A complex-analytic approach to the problem of uniform controllability of a transport equation in the vanishing viscosity limit

Olivier Glass*

June 29, 2009

Abstract

We revisit a result by Coron and Guerrero stating that the one-dimensional transport-diffusion equation $$
u_{t}+M u_{x}-\varepsilon u_{x x}=0 \text { in }(0, T) \times(0, L),
$$ controlled by the left Dirichlet boundary value is zero-controllable at a bounded cost as $\varepsilon \rightarrow 0^{+}$, when $T>4.3 L / M$ if $M>0$ and when $T>57.2 L /|M|$ if $M<0$. By a completely different method, relying on complex analysis, we prove that this still holds when $T>4.2 L / M$ if $M>0$ and when $T>6.1 L /|M|$ if $M<0$.

1 Introduction

Let us fix $L>0$ and $M \neq 0$. We consider the following transport-diffusion equation:

$$
\left\{\begin{array}{l}
u_{t}+M u_{x}-\varepsilon u_{x x}=0 \text { in }(0, T) \times(0, L), \tag{1}\\
u_{\mid t=0}=u_{0} \text { in }(0, L), \\
u_{\mid x=0}=v(t) \text { in }(0, T), \quad u_{\mid x=L}=0 \text { in }(0, T),
\end{array}\right.
$$

In the above equation v is a boundary control and ε is a small positive parameter, intended to tend to zero.

The problem which we consider for this parabolic equation is connected to the zero-controllability. We recall that the problem of zero-controllability is to determine whether it is possible given a time $T>0$ and an initial data u_{0} in $L^{2}(0, L)$, to find a control $v \in L^{2}(0, T)$ such that the corresponding solution of (1) satisfies

$$
\begin{equation*}
u(T, x)=0 \text { for all } x \in[0, L] \tag{2}
\end{equation*}
$$

The controllability of parabolic equations in dimension 1 , such as the one considered here for fixed $\varepsilon>0$, was established by Fattorini and Russell [6]. The controllability of parabolic equation in higher dimensions was established independently by Fursikov and Imanuvilov (see [7]) and Lebeau and Robbiano (see [13]) in slightly different frameworks, and with different methods (both using the so-called Carleman estimates, though).

In this paper, we investigate the cost of the control in the vanishing viscosity limit $\varepsilon \rightarrow 0^{+}$, and in particular to determine in which situation it is possible to obtain a control which remains bounded as $\varepsilon \rightarrow 0^{+}$. We will say that the system is uniformly zero-controllable if this property is satisfied.

A motivation for studying the controllability of a transport equation in the vanishing viscosity limit, comes from the topic of the control of systems of conservation laws, in the context of weak entropy solutions, see for instance $[1,2,4,8]$. These solutions are discontinuous solutions (admitting shocks), which can be obtained via a vanishing viscosity limit. It is hence interesting in order to understand better the control properties of these equations, to know how the control behaves for small but not zero

[^0]viscosity. Of course the linear model which we consider here is the simplest possible example of scalar conservation law. A first example of controllability result of a nonlinear conservation law in the vanishing viscosity limit was given in [9].

The problem under view was first introduced and studied by Coron and Guerrero [5]. Next Guerrero and Lebeau [10] extended some of the results of [5] in arbitrary dimension and with a variable vector field M. In these papers, it is proven that if the vector field M is such that the transport equation is not controllable (because there is a characteristic of M which stays in the domain without reaching the control zone ω) then the size of the control can grow as $e^{C / \varepsilon}$. On the other side, if all the characteristics stay sufficiently long in the control zone ω or outside $\bar{\Omega}$, then the system uniformly zero-controllable. These results require that T is large enough, and in particular in [5] it is proven that in the one-dimensional case that (1) is uniformly zero-controllable when $M>0$ provided that $T>4.3 L / M$, and when $M<0$ provided that $T>57.2 L /|M|$. Clearly the transport equation $(\varepsilon=0)$ is controllable for $T \geqslant L /|M|$ (this time being optimal), so one could expect that in both cases the uniform controllability to hold for any time $T>L /|M|$. A very surprising result of [5] is that when $M<0$, the control can blow up exponentially for any $T<2 L /|M|$, while this is shown only for times $T<L / M$ when $M>0$ (which is much more intuitive).

What we establish in this paper is that we can improve the times $4.3 L / M$ and $57.2 L /|M|$ of Coron and Guerrero's paper to $T>4.2 L / M$ and $T>6.1 L /|M|$ respectively. Also (and perhaps more importantly), our proof is of completely different nature. Coron and Guerrero used a Carleman estimate to prove the observability inequality of the adjoint problem, and showed that the explosive nature of the constant coming from this Carleman estimate as $\varepsilon \rightarrow 0^{+}$can be compensated by the constant of a dissipation estimate (the solution of (1) or its adjoint equation naturally decreases for $T>1 /|M|$, exponentially in $-1 / \varepsilon$ as $\varepsilon \rightarrow 0^{+}$), provided that T is large enough. Here, our method is closer to Russell's harmonic analysis approch to some controllability problems (see in particular Fattorini-Russell [6] and Russell [18]). The observation inequality for the adjoint system is connected to a question concerning sum of exponentials. This requires the construction of some bi-orthogonal family to the family of exponentials, which relies on the Paley-Wiener theorem. Some analogous methods can be found for instance in [20, 22, $21,16,23]$, but here the core of the proof is slightly different and relies on the construction of a complex "multiplier" due to Beurling and Malliavin [3].

Precisely, we show the following result.
Theorem 1. Given $M \neq 0$ and $T>0$, the system (1) is uniformly zero-controllable in the sense that there exist constants $\kappa>0$ and $K>0$ such that for any $u_{0} \in L^{2}(0, L)$, any $\varepsilon \in(0,1)$, there exists $v \in L^{2}(0, T)$ such that the solution of (1) satisfies (2), and moreover

$$
\begin{equation*}
\|v\|_{L^{2}(0, T)} \leqslant K \exp \left(-\frac{\kappa}{\varepsilon}\right)\left\|u_{0}\right\|_{L^{2}(0, L)}, \tag{3}
\end{equation*}
$$

provided that:

$$
\begin{align*}
& T>4.2 \frac{L}{M} \text { if } M>0 \tag{4}\\
& T>6.1 \frac{L}{|M|} \text { if } M<0 \tag{5}
\end{align*}
$$

Remark 1. The conjecture that the optimal times should be $1 / M$ and $2 /|M|$ is hence still open. We believe that the complex analytic technique could be a good approach to solve the problem, probably by finding a more accurate complex multiplier.

2 Notations and preliminaries

2.1 Observability inequality

It is a standard fact (see Lions [15] and Russell [18]) that proving Theorem 1 is equivalent to establish an observability inequality for the adjoint equation with a constant as in (3). Precisely the adjoint equation
is the following

$$
\left\{\begin{array}{l}
\varphi_{t}+M \varphi_{x}+\varepsilon \varphi_{x x}=0 \text { in }(0, T) \times(0, L), \tag{6}\\
\varphi=0 \text { on }(0, T) \times\{0, L\}, \\
\varphi(T, \cdot)=\varphi_{T} \text { in }(0, L) .
\end{array}\right.
$$

It is then sufficient to show that for some $\kappa>0$ and $K>0$, one has for any $\varepsilon \in(0,1)$ and any $\varphi_{T} \in L^{2}(0, L)$, one has

$$
\begin{equation*}
\|\varphi(0, \cdot)\|_{L^{2}(0, L)} \leqslant K \exp \left(-\frac{\kappa}{\varepsilon}\right)\left\|\partial_{x} \varphi(\cdot, 0)\right\|_{L^{2}(0, T)} \tag{7}
\end{equation*}
$$

2.2 The operator $-M \partial_{x}-\varepsilon \partial_{x x}^{2}$

To diagonalize the operator

$$
P:=-M \partial_{x}-\varepsilon \partial_{x x}^{2},
$$

it suffices to remark that

$$
\partial_{x x}^{2}\left(e^{\frac{M x}{2 \varepsilon}} u\right)=e^{\frac{M x}{2 \varepsilon}}\left(\partial_{x x}^{2} u+\frac{M}{\varepsilon} \partial_{x} u+\frac{M^{2}}{4 \varepsilon^{2}} u\right),
$$

that is to say with the obvious notation for the multiplication operator

$$
\begin{equation*}
P=-\varepsilon e^{-\frac{M x}{2 \varepsilon}} \circ \partial_{x x}^{2} \circ e^{\frac{M x}{2 \varepsilon}}+\frac{M^{2}}{4 \varepsilon} \mathrm{Id} . \tag{8}
\end{equation*}
$$

It follows that P is diagonalizable in $L^{2}(0, L)$, with eigenvectors

$$
\begin{equation*}
e_{k}(x):=\sqrt{2} \exp \left(-\frac{M x}{2 \varepsilon}\right) \sin \left(\frac{k \pi x}{L}\right) \tag{9}
\end{equation*}
$$

for $k \in \mathbb{N} \backslash\{0\}$ and corresponding eigenvalues

$$
\begin{equation*}
\lambda_{k}:=\varepsilon \frac{k^{2} \pi^{2}}{L^{2}}+\frac{M^{2}}{4 \varepsilon}, \tag{10}
\end{equation*}
$$

the family $\left\{e_{k}, k \in \mathbb{N} \backslash\{0\}\right\}$ being a Hilbert basis of $L^{2}(0, L)$ for the $L^{2}\left((0, L) ; \exp \left(\frac{M x}{\varepsilon}\right) d x\right)$ scalar product:

$$
\begin{equation*}
<u, v>:=\int_{0}^{L} \exp \left(\frac{M x}{\varepsilon}\right) u(x) v(x) d x \tag{11}
\end{equation*}
$$

3 Proof of Theorem 1

3.1 General strategy

The strategy to prove Theorem 1 is connected to the method of moments, see for instance $[6,16,18,20$, 21,22]. The idea is to construct a biorthogonal family in $L^{2}(0, T)$ to the family of exponentials

$$
\begin{equation*}
t \mapsto \exp \left(-\lambda_{k}(T-t)\right) \tag{12}
\end{equation*}
$$

By the change of variables $t \mapsto T-t$, we can of course consider the family of exponentials

$$
\begin{equation*}
t \mapsto \exp \left(-\lambda_{k} t\right) \tag{13}
\end{equation*}
$$

To that purpose, as in the complex-analytic proof of the Müntz-Szász theorem (see for instance [17, 19]) the idea is to construct a suitable family $J_{k}(z)$ of entire functions of exponential type (see e.g. [12]), satisfying

$$
\begin{equation*}
J_{k}\left(-i \lambda_{j}\right)=\delta_{j k} \tag{14}
\end{equation*}
$$

where $\delta_{j k}$ is the Kronecker symbol. Then using the Paley-Wiener theorem we deduce our biorthogonal family ψ_{k} as the inverse Fourier transform of $J_{k}(z)$ (up to a translation in time). The family $J_{k}(z)$ is constructed from a single entire function having simple poles at $\left(-i \lambda_{k}\right)_{k \in \mathbb{N} \backslash\{0\}}$. This function is
naturally constructed as a Weierstrass product (which turns out to be explicit here), multiplied by a function (which we will designate as a "multiplier") intended to make J_{k} of relevant exponential type and with suitable behaviour on the real axis. Such a method can be traced back to Paley and Wiener [17]. The construction of the multiplier which we employ here follows the work of Beurling and Malliavin [3].

Once the biorthogonal family is constructed with suitable estimates, obtaining the observability inequality (7) is rather straightforward.

We develop these main steps in the following subsections.

3.2 The Weierstrass product Φ

An entire function having the $k^{2}, k \in \mathbb{N} \backslash\{0\}$ as its simple zeros is the following one:

$$
\begin{equation*}
\prod_{k=1}^{\infty}\left(1-\frac{z}{k^{2}}\right)=\frac{\sin (\pi \sqrt{z})}{\pi \sqrt{z}} \tag{15}
\end{equation*}
$$

which is an entire function (despite the square roots). Now one can construct a function having simple zeros exactly at $\left\{-i \lambda_{k}, k \in \mathbb{N} \backslash\{0\}\right\}$ by

$$
\begin{equation*}
\Phi(z)=\frac{\sin \left(\frac{L}{\sqrt{\varepsilon}} \sqrt{i z-\frac{M^{2}}{4 \varepsilon}}\right)}{\frac{L}{\sqrt{\varepsilon}} \sqrt{i z-\frac{M^{2}}{4 \varepsilon}}} \tag{16}
\end{equation*}
$$

It is elementary to see that Φ is of exponential type, and even satisfies

$$
\begin{equation*}
|\Phi(z)| \leqslant C(M, \varepsilon) \exp \left(\frac{L}{\sqrt{2 \varepsilon}} \sqrt{|z|}\right) \text { as }|z| \rightarrow+\infty \tag{17}
\end{equation*}
$$

A good candidate for $J_{k}(z)$ would be

$$
\begin{equation*}
\frac{\Phi(z)}{\Phi^{\prime}\left(-i \lambda_{k}\right)\left(z+i \lambda_{k}\right)} \tag{18}
\end{equation*}
$$

but precisely because of (17), one could show by the Phragmen-Lindelöf method that such a function cannot be bounded on the real line, and hence it cannot be used directly to construct the family ψ_{k} by inverse Fourier transform. We must use a multiplier to "mollify" the function on the real line without perturbing too much the behavior at the above zeros.

3.3 Beurling and Malliavin's multiplier

We follow Beurling and Malliavin's construction [3] (see also Koosis [12, Chapter X]). We fix

$$
\begin{equation*}
a:=\frac{T}{2 \pi} \tag{19}
\end{equation*}
$$

and

$$
\begin{equation*}
\tilde{L}:=L+\alpha \varepsilon^{1 / 4} \text { and } \hat{L}:=L+2 \alpha \varepsilon^{1 / 4}, \tag{20}
\end{equation*}
$$

with α a positive real number independent of ε to be chosen later.
Let us introduce

$$
\begin{equation*}
s(t)=a t-\frac{\tilde{L}}{\pi \sqrt{2 \varepsilon}} \sqrt{t} \tag{21}
\end{equation*}
$$

Using that ([3, p. 294])

$$
\begin{equation*}
\int_{0}^{\infty} \log \left|1-\frac{x^{2}}{t^{2}}\right| d t^{\gamma}=|x|^{\gamma} \pi \cot \frac{\pi \gamma}{2} \text { for } 0<\gamma<2 \tag{22}
\end{equation*}
$$

we see that

$$
\begin{equation*}
\int_{0}^{\infty} \log \left|1-\frac{x^{2}}{t^{2}}\right| d s(t)=-\frac{\tilde{L}}{\sqrt{2 \varepsilon}} \sqrt{|x|} \tag{23}
\end{equation*}
$$

We notice that s is increasing for t larger than

$$
\begin{equation*}
A:=\frac{1}{2 \varepsilon}\left(\frac{\tilde{L}}{T}\right)^{2} \tag{24}
\end{equation*}
$$

We also introduce

$$
\begin{equation*}
B:=4 A=\frac{2}{\varepsilon}\left(\frac{\tilde{L}}{T}\right)^{2} \tag{25}
\end{equation*}
$$

which satisfies $s(B)=0$. Now one defines ν as the restriction of the measure $d s(t)$ to the interval $[B,+\infty)$. Let us underline that this measure is positive.

Next we introduce for $z \in \mathbb{C}$:

$$
\begin{equation*}
U(z):=\int_{0}^{\infty} \log \left|1-\frac{z^{2}}{t^{2}}\right| d \nu(t)=\int_{B}^{\infty} \log \left|1-\frac{z^{2}}{t^{2}}\right| d s(t) \tag{26}
\end{equation*}
$$

and for $z \in \mathbb{C} \backslash \mathbb{R}$

$$
\begin{equation*}
g(z):=\int_{0}^{\infty} \log \left(1-\frac{z^{2}}{t^{2}}\right) d \nu(t)=\int_{B}^{\infty} \log \left(1-\frac{z^{2}}{t^{2}}\right) d s(t) \tag{27}
\end{equation*}
$$

By "atomizing" the measure $d \nu$ in the above integral, we can define

$$
\begin{equation*}
\tilde{U}(z):=\int_{0}^{\infty} \log \left|1-\frac{z^{2}}{t^{2}}\right| d[\nu(t)] \tag{28}
\end{equation*}
$$

where [.] denotes the integer part and where

$$
\begin{equation*}
\nu(t)=\int_{0}^{t} d \nu \tag{29}
\end{equation*}
$$

In the same way as previously we introduce

$$
\begin{equation*}
h(z):=\int_{0}^{\infty} \log \left(1-\frac{z^{2}}{t^{2}}\right) d[\nu](t) . \tag{30}
\end{equation*}
$$

Of course,

$$
U(z)=\operatorname{Re}(g(z)) \text { and } \tilde{U}(z)=\operatorname{Re}(h(z)) .
$$

The main advantage of \tilde{U} (and h) over U is that now $\exp (h(z))$ is an entire function. Indeed, calling $\left\{\mu_{k}, k \in \mathbb{N}\right\}$ the discrete set in \mathbb{R} consisting of the discontinuities of the function $t \mapsto[\nu(t)]$, we have

$$
\begin{equation*}
\exp (h(z))=\prod_{k \in \mathbb{N}}\left(1-\frac{z^{2}}{\mu_{k}^{2}}\right) . \tag{31}
\end{equation*}
$$

The convergence of this product is quite straightforward.
Finally, the multiplier which we will use is the following:

$$
\begin{equation*}
f(z):=\exp (h(z-i)) . \tag{32}
\end{equation*}
$$

3.4 Estimates on the multiplier

Before constructing the functions J_{k} themselves, let us prove some lemmas which will be useful to obtain properties on f.

Lemma 1. For $x \in \mathbb{R}$, one has

$$
\begin{equation*}
U(x) \leqslant-\frac{\tilde{L}}{\sqrt{2 \varepsilon}} \sqrt{|x|}+C_{1} a B \tag{33}
\end{equation*}
$$

where C_{1} is the following positive (and finite) constant

$$
\begin{equation*}
C_{1}:=-\min _{x \in \mathbb{R}} \int_{0}^{1} \log \left|1-\frac{x^{2}}{t^{2}}\right| d(t-\sqrt{t}) \simeq 2.34<2.35 . \tag{34}
\end{equation*}
$$

Proof. Following (23), we have

$$
U(x)+\frac{\tilde{L}}{\sqrt{2 \varepsilon}} \sqrt{|x|}=-\int_{0}^{B} \log \left|1-\frac{x^{2}}{t^{2}}\right| d s
$$

which immediately gives (34) after the change of variable $t \mapsto t / B$. Now that the constant C_{1} is finite follows from explicit integration:

$$
\begin{equation*}
\int_{0}^{1} \log \left|1-\frac{x^{2}}{t^{2}}\right| d(t-\sqrt{t})=-\pi \sqrt{x}+x \ln \left|\frac{x+1}{x-1}\right|-\sqrt{x} \ln \left|\frac{\sqrt{x}+1}{\sqrt{x}-1}\right|+2 \sqrt{x} \arctan (\sqrt{x}) \tag{35}
\end{equation*}
$$

Lemma 2. For $\operatorname{Im}(z)<0$, we have

$$
\begin{equation*}
U(z)=-\pi a \operatorname{Im}(z)-\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{\operatorname{Im}(z) U(t)}{|z-t|^{2}} d t \tag{36}
\end{equation*}
$$

Proof. This is essentially [12, Vol. I, Theorem G.1, p. 47] (see also [12, Vol. II, p. 161]). We recall this result for the reader's convenience.

Theorem 2. Let $f(z)$ be analytic in $\operatorname{Im}(z)>0$ and at the points of the real axis. Suppose that

$$
\log |f(z)| \leqslant \mathcal{O}(|z|)
$$

for $\operatorname{Im}(z) \geqslant 0$ and $|z|$ large, and that

$$
\int_{-\infty}^{+\infty} \frac{\log ^{+}|f(x)|}{1+x^{2}} d x<\infty
$$

Then if $f(z)$ has no zeros in $\operatorname{Im}(z)>0$,

$$
\log |f(z)|=\mathcal{A} \operatorname{Im}(z)+\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{\operatorname{Im}(z) \log |f(t)|}{|z-t|^{2}} d t
$$

there where

$$
\mathcal{A}=\limsup _{y \rightarrow+\infty} \frac{\log |f(i y)|}{y}
$$

We notice that for any $y \in \mathbb{R}$ we have

$$
U(i y)=\int_{0}^{\infty} \log \left|1+\frac{y^{2}}{t^{2}}\right| d \nu
$$

so that using

$$
\frac{\nu(t)}{t} \rightarrow a \text { as } t \rightarrow+\infty
$$

and integrating by parts we deduce

$$
\begin{equation*}
\limsup _{y \rightarrow+\infty} \frac{U(\pm i y)}{ \pm y}=\pi a \tag{37}
\end{equation*}
$$

Now applying Theorem 2 to $\exp (g(-z))$ would yield the result, except that U is not analytic at the points of the real axis. But this is just a matter of considering $\exp (g(-z-i \tau))$ for small $\tau>0$ and passing to the limit by dominated convergence.

Lemma 3. For $x \in \mathbb{R}$, one has

$$
\begin{equation*}
U(x-i) \leqslant \pi a+C_{1} a B-\frac{\tilde{L}}{\sqrt{2 \varepsilon}} \sqrt{|x|} \tag{38}
\end{equation*}
$$

Proof. We apply (33) and (36); since

$$
\int_{-\infty}^{\infty} \frac{1}{|x-i-t|^{2}} d t=\int_{-\infty}^{\infty} \frac{1}{1+|x-t|^{2}} d t=\pi
$$

there is left to compute

$$
\int_{-\infty}^{\infty} \frac{\sqrt{|t|}}{1+|x-t|^{2}} d t
$$

This can be cut into two integrals which are computed in a standard way via the respective changes of variable $u=\sqrt{t}$ and $u=\sqrt{-t}$:

$$
\int_{0}^{\infty} \frac{\sqrt{t}}{1+(x-t)^{2}} d t=\frac{\pi}{\sqrt{2 \sqrt{1+x^{2}}-2 x}}
$$

and

$$
\int_{-\infty}^{0} \frac{\sqrt{-t}}{1+(x-t)^{2}} d t=\frac{\pi}{\sqrt{2 \sqrt{1+x^{2}}+2 x}}
$$

By considering $x>0$ and $x<0$ we see that

$$
\left(\sqrt{2 \sqrt{1+x^{2}}+2 x}+\sqrt{2 \sqrt{1+x^{2}}-2 x}\right) \geqslant 2 \sqrt{|x|}
$$

and the result follows.
Lemma 4. We have for $z=x+i y \in \mathbb{C}$:

$$
\begin{equation*}
\int_{0}^{\infty} \log \left|1-\frac{z^{2}}{t^{2}}\right| d([\nu](t)-\nu(t)) \leqslant \log \left(\frac{\max (|x|,|y|)}{2|y|}+\frac{|y|}{2 \max (|x|,|y|)}\right) \tag{39}
\end{equation*}
$$

Proof. This is [12, Vol. II, Lemma, p. 162].

Lemma 5. Denote

$$
\begin{equation*}
G(y):=\int_{0}^{1} \log \left|1+\frac{y^{2}}{t^{2}}\right| d(t-\sqrt{t}) \tag{40}
\end{equation*}
$$

For any $y \in \mathbb{R}$ one has

$$
\begin{gather*}
\int_{0}^{\infty} \log \left|1+\frac{y^{2}}{t^{2}}\right| d t=\pi y \tag{41}\\
\int_{0}^{\infty} \log \left|1+\frac{y^{2}}{t^{2}}\right| d \sqrt{t}=\pi \sqrt{2|y|} \tag{42}\\
\int_{0}^{B} \log \left|1+\frac{y^{2}}{t^{2}}\right| d s=a B G\left(\frac{y}{B}\right) \tag{43}
\end{gather*}
$$

Proof. These are easily obtained by integration by parts and change of variable, and noting $s(B)=0$.
Lemma 6. For all $y \in \mathbb{R}$ one has

$$
\begin{equation*}
\int_{B}^{\infty} \log \left(1+\frac{y^{2}}{t^{2}}\right) d[s] \geqslant \int_{B}^{\infty} \log \left(1+\frac{y^{2}}{t^{2}}\right) d s-\log \left(1+\frac{y^{2}}{B^{2}}\right) \tag{44}
\end{equation*}
$$

Proof. By integrating by parts, recalling that $s(B)=0$ and using $0 \leqslant s(t)-[s(t)] \leqslant 1$, we obtain

$$
\begin{aligned}
\int_{B}^{\infty} \log \left(1+\frac{y^{2}}{t^{2}}\right) d([s]-s) & \geqslant \int_{B}^{\infty} \partial_{t}\left[\log \left(1+\frac{y^{2}}{t^{2}}\right)\right](s(t)-[s(t)]) d t \\
& \geqslant \int_{B}^{\infty} \partial_{t}\left[\log \left(1+\frac{y^{2}}{t^{2}}\right)\right] d t \\
& =-\log \left(1+\frac{y^{2}}{B^{2}}\right)
\end{aligned}
$$

The conclusion of this paragraph is the following
Proposition 1. The function \tilde{U} constructed above satisfies the following properties for some $C>0$:

$$
\begin{gather*}
\forall x \in \mathbb{R}, \tilde{U}(x-i) \leqslant-\frac{\tilde{L}}{\sqrt{2 \varepsilon}} \sqrt{|x|}+a B C_{1}+\log ^{+}(|x|)+\pi a, \tag{45}\\
\forall y \in \mathbb{R}^{-}, \tilde{U}(i y) \geqslant \pi a|y|-\frac{\tilde{L}}{\sqrt{\varepsilon}} \sqrt{|y|}-\log \left(1+\frac{y^{2}}{B^{2}}\right)-a B G\left(\frac{y}{B}\right) . \tag{46}
\end{gather*}
$$

Proof. Estimate (45) is a direct consequence of Lemmata 3 and 4, while estimate (46) follows from Lemmata 5 and 6 and the fact that $y \mapsto \tilde{U}(i y)$ is monotonous on \mathbb{R}^{-}.

3.5 The biorthogonal family ψ_{k}

Now we introduce the function for any $k \in \mathbb{N} \backslash\{0\}$:

$$
\begin{equation*}
\tilde{J}_{k}(z):=\frac{\Phi(z)}{\Phi^{\prime}\left(-i \lambda_{k}\right)\left(z+i \lambda_{k}\right)} \frac{f(z)}{f\left(-i \lambda_{k}\right)} . \tag{47}
\end{equation*}
$$

The construction of Paragraph 3.3 was performed in order to get the following result.
Proposition 2. For any $k \in \mathbb{N} \backslash\{0\}$, the function \tilde{J}_{k} is an entire function of exponential type πa. Moreover for $\varepsilon>0$ small enough independent of k, it satisfies on the real line

$$
\begin{equation*}
\left|\tilde{J}_{k}(x)\right| \leqslant C \exp \left(\frac{L|M|}{2 \varepsilon}+\frac{1}{\pi}\left(C_{1}-C_{2}\right) \frac{\tilde{L}^{2}}{T \varepsilon}-\frac{T}{2} \lambda_{k}+\frac{\hat{L}}{\sqrt{\varepsilon}} \sqrt{\lambda_{k}}\right)(1+|x|)^{-3 / 2} \tag{48}
\end{equation*}
$$

where

$$
\begin{equation*}
C_{2}:=-G(2) \simeq 1.97>1.95 . \tag{49}
\end{equation*}
$$

Proof. That \tilde{J}_{k} is an entire function follows from the fact that Φ is entire and has only simple zeros at $-i \lambda_{k}$ and that f is an entire function with $f\left(-i \lambda_{k}\right) \neq 0$. From (18), we see that in order to prove that \tilde{J}_{k} is of exponential type $\pi a=T / 2$, it is sufficient to prove that f is of exponential type πa. That h satisfies $|h(z)| \leqslant C \exp (\pi a|z|)$ is a consequence of Theorem 2 and (37) being valid for \tilde{U}. It follows that f is also of exponential type $T / 2$.

Now let us turn to estimate (48). Using (16) and the fact that for $y \in \mathbb{R}^{-}, x \in \mathbb{R} \mapsto \operatorname{Im}(\sqrt{i x+y}-\sqrt{i x})$ is maximal at $x=0$, we infer

$$
|\Phi(x)| \leqslant \frac{\exp \left(\frac{L|M|}{2 \varepsilon}+\frac{L}{\sqrt{2 \varepsilon}} \sqrt{|x|}\right)}{L \varepsilon^{-1 / 2}\left|x^{2}+\frac{M^{4}}{16 \varepsilon^{2}}\right|^{1 / 4}} .
$$

Using (45), we infer

$$
\begin{aligned}
|\Phi(x) \exp (\tilde{U}(x-i))| & \leqslant \frac{\exp \left(\frac{L|M|}{2 \varepsilon}-\frac{\tilde{L}-L}{\sqrt{2 \varepsilon}} \sqrt{|x|}+a B C_{1}+\log ^{+}(|x|)+\pi a\right)}{L \varepsilon^{-1 / 2}\left|x^{2}+\frac{M^{4}}{16 \varepsilon^{2}}\right|^{1 / 4}} \\
& \leqslant C \varepsilon^{1 / 2} \frac{\exp \left(\frac{L|M|}{2 \varepsilon}+a B C_{1}\right)}{\left|x^{2}+\frac{M^{4}}{16 \varepsilon^{2}}\right|^{1 / 4}}
\end{aligned}
$$

provided that $\alpha \geqslant \sqrt{2}$ and with C independent of ε.
Now a direct computation yields

$$
\Phi^{\prime}\left(-i \lambda_{k}\right)=\frac{(-1)^{k}}{2 \varepsilon \lambda_{k}}
$$

Finally, by (46) we get

$$
\left|f\left(-i \lambda_{k}\right)\right| \geqslant c \exp \left(\pi a \lambda_{k}-\frac{\tilde{L}}{\sqrt{\varepsilon}} \sqrt{\lambda_{k}}-\log \left(1+\frac{\lambda_{k}^{2}}{B^{2}}\right)-a B G\left(\frac{\lambda_{k}}{B}\right)\right)
$$

Using for instance $\log \left(1+y^{2} / 24\right) \geqslant \sqrt{|y|}$, we infer that for α large enough and independently of k and $\varepsilon \in(0,1)$ one has

$$
\left|f\left(-i \lambda_{k}\right)\right| \geqslant c \exp \left(\pi a \lambda_{k}-\frac{\hat{L}}{\sqrt{\varepsilon}} \sqrt{\lambda_{k}}-a B G\left(\frac{\lambda_{k}}{B}\right)\right)
$$

Putting all these estimates together yields

$$
\begin{equation*}
\left|\tilde{J}_{k}(x)\right| \leqslant C \frac{\exp \left(\frac{L|M|}{2 \varepsilon}+a B C_{1}-\pi a \lambda_{k}+\frac{\hat{L}}{\sqrt{\varepsilon}} \sqrt{\lambda_{k}}-a B G\left(\frac{\lambda_{k}}{B}\right)\right)}{\left|x^{2}+\frac{M^{2}}{4 \varepsilon}\right|^{1 / 4}\left|x^{2}+\lambda_{k}^{2}\right|^{1 / 2}} \tag{50}
\end{equation*}
$$

Concerning the last term in the exponential, we use that in both cases $T>4 L /|M|$ so that

$$
\begin{equation*}
\frac{\lambda_{k}}{B} \geqslant \frac{M^{2}}{8} \frac{T^{2}}{\tilde{L}^{2}} \geqslant 2 \tag{51}
\end{equation*}
$$

(at least for ε small so that $T|M| / \tilde{L}>4$) and the fact that G is a negative decreasing function. For larger ε it suffices to enhance a little bit the constant C in (50).

Remark 2. The constant C_{2} could be optimized a little bit further by making the optimization later (see Proposition 3).

Now from Proposition 2 and the Paley-Wiener theorem, we deduce that \tilde{J}_{k} is the Fourier-Laplace transform of some function $\tilde{\psi}_{k} \in L^{2}(\mathbb{R})$, supported in $[-T / 2, T / 2]$. Now we define

$$
\begin{equation*}
J_{k}(z)=\frac{\exp \left(-i \frac{T}{2} z\right)}{\exp \left(-\frac{T}{2} \lambda_{k}\right)} \tilde{J}_{k}(z) \tag{52}
\end{equation*}
$$

We deduce that J_{k} is the Fourier-Laplace transform of the function $\psi_{k}:=\mathcal{T}_{T / 2} \tilde{\psi}_{k}$, supported in $[0, T]$, where $\mathcal{T}_{T / 2}$ is the translation at the source by $T / 2$.

From (48) and (52), we moreover deduce that for $x \in \mathbb{R}$

$$
\begin{equation*}
\left|J_{k}(x)\right| \leqslant C \exp \left(\frac{L|M|}{2 \varepsilon}+\frac{1}{\pi}\left(C_{1}-C_{2}\right) \frac{\tilde{L}^{2}}{T \varepsilon}+\frac{\hat{L}}{\sqrt{\varepsilon}} \sqrt{\lambda_{k}}\right) \frac{1}{(1+|x|)^{3 / 2}} . \tag{53}
\end{equation*}
$$

Moreover, due to (47) and (52), we have

$$
\begin{equation*}
J_{k}\left(i \lambda_{j}\right)=\delta_{j k} \tag{54}
\end{equation*}
$$

Finally Parseval's identity yields

$$
\begin{equation*}
\left\|\psi_{k}\right\|_{L^{2}(\mathbb{R})} \leqslant C \exp \left(\frac{L|M|}{2 \varepsilon}+\frac{1}{\pi}\left(C_{1}-C_{2}\right) \frac{\tilde{L}^{2}}{T \varepsilon}+\frac{\hat{L}}{\sqrt{\varepsilon}} \sqrt{\lambda_{k}}\right) \tag{55}
\end{equation*}
$$

and (54) translates into

$$
\begin{equation*}
\int_{0}^{T} \psi_{k}(t) \exp \left(-\lambda_{j} t\right) d t=\delta_{j k} \tag{56}
\end{equation*}
$$

As mentionned in Paragraph 3.1, we will in fact consider $t \mapsto \psi_{k}(T-t)$. We will still call the resulting function ψ_{k}. The new family $\left(\psi_{k}\right)$ still satisfies (55), and now (56) is replaced by

$$
\begin{equation*}
\int_{0}^{T} \psi_{k}(t) \exp \left(-\lambda_{j}(T-t)\right) d t=\delta_{j k} \tag{57}
\end{equation*}
$$

3.6 The constants

The constants of the main statement appear in the next result.
Proposition 3. We have for some $\kappa>0$

$$
\begin{equation*}
\frac{L|M|}{2 \varepsilon}+\frac{1}{\pi}\left(C_{1}-C_{2}\right) \frac{L^{2}}{T \varepsilon}-T \lambda_{k}+\frac{L}{\sqrt{\varepsilon}} \sqrt{\lambda_{k}} \leqslant-\kappa \lambda_{k} \quad \text { for all } k \tag{58}
\end{equation*}
$$

provided that

$$
\begin{equation*}
T>\frac{L}{|M|} c_{+} \text {with } c_{+}:=2+\sqrt{4+\frac{4}{\pi}\left(C_{1}-C_{2}\right)}<4.2 \tag{59}
\end{equation*}
$$

and we have for some $\kappa>0$

$$
\begin{equation*}
\frac{L|M|}{\varepsilon}+\frac{1}{\pi}\left(C_{1}-C_{2}\right) \frac{L^{2}}{T \varepsilon}-T \lambda_{k}+\frac{L}{\sqrt{\varepsilon}} \sqrt{\lambda_{k}} \leqslant-\kappa \lambda_{k} \quad \text { for all } k \tag{60}
\end{equation*}
$$

provided that

$$
\begin{equation*}
T>\frac{L}{|M|} c_{-} \text {with } c_{-}:=3+\sqrt{9+\frac{4}{\pi}\left(C_{1}-C_{2}\right)}<6.1 . \tag{61}
\end{equation*}
$$

Proof. First we notice that

$$
x \mapsto-T x+\frac{L}{\sqrt{\varepsilon}} \sqrt{x}
$$

is decreasing for values larger than $\frac{1}{4 \varepsilon} \frac{L^{2}}{T^{2}} \leqslant \frac{M^{2}}{4 \varepsilon}$ (in both cases). Next we only use that for all k,

$$
\begin{equation*}
\lambda_{k} \geqslant \frac{M^{2}}{4 \varepsilon} \tag{62}
\end{equation*}
$$

hence we are led to decide when T is larger than the larger root of the polynomial

$$
\frac{1}{\pi}\left(C_{1}-C_{2}\right) \frac{L^{2}}{\varepsilon}-\frac{M^{2}}{2 \varepsilon} X^{2}+X \frac{L|M|}{\varepsilon}
$$

for (58), respectively

$$
\frac{1}{\pi}\left(C_{1}-C_{2}\right) \frac{L^{2}}{\varepsilon}-\frac{M^{2}}{2 \varepsilon} X^{2}+X \frac{3 L|M|}{2 \varepsilon}
$$

for (60). Obvious computations give (59)-(61), and the estimates of c_{-}and c_{+}come from (34) and (49).

Remark 3. We do not use the " $\varepsilon k^{2} \pi^{2} / L^{2}$ " part of λ_{k}, that is in some sense, we do not benefit from the high frequencies. Another possible strategy would be to use this part to absorb the term $\frac{2}{\pi}\left(C_{1}-C_{2}\right) \frac{L^{2}}{\varepsilon}$, and to treat the low frequencies in another way, for instance by using the "spectral inequality" of LebeauRobbiano [13], Lebeau-Zuazua [14], Jerison-Lebeau [11] together with a dissipation estimate. But the constant appearing in this inequality is not explicit, so the constants c_{-}and c_{+}would not be either.

3.7 Deducing the observability inequality

Consider a solution φ of (6), where

$$
\begin{equation*}
\varphi_{T}(x)=\sum_{k=1}^{N} c_{k} e_{k}(x) . \tag{63}
\end{equation*}
$$

It is not restrictive to consider φ_{T} as the combination of a finite number of modes, since the inequalities which follow are independent of N. We see that

$$
\begin{equation*}
\varphi(t, x)=\sum_{k=1}^{N} c_{k} \exp \left(-\lambda_{k}(T-t)\right) e_{k}(x) \tag{64}
\end{equation*}
$$

and consequently

$$
\sqrt{2} k \frac{\pi}{L} c_{k}=\int_{0}^{T}\left(\partial_{x} \varphi\right)(t, 0) \psi_{k}(t) d t
$$

Hence we deduce

$$
\begin{equation*}
\left|c_{k}\right| \leqslant \frac{L}{\sqrt{2} \pi k}\left\|\partial_{x} \varphi_{\mid x=0}\right\|_{L^{2}(0, T)}\left\|\psi_{k}\right\|_{L^{2}(0, T)} \tag{65}
\end{equation*}
$$

And of course,

$$
\begin{equation*}
\varphi(0, x)=\sum_{k=1}^{N} c_{k} \exp \left(-\lambda_{k} T\right) e_{k}(x) \tag{66}
\end{equation*}
$$

From (65) and (66) we deduce

$$
\begin{equation*}
\|\varphi(0, x)\|_{L^{2}(0, L)} \leqslant C\left\|\partial_{x} \varphi\right\|_{L^{2}(0, T)} \sum_{k=1}^{N} \frac{1}{k} \exp \left(-\lambda_{k} T\right)\left\|e_{k}(x)\right\|_{L^{2}(0, L)}\left\|\psi_{k}\right\|_{L^{2}(0, T)} \tag{67}
\end{equation*}
$$

Now let us distinguish between the two cases $M>0$ and $M<0$.
Case 1. If $M>0$, then

$$
\left\|e_{k}(x)\right\|_{L^{2}(0, L)} \leqslant 1
$$

Hence using (55) and (67), we finally deduce

$$
\begin{equation*}
\|\varphi(0, x)\|_{L^{2}(0, L)} \leqslant C \sum_{k=1}^{N} \frac{1}{k} \exp \left(\frac{L|M|}{2 \varepsilon}+\frac{1}{\pi}\left(C_{1}-C_{2}\right) \frac{\tilde{L}^{2}}{T \varepsilon}-T \lambda_{k}+\frac{\hat{L}}{\sqrt{\varepsilon}} \sqrt{\lambda_{k}}\right)\left\|\partial_{x} \varphi\right\|_{L^{2}(0, T)} \tag{68}
\end{equation*}
$$

Using (58) we deduce

$$
\|\varphi(0, x)\|_{L^{2}(0, L)} \leqslant C\left\|\partial_{x} \varphi\right\|_{L^{2}(0, T)} \sum_{k=1}^{N} \exp \left(-\frac{\kappa}{2} \lambda_{k}+\frac{\hat{L}-L}{\sqrt{\varepsilon}} \sqrt{\lambda}_{k}\right) \frac{1}{k} \exp \left(-\frac{\kappa}{2} \lambda_{k}\right)
$$

It is not difficult to see that for some constant $C>0$ independent of ε one has

$$
-\frac{\kappa}{2} \lambda_{k}+\frac{\hat{L}-L}{\sqrt{\varepsilon}}+\frac{1}{\pi}\left(C_{1}-C_{2}\right) \frac{\tilde{L}^{2}-L^{2}}{T \varepsilon} \leqslant C-\frac{\kappa}{3} \lambda_{k} \leqslant C-\frac{\kappa}{3} \frac{M^{2}}{4 \varepsilon},
$$

and that

$$
\begin{aligned}
\sum_{k=1}^{N} \frac{1}{k} \exp \left(-\frac{\kappa}{2} \lambda_{k}\right) & \leqslant \sum_{k=1}^{N} \frac{1}{k} \exp \left(-\frac{\varepsilon \kappa \pi^{2}}{2 L^{2}} k^{2}\right) \\
& \leqslant \sum_{k=1}^{\infty} \exp \left(-\frac{\varepsilon \kappa \pi^{2}}{2 L^{2}} k\right) \\
& \leqslant \frac{C(T, L, M)}{\varepsilon}
\end{aligned}
$$

This gives the desired result.
Case 2. If $M<0$, then

$$
\left\|e_{k}(x)\right\|_{L^{2}(0, L)} \leqslant \exp \left(\frac{L|M|}{2 \varepsilon}\right)
$$

Hence using (55) and (67), we finally deduce

$$
\begin{equation*}
\|\varphi(0, x)\|_{L^{2}(0, L)} \leqslant C \sum_{k=1}^{N} \frac{1}{k} \exp \left(\frac{L|M|}{\varepsilon}+\frac{1}{\pi}\left(C_{1}-C_{2}\right) \frac{\tilde{L}^{2}}{T \varepsilon}-T \lambda_{k}+\frac{\hat{L}}{\sqrt{\varepsilon}} \sqrt{\lambda_{k}}\right)\left\|\partial_{x} \varphi\right\|_{L^{2}(0, T)} \tag{69}
\end{equation*}
$$

and we conclude as previously by using (60). This concludes the proof of Theorem 1.
Acknowledgements. The author would like to warmly thank the anonymous referee for valuable comments on a first version of this paper. He is supported by Grant JCJC06_137283 of the Agence Nationale de la Recherche.

References

[1] Ancona F., Coclite G.M., On the attainable set for Temple class systems with boundary controls, SIAM J. Control Optim. 43 (2005), no. 6, pp. 2166-2190.
[2] Ancona F., Marson A., On the attainable set for scalar nonlinear conservation laws with boundary control, SIAM J. Control Optim. 36 (1998), no. 1, pp. 290-312.
[3] Beurling, A., Malliavin P., On Fourier transforms of measures with compact support, Acta Math. 107 (1962), pp. 291-309.
[4] Bressan A., Coclite G.M., On the boundary control of systems of conservation laws, SIAM J. Control Optim. 41 (2002), no. 2, pp. 607-622.
[5] Coron J.-M., Guerrero S., Singular optimal control: A linear 1-D parabolic-hyperbolic example, Asymp. Anal. 44 3,4 (2005), pp. 237-257.
[6] Fattorini H. O., Russell D. L., Exact controllability theorems for linear parabolic equations in one space dimension, Arch. Rational Mech. Anal. 43 (1971), pp. 272-292.
[7] Fursikov A., Imanuvilov O. Yu., Controllability of Evolution Equations, Lecture Notes \#34, Seoul National University, Korea, 1996.
[8] Glass O., On the controllability of the 1-D isentropic Euler equation, J. European Math. Soc. 9, no. 3 (2007) pp. 427-486.
[9] Glass O., Guerrero S., On the uniform controllability of the Burgers equation, SIAM J. Control Optim. 46 (2007), no. 4, pp. 1211-1238.
[10] Guerrero S., Lebeau G., Singular optimal control for a transport-diffusion equation, Comm. Partial Differential Equations 32 (2007), no. 10-12, pp. 1813-1836.
[11] Jerison D., Lebeau G., Nodal sets of sums of eigenfunctions, Harmonic analysis and partial differential equations (Chicago, IL, 1996), pp. 223-239, Chicago Lectures in Math., Univ. Chicago Press, Chicago, IL, 1999.
[12] Koosis P., The logarithmic integral I \& II, Cambridge Studies in Advanced Mathematics 12 (1988) \& Cambridge Studies in Advanced Mathematics 21 (1992), Cambridge University Press, Cambridge.
[13] Lebeau G., Robbiano L., Contrôle exact de l'équation de la chaleur, Comm. Partial Differential Equations 20 (1995), pp. 335-356.
[14] Lebeau G., E. Zuazua, Null-controllability of a system of linear thermoelasticity. Arch. Rational Mech. Anal. 141 (1998), no. 4, 297-329.
[15] Lions J.-L., Contrôlabilité exacte, stabilisation et perturbations de systèmes distribués, Tomes 1 \& 2. Masson, RMA $8 \& 9$, Paris 1988.
[16] Miller L., How violent are fast controls for Schrödinger and plate vibrations?, Arch. Ration. Mech. Anal. 172 (2004), no. 3, pp. 429-456.
[17] Paley R. C., Wiener N., Fourier transforms in the complex domain. Reprint of the 1934 original. American Mathematical Society Colloquium Publications, 19. American Mathematical Society, Providence, RI, 1987.
[18] Russell D. L., Controllability and stabilizability theory for linear partial differential equations. Recent progress and open questions, SIAM Review 20 (1978), pp. 639-739.
[19] Schwartz L., Étude des sommes d'exponentielles, 2ème éd. Publications de l'Institut de Mathématique de l'Université de Strasbourg, V. Actualités Sci. Ind., Hermann, Paris, 1959.
[20] Seidman T. I., Two results on exact boundary control of parabolic equations, Appl. Math. Optim. 11 (1984), no. 2, pp. 145-152.
[21] Seidman T. I., Avdonin S. A., Ivanov S. A., The "window problem" for series of complex exponentials, J. Fourier Anal. Appl. 6 (2000), no. 3, pp. 233-254.
[22] Seidman T. I., Gowda M. S., Norm dependence of the coefficient map on the window size, Math. Scand. 73 (1994), pp. 177-189.
[23] Tenenbaum G., Tucsnak M., New blow-up rates for fast controls of Schrdinger and heat equations. J. Differential Equations 243 (2007), no. 1, pp. 70-100.

[^0]: *Université Pierre et Marie Curie-Paris6, UMR 7598 Laboratoire Jacques-Louis Lions, Paris, F-75005 France. E-mail: glass@ann.jussieu.fr.

