ L-L +
. exp ( 75— — Z==+/|z| + aBCy +log™ (|z]) + 7a
@) exp(U(w ) < B - )

_ M4 1/4
Le=1/? |22 + {5 |
exp (%ﬁ“ —|—aBC’1)
< 051/2 7
M4 |1 ’
|‘T2 + 16¢2 |

provided that o > V2 and with C independent of ¢.
Now a direct computation yields
(—1)*

P (—i\y) = .
( ‘ k) 28/\k

Finally, by (46) we get

, L A7 Ak
|f(=iXg)| = cexp <7ra)\k — %V/\k —log (1 + Bl;> — aBG (B)) .



Using for instance log(1 + y2/24) > \/|y|, we infer that for o large enough and independently of k and
e € (0,1) one has

|f(—iXg)| = cexp <7ra)\k - %\/ﬁ— aBG (E)) .

Putting all these estimates together yields

exp (%ﬁ“ +aBC; — ma), + %\/ﬁ —aBG (%’“))

[Ji(z)] < C 0 (50)
/4 1/2
4 2l gl
Concerning the last term in the exponential, we use that in both cases T' > 4L/|M]| so that
A M2 T?
B 8 L2

(at least for ¢ small so that T|M|/L > 4) and the fact that G is a negative decreasing function. For
larger ¢ it suffices to enhance a little bit the constant C' in (50). O

Remark 2. The constant Co could be optimized a little bit further by making the optimization later (see
Proposition 3).

Now from Proposition 2 and the Paley-Wiener theorem, we deduce that Jj, is the Fourier-Laplace
transform of some function v, € L%(R), supported in [—7T/2,T/2]. Now we define

_exp(—i%z) - B
Ile) = SO (52)

We deduce that Jj is the Fourier-Laplace transform of the function vy := TT/gzzk, supported in [0, T,
where 77/, is the translation at the source by T'/2.
From (48) and (52), we moreover deduce that for x € R

LIM| 1 2 L 1
J <C —+—(C1 = Co) e+ —=V X | /- 53
|k ()] eXp( 9% +7r( 1 2)T5+\/E k) 1+ |z))3/2 (53)
Moreover, due to (47) and (52), we have
Je(iN;) = 6ju. (54)
Finally Parseval’s identity yields
LIM| 1 2 L
< il Al _ - 4
¥kl 2@y < Cexp < 5 T 7T(Ol 02)T5 + \/g\/)\k> ; (55)

and (54) translates into
T
/ i () exp(— gt dt = 6. (56)
0

As mentionned in Paragraph 3.1, we will in fact consider ¢ — 9y (T — t). We will still call the resulting
function 1. The new family () still satisfies (55), and now (56) is replaced by

T
/O () exp(=A; (T — £)) dt = 6. (57)



3.6 The constants

The constants of the main statement appear in the next result.
Proposition 3. We have for some k > 0

LIMI
2¢e

L2 L
(01 CQ)T—(€ —TA, + %\/)\k < —kMg for all k, (58)

L
T>|M|c+ with ¢, =2+ 1/4+ = (Cl Cy) < 4.2, (59)

and we have for some k > 0

provided that

LIM L? L
|5 | (C’ C’g)— — Tl + \[\/)\k < —kAg for all k, (60)

L
T> |M\C_ with c =3 +1/9+ = (C’1 Cy) < 6.1. (61)

Proof. First we notice that

provided that

L
is decreasing for values larger than 4—16%—2 < % (in both cases). Next we only use that for all k,
M?
A =2 —, 62
B2 (62)

hence we are led to decide when T is larger than the larger root of the polynomial

1 L? M2 LM
(Cl 02)777X2+X7‘ |,

T € 2e €
for (58), respectively

1 2 M 3L|M|

—(C,—C - —X’+X

7r( e 2) 2 + 2
for (60). Obvious computations give (59)-(61)7 and the estimates of ¢_ and ¢y come from (34) and
(49). O

Remark 3. We do not use the “ck*m2/L?” part of \i, that is in some sense, we do not beneﬁt from the

high frequencies. Another possible strategy would be to use this part to absorb the term (C’l 02)%2,
and to treat the low frequencies in another way, for instance by using the “spectral mequalzty” of Lebeau-
Robbiano [13], Lebeau-Zuazua [14], Jerison-Lebeau [11] together with a dissipation estimate. But the
constant appearing in this inequality is not explicit, so the constants c— and c4 would not be either.

3.7 Deducing the observability inequality

Consider a solution ¢ of (6), where
N
x) = chek(:ﬁ). (63)
k=1
It is not restrictive to consider ¢ as the combination of a finite number of modes, since the inequalities

which follow are independent of N. We see that

N

o(t,z) = ek exp(—Ak (T — t))er(x), (64)
k=1

10



and consequently
T
T
\/ikzck:/ (020)(t,0) Y. (t) dt
0

Hence we deduce

L
k| € —— |0z @) o= . 65
|| \@Tkll Plz=0llL2(0,7) ¥k | L2 (0,7) (65)
And of course,
N
»(0,7) = Z ek exp(—ApT)ex (). (66)
k=1
From (65) and (66) we deduce
N
1
||<P(0795)||L2(0 L) 0”69:90”L2(0 T) Z % /\kT ||€k( )HL"’(O,L)”wkHLz(O,T)- (67)
=1

Now let us distinguish between the two cases M > 0 and M < 0.

Case 1. If M > 0, then
llex (@)l 22 (0,0) < 1.
Hence using (55) and (67), we finally deduce

I3
ﬁ\/ﬁ> 10zl L2 (0,7)- (68)

T2

N
1 LM L
(0, )| 20,y < Z % ( | ‘ (01 CQ)T— —TX, +
P e
Using (58) we deduce

L-1
l0(0, )l 2(0,) < CllOx@llL2(0,7) ZGXP —*Ak + ==V eXP(—*Ak)

=
= VE TR
It is not difficult to see that for some constant C' > 0 independent of ¢ one has
2 L-L 1 ? 1?2 ’ K M?
-+ —— C1—C)——— < C - <C— ——,
o Mk + NG + 7r( 1 —Cy) - k

and that

N
K 1 erm?
IR S

| =

N
k=1

/AN
(]
D
4
o]
/I\
) (L)
X
NMEE
N———

N

This gives the desired result.

Case 2. If M < 0, then
lex@)ll 2.y < exp | L1
(%4 L2(0,L) & exp % .
Hence using (55) and (67), we finally deduce

LIM 2
(0, )| 20,y < CZ (' ‘ (01 Co)m = The+

L
\/g\/ﬁ> Ha:r<P||L2(0,T)» (69)

and we conclude as previously by using (60). This concludes the proof of Theorem 1.
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