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ASYMPTOTIC STABILIZABILITY BY STATIONARY FEEDBACK
OF THE TWO-DIMENSIONAL EULER EQUATION: THE

MULTICONNECTED CASE∗

OLIVIER GLASS†

Abstract. We construct a feedback law which allows us to asymptotically stabilize the Euler
system for incompressible inviscid fluids in two dimensions, in the case of a multiconnected bounded
domain, by means of a control localized on a part of the boundary that meets every connected
component of the boundary. This generalizes a result of Coron [SIAM J. Control Optim., 37 (1999),
pp. 1874–1896] concerning simply connected domains.
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1. Introduction.

1.1. Statement of the problem. In this paper, we are concerned with the null
asymptotic stabilization by means of a stationary feedback of the Euler system for
inviscid incompressible fluids in two space dimensions, namely, the following system:{

∂tv(t, x) + (v(t, x).∇)v(t, x) + ∇p(t, x) = 0 for (t, x) in [0, T ∗) × Ω,
div v(t, x) = 0 for (t, x) in [0, T ∗) × Ω.

(1.1)

In the above equation, t is the time (the problem under consideration is formulated for
T ∗ = +∞), and x is the position in the domain Ω. The function v : [0, T ∗)×Ω → R

2

is the velocity field and p : [0, T ∗) × Ω → R is the pressure. The domain Ω is two-
dimensional (2-D), bounded, regular and nonsimply connected (let us agree that the
boundary ∂Ω is decomposed into ∂Ω = Γ0 ∪ · · · ∪ Γg, where the components Γi are
nonempty, connected, and disjoint).

The initial-boundary problem for equation (1.1) has been studied by Yudovich
(see [10]). Given initial data

v|t=0 = v0 in Ω,(1.2)

where v0 : Ω → R
2 is a divergence-free vector field, and appropriate boundary condi-

tions, the system is well-posed. The boundary conditions can be taken as the following
data:

• the normal component of the velocity v(t, x) ·n(x) on the whole boundary ∂Ω
for any time (n(x) is the unit outward normal on ∂Ω), which has to satisfy∫

∂Ω

v(t, x) · n(x)dx = 0 ∀t ∈ [0, T ∗),
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• the vorticity ω(t, x) := curl v(t, x) at the points of ∂Ω which, moved by the
velocity flow, enter inside Ω, namely, the points in

Σ−
T∗ := {(t, x) ∈ [0, T ∗) × ∂Ω / v(t, x) · n(x) < 0} .

Let us emphasize that certain compatibility conditions between the solution and the
boundary data must be taken into account in order to obtain a solution with suitable
regularity.

In this paper, the boundary conditions (or a part of them) will be considered
as a control (that is, a parameter to be determined, that we choose to influence the
system). More precisely, we fix Σ an open part of the boundary; the part Σ of the
boundary is the zone where we can choose the boundary conditions, whereas ∂Ω \ Σ
represents a wall that cannot be crossed. In other words, we will consider the Euler
system with

• the constraint

v(t, x) · n(x) = 0 on [0, T ∗) × (∂Ω\Σ);(1.3)

that is, the fluid cannot enter or quit the domain through ∂Ω\Σ (it must slip
on it),

• the boundary condition on [0, T ∗) × Σ, which is the control to be chosen.
In this setting, the problem of controllability (i.e., to steer a prescribed initial state v0

to a prescribed final state v1 in an arbitrary time by choosing a relevant control) was
answered affirmatively by Coron in [2], under the necessary condition that Σ meets
each connected component of the boundary.

Here we are interested in the problem of asymptotic stabilizability of the equi-
librium υ ≡ 0 by means of a stationary feedback. In other words, we want to find a
continuous function f of the state S(t) of the system at time t such that if the control
C(t) is given at each time by C(t) = f(S(t)), then the resulting closed system makes
0 globally asymptotically stable in the sense that

• any solution defined on [0, T ∗)×Ω with T ∗ < +∞ can be extended for t ≥ T ∗;
• for any neighborhood U of 0, one can find another neighborhood V of 0 such

that any solution of the closed system beginning in V is in U for any t ≥ 0;
• any solution tends to 0 as t → +∞.

The above-mentioned problem was solved by Coron in the case of a simply connected
domain; see [4].

Remark 1. As was already the case in the controllability problem, the condi-
tion that Σ meets any connected component of the boundary is a necessary condition
to solve the problem. For instance, the vorticity around any “uncontrolled” con-
nected component just slips on it and cannot be “modified.” Another obstruction
is the Kelvin law which states that the velocity circulation around any uncontrolled
connected component of the boundary is constant. Throughout this paper, we will
suppose that Σ meets every connected component of the boundary.

1.2. Mathematical setting. We have to specify which data will be the state of
the system, and also the precise structure of the control. A natural state to consider
would be the whole velocity field v(t, ·) in Ω, but if we chose S this way, then (as we
will consider solutions that are continuous up to the boundary) it would completely
determine the choice of the control (since the boundary conditions described above
would be given by the normal component of the trace of v on [0, T ∗) × Σ and by the
trace of curl v on Σ−

T∗).
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To avoid such a problem, as suggested in [3], we shall consider the following data
as the state of the system:

S(t) = (ω(t, ·), λ1(t), . . . , λg(t)),(1.4)

where ω(t, ·) : Ω → R is the vorticity field (which is scalar in two dimensions), that is,

ω(t, x) := curl v(t, x),

and where λi, for i = 1, . . . , g, is the velocity circulation around the component Γi of
∂Ω, that is,

λi(t) :=

∫
Γi

v(t, x) · �τ(x)dx.

Here �τ(x) is the unit tangent vector field on ∂Ω, chosen so that (�τ , n) should be direct.
(Let us remark that consequently �τ endows the curve Γi with an orientation that is
positive if the curve is an inner component of ∂Ω and negative in the case of the outer
component.)

Remark 2. Of course, only g circulations of v around Γi are needed among (g+1)
available, since the sum of all these circulations is related to ω by Green’s formula.

Once given the state S(t) and v(t, x) · n(x) on Σ (which is a part of the control,

say C1), one can reconstruct v(t, ·) in Ω, for each t ∈ [0, T ∗), by means of the following
system: ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

curl v(t, ·) = ω(t, ·) in Ω,
div v(t, ·) = 0 in Ω,
v(t, ·) · n(·) = C1(t) on Σ,
v(t, ·) · n(·) = 0 on ∂Ω \ Σ,∫

Γi

v(t, x).�τ(x)dx = λi(t) for i = 1, . . . , g.

(1.5)

The Euler equation can be written in terms of the state S(t): as is well known, the
vorticity in two dimensions satisfies

∂tω + (v · ∇)ω = 0 in (0, T ∗) × Ω,(1.6)

or, equivalently,

∂tω + div(ωv) = 0 in (0, T ∗) × Ω,(1.7)

and the velocity circulations satisfy

λi(t) − λi(0) =

∫ t

0

∫
Γi

v(s, x) · n(x)ω(s, x)dxds.(1.8)

One easily sees that the group composed of (1.5), (1.7), and (1.8) is equivalent to
(1.1).

We still need to specify the exact structure of the control that we use. The first
part of the control is the normal component of the velocity on Σ, which we call C1.
We must stipulate the other part of the control, which concerns the entering vorticity.

Since ω(t, ·) is now a part of the state, it seems inappropriate to consider ω on
Σ−

T∗ as the second part of the control (as will be specified below, ω(t, ·) is continuous
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up to the boundary in our problem). Thus a natural control to consider would be the
following:

C(t) =

{
v(t, x) · n(x) on Σ,
∂tω(t, x) on Σ−,

(1.9)

with Σ− given by

Σ− := {x ∈ ∂Ω / v(t, x) · n(x) < 0} .(1.10)

(To simplify the notation, we omit the dependence of Σ− on t and C1—besides, es-
sentially, Σ− will be constant in what follows.)

Let us point out that the control described in (1.9) was the one used in [4].
However, for technical reasons that will be explained in section 2.1, we will have to
consider the following control of mixed type:

C(t) = (C1(t), C2(t), C3(t)),(1.11)

with

C1 = v(t, x) · n(x) on Σ,(1.12)

C2 = ∂tω1(t, x) on Σ−,(1.13)

C3 = ω2(t, x) on Σ−,(1.14)

and the boundary condition for the entering vorticity obtained as

ω(t, x) = ω1(t, x) + ω2(t, x) on Σ−.(1.15)

In other words, the entering vorticity ω is the sum of two terms: ω1, whose time
derivative we control, and ω2, which we control directly.

Remark 3. Let us remark that this choice of the form of the control is important.
Indeed, even the stabilizability by means of a simpler feedback law of the form ∂tC =
f(S) does not necessarily imply the stabilizability by means of a feedback law of the
form C = f(S). See, for instance, [5] in the context of finite-dimensional systems.

We can now be more specific about the problem under study.
Definition 1.1. Given a feedback law

(C1, C2, C3) = (C1(S), C2(S), C3(S)),

1. we shall call “the closed-loop system,” with S as the unknown, the system
(1.5), (1.7), (1.8), with boundary conditions given by (1.12)–(1.15);

2. we shall call S = (ω, λ1, . . . , λg) a solution of the closed-loop system if
• S ∈ C0([0, T ∗) × Ω; R) × C0([0, T ∗),R)g (for some T ∗ > 0);
• v(t, ·) being for each t ∈ [0, T ∗) the unique solution (in the sense of

distributions in Ω) of (1.5), the functions (λi)i=1,...,g satisfy (1.8) for
all t ∈ [0, T ∗), and ω satisfies (1.7) in the sense of distributions in
(0, T ∗) × Ω and (1.13)–(1.15) in the sense of distributions on the open
manifold {

(t, x) ∈ (0, T ∗) × Σ, C1[S(t)](x) < 0
}

;

3. we call “maximal” any solution that cannot be extended over its maximal time
T ∗.
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The purpose of this paper is to establish the following result.
Theorem 1.2. If Σ meets every connected component of the boundary, one can

find three continuous functions C1, C2, and C3 defined on C0(Ω; R) × R
g and with

values in C0(Σ; R), C0(Σ−; R), and C0(Σ−; R), respectively, such that the following
properties are fulfilled:

P1. For any (ω0, λ
0
1, . . . , λ

0
g) ∈ C0(Ω; R) × R

g, the closed-loop system with initial
condition

S(0) = (ω0, λ
0
1, . . . λ

0
g)(1.16)

has a global in time solution, and any local in time solution can be extended
to T ∗ = +∞ (in other words, any maximal solution is global).

P2. For any ε > 0, there exists η > 0 such that if

max(‖ω0‖L∞(Ω), |λ0
1|, . . . , |λ0

g|) < η,

then one has

max(‖ω(t, ·)‖L∞(Ω), |λ1(t)|, . . . , |λg(t)|) ≤ ε,

for all t ≥ 0 and any global in time solution of the closed-loop system satisfying
(1.16).

P3. Any global in time solution of the closed-loop system satisfies

max(‖ω(t, ·)‖L∞(Ω), |λ1(t)|, . . . , |λg(t)|) → 0 as t → +∞.

We will describe in section 2 the feedback law (C1(S), C2(S), C3(S)) which involves
Theorem 1.2. The precise result expressed in terms of this feedback law is given in
section 2.5.

1.3. A related problem concerning the stationary equation. As pointed
out in [3], the problem of asymptotic stabilizability by stationary feedback is connected
with a problem concerning the stationary equation. Indeed, Brockett established a
necessary condition for a finite-dimensional control system to be stabilizable; see [1].

Theorem 1.3 (see Brockett [1]). A necessary condition for the control system
ẋ = f(x, u) to be locally asymptotically stabilizable at the equilibrium point x0 (satis-
fying f(x0, 0) = 0) by a stationary feedback is that the image by f of any neighborhood
of (x0, 0) is a neighborhood of 0.

The corresponding statement of this necessary condition in the infinite-dimensional
system considered here is precisely what is proved in [6], that is, the existence of so-
lutions for the stationary problem with a small force term (and by scaling arguments,
with any force term). Hence, the study in [6] can be viewed as a preliminary step
before this one. As we will see in section 2, some tools developed in [6] are essential
in the construction here. For more details, see [3], [4], and [6].

1.4. Structure of the paper. In the next section, we begin by giving the main
ideas concerning the construction of the feedback law that yields Theorem 1.2, then
we detail this construction (which is rather involved), and finally we state our precise
result (Theorem 2.4), which takes the stated form of the feedback law into account
and clearly involves Theorem 1.2.

In section 3, we fix the notation and give preliminary elementary statements,
which are classical for the construction of global in time solutions to the Euler system
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in two dimensions. At the end of this section, a proposition that is central in the
proof is stated.

Sections 4 and 5 prove the existence of local in time solutions of the closed-loop
system defined with the control law introduced in section 2. This is done in two steps.
In section 4, we construct a certain operator F . Then section 5 proves by Schauder’s
fixed point theorem that the operator F has fixed points, which actually give local in
time solutions to the closed-loop system.

Section 6 finishes the proof of Theorem 2.4, by proving that maximal solutions of
the closed-loop system are global and satisfy the asymptotic stability properties P2
and P3 described in Theorem 1.2.

Finally, we put in the appendix the proofs of the most technical lemmas.

2. Description of the feedback.

2.1. Basic ideas. The most important feature of the 2-D Euler equation is a
straightforward consequence of (1.6) (or (1.7)), precisely the following:

the vorticity ω follows the flow of the velocity v.(2.1)

A direct consequence of this fact is that, to perform P3 in Theorem 1.2, a global
solution of the closed-loop has to satisfy

the flow of the velocity v makes any point in Ω go out of the domain(2.2)

(except perhaps for configurations with important zones of null vorticity from the
beginning, but this situation is essentially nongeneric).

To get (2.2), we examine the Hodge decomposition of the velocity, which in non-
simply connected domains takes the following form (as usual, ∇⊥ := (−∂x2 , ∂x1)):

v(t, x) = ∇φ(t, x) + ∇⊥ψ(t, x) +

g∑
k=1

μi(t)∇⊥τi,(2.3)

where τi ∈ C∞(Ω; R), i ∈ {1, . . . , g}, is the solution of the system⎧⎨
⎩

Δτi = 0 in Ω,
τi = 1 on Γi,
τi = 0 on ∂Ω\Γi,

(2.4)

and where the different terms satisfy, for each t,{
Δφ(t, x) = 0 in Ω,
∂nφ(t, x) = v(t, x) · n(x) on ∂Ω,

(2.5) {
Δψ(t, x) = curl v(t, x) in Ω,
ψ(t, x) = 0 on ∂Ω,

(2.6)

λi(t) = −
g∑

j=1

μj(t)

(∫
Ω

∇τi · ∇τj

)
−
∫

Ω

ω(t, x)τi(x)dx ∀ i ∈ {1, . . . , g}.(2.7)

The family ∇⊥τi being clearly linearly independent, the matrix (
∫
Ω
∇τi.∇τj)i,j=1,...,n

is invertible.
Now to obtain (2.2), it seems rather arduous to rely on the last two terms in (2.3),

because μj and ∇⊥ψ are fixed at the beginning by the state and then slowly evolve



STABILIZATION OF FLUIDS IN MULTICONNECTED DOMAINS 1111

according to the flow of v itself. On the contrary, the ∇φ part is directly obtained
from the control. Hence a natural idea, which is also present in [2], [4], and [6], is to
fix the v · n part of the control so that the ∇φ part in (2.3) should prevail over the
other two in such a way that (2.2) is satisfied.

As in [4], this program is fulfilled by finding a function θ : Ω → R such that⎧⎨
⎩

Δθ = 0 in Ω,
∂nθ = 0 on ∂Ω \ Σ,
|∇θ(x)| > 0 in Ω.

(2.8)

Indeed, given such a function θ, one can hope that the control

C1 = f(ω, λ1, . . . , λg)∂nθ(2.9)

with f(ω, λ1, . . . , λg) an adequate nonnegative function, which should be large when
(ω, λ1, . . . , λg) is large, will satisfy the requirements.

Once this part of the control is imposed, the idea is to choose the vorticity part
of the control in the form

∂tω = −K(ω, λ1, . . . , λg)ω in Σ−,

where K(ω, λ1, . . . , λg) is an appropriate positive function. In this way, one can hope
that the vorticity inside the domain will gradually be replaced by a smaller one.

However, there remain two issues:
• This might not be sufficient to get rid of the velocity circulations. The natural

idea to diminish these circulations is to inject additional vorticity through
Σ−∩Γi, as motivated by (1.8). This can raise a problem, because this injected
vorticity could influence the other λj . In order to avoid this, we make this
vorticity leave the domain through Γ0.

• Because of (2.1), at a point of ∂Σ− where v is pointing inside Σ−, there must
be compatibility conditions on the control in vorticity so that the solution
will have proper regularity. The reason for this is that, on one side of this
point in ∂Ω, the vorticity is determined by the control, whereas on the other
side, it is determined by the incoming flow along the uncontrolled part of
the boundary (see the points A in figures below). This is the main reason
we must consider a control in the form (1.11)–(1.15): the continuity of the
entering vorticity at this point is ensured by the C3-part of the control.
Moreover, it will be technically simpler if these points in ∂Σ− where v is
pointing inside Σ− do not depend on the state. In fact, it can be expected
that by choosing f in (2.9) properly, these points will be exactly those for
which ∇θ is pointing inside Σ−.

Remark 4. It would seem natural to require the function θ to satisfy, besides
(2.8),

at any point of ∂γ−, ∇θ is pointing outside γ−, where γ− = {x ∈ Σ / ∂nθ(x) < 0} .
(2.10)

In the case of a simply connected domain, this is possible; see [4]. But this is no
longer possible in the case of a nonsimply connected domain, since this would result
in a null index of the vector field ∇θ around the outer component of the boundary
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and in positive indices of ∇θ around inner components, which would be inconsistent
with (2.8).

Now that we have sketched the main ideas, we can construct a function θ satis-
fying (2.8); other conditions are required, either for technical reasons or to address
the above-mentioned issues. The feedback law, which relies on θ, is constructed sub-
sequently.

2.2. The function θ. The function θ that we introduce here has been used
to prove the existence of solutions for the stationary problem; see section 1.3 and
reference [6]. Precisely, we have the following result.

Proposition 2.1 (see [6, Prop. 1]). Consider Ω a nonempty, bounded, connected
and regular domain in R

2, assumed to be not simply connected. Denote Γ0, . . . , Γg

the connected components of its boundary. Let n be the unit outward normal on ∂Ω.
Consider Σ an open part of ∂Ω, which meets each connected component of ∂Ω. Then
there exists a function θ̃ ∈ C∞(Ω; R) that satisfies the following conditions:

Δθ̃ = 0 in Ω,(2.11)

∂nθ̃ = 0 on ∂Ω\Σ,(2.12)

|∇θ̃(x)| > 0 for any x in Ω,(2.13)

(2.14) for γ+(θ̃) := {x ∈ ∂Ω / ∂nθ̃ > 0} and γ−(θ̃) := {x ∈ ∂Ω / ∂nθ̃ < 0},

one has: γ+(θ̃) ∩ γ−(θ̃) = ∅,
(2.15) γ+(θ̃) and γ−(θ̃) are unions of a finite number

of intervals of ∂Ω with disjoint closures,

(2.16) there exist g points M̃1, . . . , M̃g in γ−(θ̃) ∩ Γ0, sent respectively

on γ+(θ̃) ∩ Γ1, . . . , γ
+(θ̃) ∩ Γg by the flow of ∇θ̃,

with the trajectories not touching ∂Ω\[γ+(θ̃) ∪ γ−(θ̃)].

To describe properties of the flow, it is more convenient to work in a domain that
is invariant by the flow. To that end, we consider R > 0 such that Ω ⊂ BR and
introduce an operator π that extends continuous (resp., C1) vector fields defined on
Ω to continuous (resp., C1) and compactly supported vector fields on BR; see a more
precise definition of π in section 3.1.

We have the following technical refinement of Proposition 2.1.
Corollary 2.2. One can add the following requirement on θ̃ (call Φ̃ the flow of

π(∇θ̃)):

(2.17) given any point E in ∂γ+(θ̃) such that ∇θ̃(E) is pointing outside γ+(θ̃),

then for t > 0, Φ̃(t, 0, E) does not meet another point in ∂γ+(θ̃) pointing

outside γ+(θ̃) before leaving Ω.

The proof of this corollary is postponed to the appendix.
In fact, the function θ used in this paper is given by −θ̃; hence θ satisfies (2.11),

(2.12), (2.13), (2.14), and (2.15). However, (2.16) must be replaced by

(2.18)

there exist g points M1, . . . ,Mg in γ−(θ) ∩ Γ1, . . . , γ
−(θ) ∩ Γg, sent respectively

on γ+(θ) ∩ Γ0 by Φ, with the trajectories not touching ∂Ω\[γ+(θ) ∪ γ−(θ)]
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(here Φ is the flow of π(∇θ), and we define γ+(θ) := γ−(θ̃) and γ−(θ) := γ+(θ̃)), and
(2.17) must be replaced by

(2.19) given any point A in ∂γ−(θ) such that ∇θ(A) is pointing inside γ−(θ),

Φ(t, 0, A) has not met another point in ∂γ−(θ) at which ∇θ is pointing

inside γ−(θ) for t < 0 such that Φ([t, 0], 0, E) ⊂ Ω.

A representation of what ∇θ may look like is given in Figure 2.1 below. The dotted
lines represent some flow lines of ∇θ.

A

Γ1

M1

A

A

Γ0

B

B
Σ

∂Ω \ Σ

Fig. 2.1. A representation of ∇θ.

2.3. Some constructions relying on θ. We denote

γ+ = γ+(θ) =
{
x ∈ ∂Ω

/
∂nθ(x) > 0

}
and γ− = γ−(θ) =

{
x ∈ ∂Ω

/
∂nθ(x) < 0

}
.

We also introduce

V (θ) = max
Ω

θ − min
Ω

θ.(2.20)

As in [6] we call A the points in ∂γ− on which ∇θ is pointing inside γ− and B the
points in ∂γ− on which ∇θ is pointing outside γ−. In what follows, we denote by A,
B, and M the sets of A, B, and Mi points, respectively.

For each A ∈ A, we introduce γA as the component of ∂Ω\(γ−∪γ+) whose closure
contains A (and the same for B). We also consider the points A defined as

A := Φ(t′A, 0, A), where t′A := min
{
t ≤ 0 / Φ([t, 0], 0, A) ⊂ Ω

}
.(2.21)

Using (2.19), one sees that A ∈ γ−(θ) ∪ B.

Given θ, we shall introduce some functions on γ−, called ΓA and Λi, defined for
each A ∈ A and each Mi ∈ M, respectively, and supported in a neighborhood of this
point in γ−. Precisely, given A ∈ A, call VA a closed neighborhood of A in γ−, small
enough that it contains neither any Mi point, nor any other point of A, nor any A or
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B point. Then define a function ΓA ∈ C∞(γ−; R) satisfying

⎧⎪⎪⎨
⎪⎪⎩

−1 ≤ ΓA ≤ 1,
Supp(ΓA) ⊂ VA,
ΓA ≡ 1 in a neighborhood of A,∫
VA

ΓA(x)∇θ(x) · n(x)dx = 0.

(2.22)

Now, given an Mi ∈ M, call VMi a closed neighborhood of Mi in γ− ∩ Γi, small
enough that it contains neither any A point nor points of ∂γ−, and such that all VMi

are sent by Φ to γ+(θ)∩Γ0, with the trajectories not touching ∂Ω\(γ+∪γ−) (as made
possible by (2.18) and Gronwall’s lemma; see Lemma 3.4 in section 3.3 below). Then
define Λi ∈ C∞(γ−; R) satisfying

⎧⎨
⎩

Λi ≤ 0,
Supp(Λi) ⊂ VMi ,∫
VMi

Λi(x)∇θ(x) · n(x)dx = 1.
(2.23)

Note that the last condition can be easily obtained since ∇θ(x) · n(x) is negative on
VMi .

We reduce if necessary the supports of ΓA and Λi in order to obtain

Supp(ΓA) ∩ Supp(Λi) = ∅ for any A ∈ A and any i = 1, . . . , g,
Supp(ΓA) ∩ Supp(ΓA′) = ∅ for any A,A′ ∈ A such that A �= A′.

(2.24)

To make the notation lighter, we write

Supp(Λ) :=

g⋃
i=1

Supp(Λi),

Supp(Γ) :=
⋃
A∈A

Supp(ΓA).

Also, we introduce

‖Λ‖∞ :=
g

max
i=1

‖Λi‖∞,

T (Γ) =
∑
A∈A

∫
γ−

|ΓA(x)∇θ(x) · n(x)|dx.(2.25)

We denote by � a strict minimizer of the distance between the connected components
of γ+ ∪ γ− and of the distances between the various Supp(ΓA) with A ∈ A, Supp(Λi)
with i ∈ {1, . . . , g}, and points B ∈ B.

The requirements on the supports are summarized in Figure 2.2 (where the arrows
represent ∇θ).

2.4. The feedback law. Let us now describe the feedback law that we use. It
is given by the following rule:

• If (ω(t), λ1(t), . . . , λg(t)) = 0, then fix

v · n = C1 := 0 on Σ.(2.26)
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(to Γ0)

Supp(Γ)
Supp(Λ)

A

M A

B

(to A′)

γA

Fig. 2.2. A representation of Σ− ∩ Γi.

• If (ω(t), λ1(t), . . . , λg(t)) �= 0, then fix

(2.27)⎧⎨
⎩

v · n = C1 := K max(‖ω(t, ·)‖L∞(Ω), |λ1(t)|, . . . , |λg(t)|)∇θ(x) · n(x) on Σ,

ω = ω1 + ω2 on γ−,

where ω1 and ω2 are given by

(2.28)⎧⎨
⎩

∂tω1 = C2 := −M max(‖ω(t, ·)‖L∞(Ω), |λ1(t)|, . . . , |λg(t)|)ω1 on γ−,

ω2 = C3 :=
∑

A∈A ω(t, A)ΓA(x) −
∑g

i=1 λi(t)Λi(x) on γ−.

Consequently, we will have Σ− = γ− except in the case (ω(t), λ1(t), . . . , λg(t)) = 0.
Remark that ω1 is a function of the state since

ω1(t, ·) = ω(t, ·) −
∑
A∈A

ω(t, A)ΓA(·) +

g∑
i=1

λi(t)Λi(·) on γ−.

The constants K and M are to be chosen large enough, as will be seen more precisely
later.

Remark 5. Let us remark that, as the vorticity functions ω considered here are
in the class C0([0, T )×Ω), the functions t �→ ω(t, A) are well-defined and continuous.
Consequently, the feedback law is equivalent (in a distributional sense) to

∂tω(t, x) = −M max(‖ω(t, ·)‖L∞(Ω), |λ1(t)|, . . . , |λg(t)|)

×
[
ω(t, x) −

∑
A∈A

ω(t, A)ΓA(x) +

g∑
i=1

λi(t)Λi(x)

]

+
∑
A∈A

∂tω(t, A)ΓA(x) −
g∑

i=1

(
d

dt
λi(t)

)
Λi(x),(2.29)

where ∂tω(t, A) and d
dtλi(t) can be recovered, in a formal sense for the first one, from

the state thanks to (1.7)–(1.8).

2.5. The result. We rewrite the definition of the solutions of the system with
the above described feedback.

Definition 2.3. A function (ω, λ1, . . . , λg) in C0([0, T ∗)×Ω; R)×C0([0, T ∗); R)g

is a solution of the closed-loop system with the feedback law of section 2.4 if and only
if it satisfies
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• the relation (1.8) for all t ∈ [0, T ∗) and the equation (1.7) in the sense of
distributions, where v is defined for each t by (1.5), with C1 fixed by (2.27),

• that on the domain {t ∈ [0, T ∗) / (ω(t, ·), λ1(t), . . . , λg(t)) �≡ 0} × γ− (which
is an open bidimensional manifold), the function

ω1(t, x) = ω(t, x) −
∑
A∈A

ω(t, A)ΓA(x) +

g∑
i=1

λi(t)Λi(x)

satisfies (2.28) in a distributional sense.
The following theorem is the main result of the paper; it clearly involves Theo-

rem 1.2.
Theorem 2.4. If the constant K is large enough, and M is large enough depend-

ing on K, then for any initial condition (ω0, λ
0
1, . . . , λ

0
g) in C0(Ω; R) × R

g, there are

solutions in C0([0, T ∗) × Ω; R) × C0([0, T ∗); R)g of the closed-loop system (for some
T ∗ > 0) satisfying

(ω, λ1, . . . , λg)|t=0 = (ω0, λ
0
1, . . . , λ

0
g).(2.30)

Moreover, any maximal solution is global and satisfies, for some K > 0 depending
only on Ω and Σ (and on the functions θ, ΓA, and Λi constructed on (Ω,Σ)),

(2.31) max(‖ω(t, ·)‖L∞(Ω), |λ1(t)|, . . . , |λg(t)|)
≤ Kmax(‖ω0‖L∞(Ω), |λ0

1|, . . . , |λ0
g|) ∀ t ≥ 0,

max(‖ω(t, ·)‖L∞(Ω), |λ1(t)|, . . . , |λg(t)|) → 0 as t → +∞.(2.32)

3. Notation and prerequisites.

3.1. Notation. We essentially keep the notation of [4]. The velocity field will
now be designated by y. We write ΩT := [0, T ] × Ω and ΣT := [0, T ] × ∂Ω. In that
context we write pr1(t, x) = t and pr2(t, x) = x.

For X a nonempty compact subset of R
n and f a continuous function X → R,

we introduce ΞX [f ] as the following function R
+∗ → R

+∗ ∪ {+∞}:

ΞX [f ](ε) := sup
{
η > 0 / ∀x, x′ ∈ X, |x− x′| ≤ η ⇒ |f(x) − f(x′)| ≤ ε

}
;(3.1)

for x ∈ X we introduce Ξx
X [f ] as

Ξx
X [f ](ε) := sup

{
η > 0 / ∀x′ ∈ X, |x− x′| ≤ η ⇒ |f(x) − f(x′)| ≤ ε

}
.(3.2)

These two functions are clearly related to the modulus of continuity of f .
Given K a compact set in R

2 and f a continuous function K → R
2, we introduce

the log-Lipschitz norm

qK(f) := ‖f‖∞ + sup

{
|f(x) − f(x′)|
r(|x− x′|) , (x, x′) ∈ K2, x �= x′

}
,(3.3)

where r(s) = s− s ln(s) in (0, 1) and r(s) = s in [1,+∞).
We call log-Lipschitz the functions for which qK(f) < +∞, and denote by LL(K)

their space, which we endow with the norm described in (3.3). We denote by Lip(K)
the space of Lipschitz functions on K.
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In the notation of a functional space, an index 0 refers to functions with compact
support.

Let R be a positive real number, large enough so that Ω is included in the open
0-centered ball with radius R, denoted by BR.

We consider a linear continuous extension operator π : C0(Ω) → C0
0 (BR), which

maps any LL(Ω) function to an LL0(BR) function, and any C1(Ω) function to a
C1

0 (BR) function. We fix cπ a constant such that

(3.4) ‖π(f)‖C0(BR) ≤ cπ‖f‖C0(Ω), ‖π(f)‖LL(BR) ≤ cπ‖f‖LL(Ω),

and ‖π(f)‖C1(BR) ≤ cπ‖f‖C1(Ω).

Frequently, we write (ω, λi) for (ω, λ1, . . . , λg). Also, using the canonical isomorphism
C0([0, T ∗)×Ω; R) ∼= C0([0, T ∗);C0(Ω; R)), we often write ω(t) for ω(t, ·) and y(t) for
y(t, ·). In the same way, ‖ω(·)‖L∞(Ω) denotes the function

t �→ ess sup
x∈Ω

|ω(t, x)|.

3.2. The Wolibner–Yudovich theorem. In this section, we introduce a clas-
sical tool to deal with flows of vector fields which do not satisfy the Lipschitz condition
(in fact, the existence is the Peano theorem, and the uniqueness is the Osgood theo-
rem). One has the following theorem.

Theorem 3.1 (Wolibner–Yudovich theorem). Consider T > 0 and a vector field
y ∈ L∞([0, T ];C0

0 (BR; R2)) such that for some constant C

qBR
(y(t)) ≤ C a.e. in [0, T ].(3.5)

Then there exists a unique map Φy ∈ C0([0, T ]×[0, T ]×BR;BR), (t, s, x) �→ Φy(t, s, x),
which is a flow of y, i.e., a function that satisfies

Φy(t, s, x) = x +

∫ t

s

y(τ,Φy(τ, s, x))dτ ∀(t, s, x) ∈ [0, T ] × [0, T ] ×BR.(3.6)

Moreover, there are two positive constants CWY and δWY depending only on (R, T,C)
such that for any (s, s′, t, t′, x, x′) ∈ [0, T ]4 ×BR

2, one has

|Φy(t, s, x) − Φy(t′, s′, x′)| ≤ CWY (|s− s′|δWY + |t− t′|δWY + |x− x′|δWY ).(3.7)

For a proof of this theorem, we refer to Wolibner [9], Yudovich [11, Lemma 6.3],
or Kato [7].

Estimates such as (3.5) can easily be established by using the following theorem.
Theorem 3.2 (Wolibner). Consider ω ∈ C0(Ω; R), λ1, . . . , λg ∈ R. Then the

function y defined in C0(Ω; R2) by⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

curl y(x) = ω(x) in Ω,
div y(x) = 0 in Ω,
y(x) · n(x) = 0 on ∂Ω,∫

Γi

y(x) · �τ(x)dx = λi for i = 1, . . . g,

(3.8)

satisfies the estimate

‖y‖LL(Ω) ≤ CLL max (‖ω‖C0 , |λ1|, . . . , |λg|) .(3.9)

We refer, for instance, to [7, Lemma 1.4] or [9].
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3.3. Elementary tools. Here we recall two elementary Gronwall inequalities.
Lemma 3.3. Consider two vector fields y1 ∈ L∞([0, T ];Lip0(BR; R2)) and y2 ∈

L∞([0, T ];LL0(BR; R2)) and their corresponding flows Φ1 and Φ2 (obtained with the
Cauchy–Lipschitz theorem for the first and with the Wolibner–Yudovich theorem for
the latter). Then one has, for all t ∈ [0, T ],

‖Φ1(t, 0, ·) − Φ2(t, 0, ·)‖L∞(BR) ≤ exp

(∫ t

0

‖y1(τ)‖Lip(BR)dτ

)
‖y1 − y2‖L1([0,t],L∞(BR)).

(3.10)

Lemma 3.4. Consider y ∈ L∞([0, T ],Lip0(BR; R2)) and its flow Φy. One has,
for all (t, x, x′) ∈ [0, T ] ×B2

R,

|Φy(t, 0, x) − Φy(t, 0, x′)| ≤ exp

(∫ t

0

‖y(τ)‖Lip(BR)dτ

)
|x− x′|.(3.11)

These are very classical and elementary statements.

3.4. A proposition concerning flows under the feedback law. We begin
with a remark.

Remark 6. The flow Φ of π(∇θ) satisfies the following properties:
(i) for x in B ∪ γ−(θ) and for any t ∈ (0, T ], ∃ν > 0 s.t. Φ([t− ν, t], t, x) ⊂ R

2\Ω;
(ii) for x in γ−(θ) and for any t ∈ [0, T ), ∃ν > 0 s.t. Φ([t, t + ν], t, x) ⊂ Ω;
(iii) for any B ∈ B and for any t ∈ [0, T ), ∃ν > 0 s.t. Φ([t, t + ν], t, B) ⊂ γB ;
(iv) for any A ∈ A, for any t ∈ [0, T ), and for τ < t s.t. (t− τ)‖∇θ‖∞ ≤ �/2,

one has Φ(τ, t, A) ∈ γA;
(v) for any A ∈ A, for any t ∈ (0, T ], and for τ > t s.t. (τ − t)‖∇θ‖∞ ≤ �/2,

one has Φ(τ, t, A) ∈ Ω;

(vi) for all Mi ∈ M, one has Φ(t, 0,Mi) �∈ ∂Ω\[γ+ ∪ γ−] for t > 0 s.t.
Φ([0, t], 0,Mi) ⊂ Ω; that is, the trajectories of Mi do not touch the set

∂Ω\[γ+ ∪ γ−] before leaving the domain.
These properties are easy to prove using the form of ∇θ, the uniqueness of the flow,
and the definition of �.

The idea of the following proposition is to prove that if one imposes a control of
the form (2.27) with K large enough, some of the properties in Proposition 2.1 and
Remark 6 are also true for the flow of the resulting velocity y.

Proposition 3.5. There exist κ > 0 and K := K(θ) > 0 such that, for any K ≥
K, any T > 0, any (ω, λi) ∈ C0(ΩT ; R) × C0([0, T ]; Rg), and any α ∈ C0([0, T ],R+)
positive satisfying

α(t) ≥ max (|λ1(t)|, . . . , |λg(t)|, ‖ω(t)‖∞) ,(3.12)

the solution y ∈ C0(ΩT ; R2) of⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

curl y(t, x) = ω(t, x) for (t, x) ∈ ΩT ,
div y(t, x) = 0 for (t, x) ∈ ΩT ,
y(t, x) · n(x) = Kα(t)∇θ(x) · n(x) for (t, x) ∈ ΣT ,∫

Γi

y(t, x) · �τ(x)dx = λi(t) for t ∈ [0, T ] and i ∈ {1, . . . , g}
(3.13)

satisfies

y(t, x) · ∇θ(x) ≥ κKα(t) in ΩT ,(3.14)
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and, Φy being the flow of π(y) in BR,

for any point x in B ∪ γ−(θ) and for any t ∈ (0, T ),

∃ν > 0 such that Φy([t− ν, t), t, x) ⊂ R
2\Ω,(3.15)

∃ν > 0 such that Φy((t, t + ν], t, x) ⊂ Ω ∪ [∂Ω\(γ− ∪ γ+)],(3.16)

(3.17) for any x ∈ Supp(Λ) and for any t ∈ [0, T ], one has Φy(τ, t, x) �∈
g⋃

i=1

(Γi ∩ γ+)

for τ ∈ (t, T ] such that Φy([t, τ ], t, x) ⊂ Ω,

(3.18)
for any A ∈ A and for any t ∈ (0, T ], one has Φy(τ, t, A) ∈ γA for τ ∈ [0, t) such that

cπ(K‖∇θ‖∞ + CLL)

(∫ t

τ

α(s)ds

)
≤ �/2,

(3.19)
for any A ∈ A and for any t ∈ [0, T ), one has Φy(τ, t, A) ∈ Ω for τ ∈ (t, T ] such that

cπ(K‖∇θ‖∞ + CLL)

(∫ τ

t

α(s)ds

)
≤ �/2,

(3.20) for any A ∈ A and for any t ∈ [0, T ], one has Φy(τ, t, A) �∈ Supp(Γ) ∪ Supp(Λ)

for τ ∈ [0, t) such that Φy([τ, t], t, A) ⊂ Ω.

Of course, the previous flow has to be understood in the Wolibner–Yudovich sense.

The proof of Proposition 3.5 is delayed to the appendix.

Remark 7. Let us remark that, as a consequence of (3.14), the points A and B
defined for ∇θ are still valid for the velocity y described in (3.13); that is, for all t in
[0, T ], y(t, A) (resp., y(t, B)) is tangent to ∂Ω and pointing inside (resp., outside) γ−

(for K ≥ K, provided α(t) > 0).

In what follows, we will systematically suppose K ≥ K.

4. Construction of the operator F . In this section, we construct an operator
F = (F,G1, . . . , Gg), whose fixed points give local in time solutions to the closed-loop
system. Roughly speaking, F [ω, λi] is the solution of an initial-boundary problem,
which is approximately the closed-loop system described above, where (1.7) is replaced
by the following linear equation:

∂tF [ω, λi] + div(yω,λi
F [ω, λi]) = 0 in (0, T ∗) × Ω,

where yω,λi is the solution of (1.5) corresponding to (ω, λi). Then Gi corresponds
approximately to the solution of (1.8).

4.1. The domain X. First let us define the space X on which F is to be
defined. The operator F is split into F = (F,Gi), with F : X → C0([0, T ] × Ω; R)
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and Gi : X → C0([0, T ]; R) for i ∈ {1, . . . , g}. We introduce

(4.1) X :=
{

(ω, λi) ∈ C0([0, T ] × Ω; R) ×
[
C0([0, T ]; R)

]g /
(a) ω(0, ·) = ω0,

(b) ‖ω(t, ·)‖∞ ≤ Nω0,λ0
i

for t ∈ [0, T ],

(c) λi(0) = λ0
i for i = 1 . . . g,

(d)

∥∥∥∥∂ω∂t
∥∥∥∥
L∞

t (H−1
x )

≤ κ1 max
(
‖ω0‖∞, |λ0

1|, . . . , |λ0
g|
)2

,

(e) |λi(t)| ≤ Mω0,λ0
i

for t ∈ [0, T ],

(f)

∣∣∣∣ dλi

dt−

∣∣∣∣ (t) ≤ κ2 max
(
‖ω0‖∞, |λ0

1|, . . . , |λ0
g|
)2

,

(g) ∀A ∈ A, ∀ε ∈ (0, 1), Ξ[0,T ][ω(A, ·)](ε) ≥ 1
c (ΞγA

[ω0](ε))
1
δ ,

(h) ∀ε ∈ (0, 1), Ξ[0,T ][‖ω(·)‖L∞(Ω)](ε) ≥ 1
c min

[(
ΞΩ[ω0](ε)

) 1
δ , ε

]}
,

where the constant c depends on Ω, θ, T , and (ω0, λ
0
i ) and will be chosen large enough

later. The other constants are fixed as follows:

Nω0,λ0
i

:=

[
3 + |Ω| + V (θ)

κ
T (Γ)

]
(1 + ‖Λ‖∞) max(|λ0

1|, . . . , |λ0
g|, ‖ω0‖∞),(4.2)

Mω0,λ0
i

:=

[
2 + |Ω| + V (θ)

κ
T (Γ)

]
max(|λ0

1|, . . . , |λ0
g|, ‖ω0‖∞),(4.3)

and δ is defined with reference to section 3.2 as

δ := δWY (R, T, cπ(CLL + K‖∇θ‖LL(Ω))Nω0,λ0
i
).(4.4)

The constants κ1 and κ2 depend on the domain and on the choice of θ, Λ, and Γ but
not on T :

κ1 := 2|Ω| 12 (CLL + K‖∇θ‖L∞(Ω))

[
3 + |Ω| + V (θ)

κ
T (Γ)

]2

(1 + ‖Λ‖∞)2,(4.5)

κ2 := |Σ|K‖∇θ‖L∞(Ω)

[
3 + |Ω| + V (θ)

κ
T (Γ)

]2

(1 + ‖Λ‖∞)2.(4.6)

In (4.2)–(4.6), |Ω| stands for the Lebesgue measure of Ω and |Σ| for the length of Σ,
κ is the constant in (3.14), V (θ) is defined in (2.20), T (Γ) and ‖Λ‖∞ are defined in
(2.25), cπ is defined in (3.4), and CLL is introduced in (3.9).

The time T is chosen in the following way:
• if max(|λ0

1|, . . . , |λ0
g|, ‖ω0‖∞) = 0, then 0 is a clear solution of the system and

we pass (throughout sections 4 and 5 we will suppose (ω0, λ
0
i ) �= (0, 0));

• if ‖ω0‖∞ = 0, but |λ0
k| > 0 for some k ∈ {1, . . . , g}, we fix

T :=
|λ0

k|
2κ2 max

(
‖ω0‖∞, |λ0

1|, . . . , |λ0
g|
)2 ;(4.7)

• if ‖ω0‖∞ �= 0, then we fix

T :=
‖ω0‖∞

2κ1 max
(
‖ω0‖∞, |λ0

1|, . . . , |λ0
g|
)2 .(4.8)
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Finally, we define T as

T := min

(
�

4cπ(CLL + K‖∇θ‖∞)Nω0,λ0
i

, T

)
.(4.9)

It is quite clear that X is convex, closed, and nonempty (since, for example, it
contains the constant function t �→ (ω0, λ

0
i )).

Let us finish this paragraph with a remark concerning the choice of T .
Remark 8. Let us remark that T allows us to have the following properties:
• for any A ∈ A and any (ω, λi) ∈ X, if one puts y as in (3.13) (with α

satisfying (3.12)), then for any t ∈ [0, T ] one has Φy([0, t], t, A) ⊂ γA (this is
a consequence of the first part in the minimum in (4.9), using (3.18));

• for any (ω, λi) ∈ X, one has as a consequence of the definition of T and of
points (d) and (f) in (4.1), that

– if T is defined by (4.7), then for all t ∈ [0, T ],

|λk(t)| ≥
|λ0

k|
2

> 0,(4.10)

– if T is defined by (4.8), then for all t ∈ [0, T ],

‖ω(t, ·)‖∞ ≥ κ−1
3

‖ω0‖H−1(Ω)

2
> 0,(4.11)

where κ3 is some constant such that ‖ · ‖H−1(Ω) ≤ κ3‖ · ‖L∞(Ω).

4.2. The operator F . Let us now describe the operator F . Consider (ω, λi) ∈
X. First, we associate with (ω, λi) the function αω,λi

∈ C0([0, T ],R+∗) by

αω,λi(t) := max (|λ1(t)|, . . . , |λg(t)|, ‖ω(t)‖∞) .(4.12)

Then, we can associate the following vector field yω,λi ∈ C0(ΩT ,R
2) as the solu-

tion of ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

curl yω,λi(t, x) = ω(t, x) for (t, x) ∈ ΩT ,
div yω,λi

(t, x) = 0 for (t, x) ∈ ΩT ,
yω,λi(t, x) · n(x) = Kαω,λi

(t)∇θ(x) · n(x) for (t, x) ∈ ΣT ,∫
Γi

yω,λi(t, x) · �τ(x)dx = λi(t) for t ∈ [0, T ], i = 1, . . . , g,

(4.13)

where K ≥ K(θ). Then we extend this vector field to [0, T ] ×BR by

ỹω,λi(t, ·) = π[yω,λi(t, ·)].(4.14)

By the Wolibner–Yudovich theorem (see section 3.2), this vector field yields a flow
Φω,λi : [0, T ] × [0, T ] × BR → BR, i.e., a solution of (3.6). Now, given this flow,

we can introduce the following two functions on [0, T ] × Ω (which, roughly speaking,
represent, respectively, the time and location of entrance in the domain of the point
located at x at time t, when following the flow):

sω,λi(t, x) := max
{
τ ∈ [0, t], Φω,λi(τ, t, x) ∈ γ−

}
,(4.15)

aω,λi
(t, x) := Φω,λi(sω,λi

(t, x), t, x),(4.16)
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with the convention that when {τ ∈ [0, t], Φω,λi(τ, t, x) ∈ γ−} = ∅, then

sω,λi
(t, x) := 0,

and correspondingly

aω,λi
(t, x) := Φω,λi(0, t, x).

Note that in all cases, one has aω,λi(t, x) ∈ Ω. Note that the function sω,λi is not
necessarily continuous (contrary to what happened in the simply connected case; see
[4, equations (3.36)–(3.37)]).

Now we can define F [ω, λi](t, x) for (t, x) ∈ ΩT . In that order, we distinguish
four cases, corresponding to different situations for aω,λi(t, x). In what follows, the
constant M (which appears in (2.28)) is to be chosen large enough later.

Case α: aω,λi(t, x) ∈ Ω ∪ (∂Ω\γ−). This case is possible only if sω,λi(t, x) = 0.
In that case, we fix

F [ω, λi](t, x) := ω0(aω,λi
(t, x)).(4.17)

Case β: aω,λi(t, x) ∈ γ−\[Supp(Γ) ∪ Supp(Λ)]. In that case, we fix

F [ω, λi](t, x) := ω0(aω,λi(t, x)) exp

(
−M

∫ sω,λi
(t,x)

0

αω,λi(τ)dτ

)
.(4.18)

Case γ: aω,λi(t, x) ∈ Supp(ΓA) for some A ∈ A. In that case, we fix

(4.19) F [ω, λi](t, x) :=[
ω0(aω,λi(t, x)) − ω0(A)ΓA(aω,λi(t, x))

]
exp

(
−M

∫ sω,λi
(t,x)

0

αω,λi(τ)dτ

)

+ ω0(Φ
ω,λi(0, sω,λi(t, x), A))ΓA(aω,λi(t, x)).

Case δ: aω,λi(t, x) ∈ Supp(Λk) for some k ∈ {1, . . . , g}. In that case, we fix

(4.20) F [ω, λi](t, x) :=[
ω0(aω,λi(t, x)) + λ0

kΛk(aω,λi(t, x))
]
exp

(
−M

∫ sω,λi
(t,x)

0

αω,λi
(τ)dτ

)

− λk(sω,λi(t, x))Λk(aω,λi
(t, x)).

Another way to express this is that F [ω, λi] is given by

F [ω, λi](t, x) =

[
ω0(aω,λi(t, x)) −

∑
A∈A

ω0(A)ΓA(aω,λi(t, x)) +

g∑
k=1

λ0
kΛk(aω,λi(t, x))

]

× exp

(
−M

∫ sω,λi
(t,x)

0

αω,λi(τ)dτ

)

+
∑
A∈A

ω0(Φ
ω,λi(0, sω,λi(t, x), A))ΓA(aω,λi(t, x))

−
g∑

k=1

λk(sω,λi(t, x))Λk(aω,λi(t, x))(4.21)
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with at most one nonnull term in each summation.
We also define on [0, T ] × γ−

(4.22)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ω	(t, x) :=

[
ω0(x) −

∑
A∈A

ω0(A)ΓA(x) +

g∑
k=1

λ0
kΛk(x)

]
exp

(
−M

∫ t

0

αω,λi(τ)dτ

)
,

ω
(t, x) :=
∑
A∈A

ω0(Φ
ω,λi(0, t, A))ΓA(x),

ω�(t, x) := −
g∑

k=1

λk(t)Λk(x).

Finally, let us call F̃ the same operator as F , with Λk replaced by 0 for each k ∈
{1, . . . , g}; that is, F̃ is constant along the flow of Φω,λi , and on γ−, one has

(4.23) F̃ [ω, λi](t, x) :=

[
ω0(x) −

∑
A∈A

ω0(A)ΓA(x)

]
exp

(
−M

∫ t

0

αω,λi(τ)dτ

)

+
∑
A∈A

ω0(Φ
ω,λi(0, t, A))ΓA(x).

4.3. The operators Gi. Define the function Tω0,λ0
i

: R → R as

⎧⎪⎨
⎪⎩

Tω0,λ0
i
(x) = x in [−Mω0,λ0

i
,Mω0,λ0

i
],

Tω0,λ0
i
(x) = Mω0,λ0

i
in [Mω0,λ0

i
,+∞),

Tω0,λ0
i
(x) = −Mω0,λ0

i
in (−∞,−Mω0,λ0

i
].

(4.24)

Let us now introduce the operators Gk, k = 1, . . . , g. We define Gk(ω, λ1, . . . , λg) ∈
C0([0, T ],R) by

Gk(ω, λ1, . . . , λg)(t) := Tω0,λ0
i

[
λ0
k +

∫ t

0

∫
Γk

yω,λi
(s, x) · n(x)F [ω, λi](s, x)dsdx

]
.

(4.25)

5. Proof that F admits a fixed point. In this section, we prove that the
operator F := (F,G1, . . . , Gg) that we have just constructed admits a fixed point.
This is done by using the Leray–Schauder fixed point theorem. Accordingly, we have
to prove three properties:

• F(X) ⊂ X;
• F(X) is compact in X for the C0 topology;
• F is continuous for the C0 topology.

We prove this in three distinct subsections.

5.1. F(X) ⊂ X. The first point to prove is that, for (ω, λi) ∈ X, F [ω, λi] is a
continuous function of (t, x). Fixing (t, x) ∈ [0, T ] × Ω, let us prove that F [ω, λi] is
continuous at the point (t, x). Again, we distinguish the four cases α, β, γ, and δ,
corresponding respectively to the case when aω,λi(t, x) ∈ Ω ∪ (∂Ω\γ−), aω,λi(t, x) ∈
γ−\[Supp(Γ) ∪ Supp(Λ)], aω,λi(t, x) ∈ Supp(Γ), and aω,λi(t, x) ∈ Supp(Λ).

Case α: aω,λi(t, x) ∈ Ω ∪ (∂Ω\γ−). Therefore, sω,λi(t, x) = 0. By the continuity
of the flow Φω,λi , there exists a neighborhood of (t, x) on which Φω,λi(0, t′, x′) ∈



1124 OLIVIER GLASS

Ω ∪ (∂Ω\γ−). Then the continuity of F [ω, λi] at the point (t, x) comes directly from
the continuities of the flow and of ω0, and from (4.17).

Case β: aω,λi(t, x) ∈ γ−\[Supp(Γ) ∪ Supp(Λ)]. In this case, using (3.15) and the
continuity of the flow, one sees that sω,λi is continuous at the neighborhood of (t, x).
To be more precise the following hold:

– sω,λi
is always upper semicontinuous, as follows from the continuity of the

flow. Indeed, consider s > sω,λi
(t, x); the trajectory

Φω,λi(τ, t, x) for τ ∈ [s, t]

does not touch γ−. Consequently, for (t′, x′) close enough to (t, x), the cor-
responding trajectory

Φω,λi(τ, t′, x′) for τ ∈ [s, t′]

does not touch γ− either. This leads to

lim
(t′,x′)→(t,x)

sω,λi(t
′, x′) ≤ sω,λi(t, x).(5.1)

– sω,λi is lower semicontinuous in this neighborhood, as a consequence of (3.15).
Indeed, for s ∈ [sω,λi(t, x)−ν, sω,λi(t, x)), one has Φω,λi(s, t, x) ∈ BR\Ω. Now
using the continuity of the flow, this gives

lim
(t′,x′)→(t,x)

sω,λi
(t′, x′) ≥ sω,λi

(t, x).(5.2)

Then again, once we have obtained the continuity of sω,λi
, the continuity of F [ω, λi]

at the point (t, x) comes from the continuities of the flow and of ω0, and from (4.21).
(Cases α and β are the only ones that arise in the simply connected case; see [4,

Lemma 3.3].)
Case γ: aω,λi(t, x) ∈ Supp(ΓA) for some A ∈ A. In this case, sω,λi(t, x) can

be discontinuous, but only in the case where aω,λi
(t, x) = A, for the same reason as

in case β. Indeed, when aω,λi
(t, x) �= A, (3.15) is still valid, so the same argument

stands true. So we suppose from now on that aω,λi(t, x) = A. Consider (t′, x′) in
a neighborhood of (t, x). We distinguish some subcases according to the locus of
aω,λi

(t′, x′).

• Cases β′ and δ′: aω,λi(t
′, x′) ∈ γ−\Supp(ΓA) (including aω,λi(t

′, x′) ∈
Supp(ΓA′) for some A′ ∈ A \ {A}). These cases cannot happen if the neigh-
borhood around (t, x) is chosen small enough (this is a clear consequence of
the continuity of the flow).

• Case γ′: aω,λi(t
′, x′) ∈ Supp(ΓA) (including A). Let us prove that in this case

aω,λi(t
′, x′) is close to aω,λi(t, x) = A and that sω,λi(t

′, x′) is close to sω,λi(t, x)
in the following sense: take a sequence (t′n, x

′
n) in the region of points in Case

γ′, converging to (t, x); then one has the corresponding convergences

aω,λi(t
′
n, x

′
n) → aω,λi(t, x) and sω,λi(t

′
n, x

′
n) → sω,λi(t, x) as n → +∞.

Indeed,
* given ε > 0, one has for n large enough sω,λi(t

′
n, x

′
n) ≥ sω,λi(t, x) − ε.

If not, for some subsequence of (t′n, x
′
n) (that we still call (t′n, x

′
n)), one

has sω,λi(t
′
n, x

′
n) → s, with

s ≤ sω,λi
(t, x) − ε.



STABILIZATION OF FLUIDS IN MULTICONNECTED DOMAINS 1125

By continuity of the flow, Φω,λi(sω,λi
(t′n, x

′
n), t′n, x

′
n) converges to

Φω,λi(s, t, x) as n → +∞. But as s ≤ sω,λi(t, x) − ε and using (3.18),
one must have Φω,λi(s, t, x) ∈ γA, which contradicts the fact that it is a

limit point of a sequence in γ−.
* we argue in the same way to get sω,λi(t

′
n, x

′
n) ≤ sω,λi(t, x)+ε. If this does

not happen, one finds a subsequence of (t′n, x
′
n) for which sω,λi(t

′
n, x

′
n)

converges to s ≥ sω,λi
(t, x) + ε. This yields a contradiction with the

continuity of the flow and (3.19).
Now, using the continuity of the flow and the convergence of sω,λi

(t′n, x
′
n),

one gets the continuity of aω,λi(t
′
n, x

′
n).

It follows from the choice of T—see in particular Remark 8—that

Fω,λi(t, A) = ω0(Φ
ω,λi(0, t, A))

and hence that t �→ Fω,λi(t, A) is continuous. Now, using the continuity of
ΓA, we get a neighborhood of (t, x) in which the points in the Case γ′ satisfy

|Fω,λi(t′, x′) − Fω,λi(t, x)| < ε.

• Case α′: aω,λi(t
′, x′) ∈ Ω ∪ (∂Ω\γ−). Then one has

F [ω, λi](t
′, x′) = ω0(Φ

ω,λi [0, t′, x′]).

But by (4.19) we also have

F [ω, λi](t, x) = ω0

(
Φω,λi [0, sω,λi

(t, x), aω,λi
(t, x)]

)
= ω0(Φ

ω,λi [0, t, x]).

(Remember aω,λi(t, x) = A.) Then again, using only the continuity of the flow
and the continuity of ω0, we get that F [ω, λi](t, x

′) can be made arbitrarily
close to F [ω, λi](t, x) if we restrict x′ to a small neighborhood of x of points
in Case α′.

Case δ: aω,λi
(t, x) ∈ Supp(Λk) for some k ∈ {1, . . . , g}. This is again, as in

Case β, a situation where sω,λi
is continuous at the neighborhood of (t, x). Then the

continuity in this case is a consequence of the continuities of the flow, of ω0 and λk,
and of (4.21).
From the continuity of F (ω, λi) and (4.25), we get that the functions Gk(ω, λ1, . . . , λg)
are time continuous.

Once this is proved, we have to check that the points (a) to (h) in the definition
of X are satisfied by F(ω, λi) for (ω, λi) ∈ X.

(a) That F (ω, λi)(0, ·) = ω0 is a clear consequence of the construction of F .
(c) We have also Gi(0) = λ0

i for i = 1, . . . , g, as a direct consequence of (4.3),
(4.24), and (4.25).

(b) Let us check that for all (t, x) ∈ [0, T ]×Ω one has |F [ω, λi](t, x)| ≤ Nω0,λ0
i

by

separating the four cases. Let us therefore consider (t, x) which achieves the maximum
of |F [ω, λi](t, x)|.

Case α: Suppose aω,λi(t, x) ∈ Ω ∪ (∂Ω\γ−). Then one has

|F [ω, λi](t, x)| = |ω0(aω,λi(t, x))| ≤ ‖ω0‖∞.

Case β: Suppose aω,λi
(t, x) ∈ γ−\[Supp(Γ) ∪ Supp(Λ)]. Then one has

|F [ω, λi](t, x)| = |ω0(aω,λi(t, x))| exp

(
−M

∫ sω,λi
(t,x)

0

αω,λi(τ)dτ

)

≤ ‖ω0‖∞.
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Case γ: Suppose aω,λi
(t, x) ∈ Supp(ΓA) for some A ∈ A. It is a consequence of

(3.20) (or Remark 8) that

|F [ω, λi](t, A)| ≤ ‖ω0‖∞.

Then one has, using (2.22) and (4.19),

|F [ω, λi](t, x)| = |ω	(sω,λi
(t, x), aω,λi

(t, x)) + ω
(sω,λi
(t, x), aω,λi

(t, x))|
≤ 3‖ω0‖∞ ≤ Nω0,λ0

i
.

Case δ: Suppose aω,λi(t, x) ∈ Supp(Λk) for some k ∈ {1, . . . , g}. As F [ω, λi](t, x)
is transported by the flow inside Ω, it suffices to prove that for (t, x) ∈ [0, T ]×
Supp(Λk) one has

|ω	(t, x) + ω�(t, x)|

≤
[
3 + |Ω| + V (θ)

κ
T (Γ)

]
(1 + ‖Λ‖∞) max(|λ0

1|, . . . , |λ0
g|, ‖ω0‖∞).

Of course, one has

|ω	(t, x)| ≤ ‖ω0‖∞ + ‖Λ‖∞|λ0
k| on [0, T ] × Supp(Λk).

Now, using point (e), one gets, for (t, x) ∈ [0, T ] × Supp(Λk),

|ω�(t, x)| ≤ |λk(t)|‖Λ‖∞

≤
[
2 + |Ω| + V (θ)

κ
T (Γ)

]
‖Λ‖∞ max(|λ0

1|, . . . , |λ0
g|, ‖ω0‖∞).

Hence, one still gets the estimate (b) for F (ω, λi).
(e) That the functions Gi satisfy the constraint (e) is a direct consequence of (4.3)

and (4.24).
(f) Point (f) is obtained as a consequence of (4.25). Consider k ∈ {1, . . . , g} and

t ∈ (0, T ]. Then either t is a left accumulation of points where∣∣∣∣λ0
k +

∫ t

0

∫
Γk

yω,λi(t, x) · n(x)F [ω, λi](t, x)dx

∣∣∣∣ ≥ Mω0,λ0
i
,

and in that case

dGk(ω, λi)

dt−
= 0,

or it is not, and one can write

dGk(ω, λi)

dt−
=

∫
Γk

yω,λi(t, x) · n(x)F [ω, λi](t, x)dx

= K

∫
Γk

αω,λi
(t)∇θ(x) · n(x)F [ω, λi](t, x)dx.

Using the fact that (ω, λi) ∈ X and consequently satisfies points (b) and (e), we get
that

‖αω,λi(t)∇θ(x) · n(x)‖C0([0,T ]×∂Ω) ≤ Nω0,λ0
i
‖∇θ‖∞.
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Using the fact that F [ω, λi] satisfies the estimate (b), this leads to∣∣∣∣dGk(ω, λi)

dt−

∣∣∣∣ (t) ≤ κ2 max
(
‖ω0‖∞, |λ0

1|, . . . , |λ0
g|
)2

.

(d) Define

y̌ω,λi = yω,λi −Kαω,λi∇θ.

Using (3.9) and (b) and (e) in (4.1), one gets

‖y̌ω,λi
‖L∞([0,T ];LL(Ω)) ≤ CLL max(Mω0,λ0

i
,Nω0,λ0

i
) = CLLNω0,λ0

i
.

It follows that one has{
‖yω,λi‖L∞([0,T ]×Ω) ≤ CLLNω0,λ0

i
+ KNω0,λ0

i
‖∇θ‖∞,

‖yω,λi‖L∞([0,T ];LL(Ω)) ≤ CLLNω0,λ0
i
+ KNω0,λ0

i
‖∇θ‖LL.

(5.3)

Moreover, we have from point (b) that

max
t∈[0,T ]

‖F [ω, λi](t, ·)‖L∞(Ω) ≤ Nω0,λ0
i
.

Consequently one gets

‖yω,λiF [ω, λi]‖L∞([0,T ],L∞(Ω)) ≤ (CLL + K‖∇θ‖∞)N 2
ω0,λ0

i
.

But it follows from the construction that F [ω, λi] satisfies

∂tF [ω, λi] + div(yω,λiF [ω, λi]) = 0 in D′((0, T ) × Ω).

This leads to the fact that F [ω, λi] satisfies constraint (d).
(g) This point follows from (3.7), (3.18), and (4.19). Indeed, one has, for any

A ∈ A and any (t, t′) ∈ [0, T ]2,

F [ω, λi](t, A) − F [ω, λi](t
′, A) = ω0(Φ

ω,λi(0, t, A)) − ω0(Φ
ω,λi(0, t′, A)),

with Φω,λi(0, t′, A) and Φω,λi(0, t, A) in γA. Hence, so that

|F [ω, λi](t, A) − F [ω, λi](t
′, A)| ≤ ε,

it is sufficient that |Φω,λi(0, t, A)−Φω,λi(0, t′, A)| ≤ ΞγA
[ω0](ε). Using (3.7) and (5.3),

one sees that it is sufficient that

|t− t′| ≤
[

ΞγA
[ω0](ε)

CWY (R, T, cπNω0,λ0
i
[CLL + K‖∇θ‖LL])

] 1
δ

.

(h) We write ω̂ := F (ω, λi). We divide the proof that ω̂ satisfies point (h) into
two steps. First we estimate t̂− t so that

‖ω̂(t, ·)‖∞ − ‖ω̂(t̂, ·)‖∞ ≤ ε for t̂ > t,(5.4)

and then we estimate t̂− t so that

‖ω̂(t, ·)‖∞ − ‖ω̂(t̂, ·)‖∞ ≥ −ε for t̂ > t.(5.5)

In what follows, we suppose t̂ > t.
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• Sufficient condition for (5.4). First, we state a lemma.
Lemma 5.1. There exist ρ > 0 and η > 0 such that for any η ∈ (0, η) and
any x ∈ Ω, there is some x̃ ∈ Ω such that

d(x̃, x) ≤ η and d(x̃, ∂Ω) ≥ ρη.

Proof of Lemma 5.1. We introduce V, a tubular neighborhood of ∂Ω in R
2.

It is easy to see that the following procedure, which associates a point x̃ to
any x, allows us to find relevant ρ and η:

– for x in V ∩Ω, we pick a point x̃ in the direction of the inner normal to
∂Ω,

– for x in Ω\V, we pick x̃ = x.
The details are left to the reader.
We go back to the sufficient condition for (5.4). Let us consider t ∈ [0, T ).
We introduce x ∈ Ω such that

|ω̂(t, x)| = ‖ω̂(t, ·)‖∞.

We have two possible situations.
– First situation: d(x, γ+) ≥ �/4. Then, considering (4.9), (5.3), the fact

that ω̂ is constant along the flow of yω,λi , and the fact that a point

following the flow of yω,λi
can leave the domain only through γ+, one

deduces that for t̂ ∈ (t, T ]

‖ω̂(t̂)‖C0(Ω) ≥ |ω̂(t̂,Φω,λi(t̂, t, x))| = |ω̂(t, x)| = ‖ω̂(t)‖C0(Ω),

which is stronger than (5.4).
– Second situation: d(x, γ+) ≤ �/4, and hence, considering the definition

of �, one has

d(x, γ−) ≥ 3�/4.

Considering (4.9) and (5.3), one deduces that

(5.6) Φω,λi(s, t, x) ∈ Ω\γ− ∀s ∈ [0, T ]

and any x ∈ Ω such that d(x, x) < �/2.

Moreover, using the fact that ω̂ is constant along the flow of yω,λi and
the fact that a point following the flow of yω,λi cannot leave the domain

except through γ+, we see that in order to have (5.4), it is sufficient that

|t− t̂| ≤ d(x̃, γ+)/‖yω,λi
‖L∞(ΩT ),

where x̃ ∈ Ω is some point satisfying

|ω̂(t, x̃) − ω̂(t, x)| ≤ ε.(5.7)

Using (5.6), one sees that to get (5.7), it is sufficient to have

d(x, x) < �/2 and |Φω,λi(0, t, x̃) − Φω,λi(0, t, x)| ≤ ΞΩ[ω0](ε),
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and hence, using (3.7), that

|x̃− x| ≤ min

⎧⎨
⎩
(

ΞΩ[ω0](ε)

CWY (R, T, cπ(CLL + K‖∇θ‖LL)Nω0,λ0
i
)

) 1
δ

, �/4

⎫⎬
⎭ .

It follows from Lemma 5.1 that one can find such a point x̃ satisfying
(5.7) such that

d(x̃, γ+) ≥ mmin
( (

ΞΩ[ω0](ε)
) 1

δ , 1
)

for some m > 0 independent from ε. So, using (5.3), one deduces that
in order to have ‖ω̂(t, ·)‖∞ − ‖ω̂(t̂, ·)‖∞ ≥ −ε (given ε ∈ (0, 1)), it is
sufficient that

|t− t̂| ≤ 1

c
min

{(
ΞΩ[ω0](ε)

) 1
δ , ε

}

for some c > 0 large enough depending on (ω0, λ
0
i ), on the domain, and

on K and on θ, but not on (ω, λi) or on ε.
• Sufficient condition for (5.5). Let us prove that in order for (5.5) to happen,

it is sufficient that

‖ω̂|γ−(s)‖∞ − ‖ω̂|γ−(t)‖∞ ≤ ε ∀ s ∈ [t, t̂].(5.8)

Indeed, let us consider x̂ ∈ Ω such that

|ω̂(t̂, x̂)| = ‖ω̂(t̂, ·)‖∞.

– If Φω,λi([t, t̂], t̂, x̂) meets γ−, then clearly, using again the fact that ω̂ is
constant along the flow of yω,λi

, one deduces that

‖ω̂(t̂)‖∞ ≤ sup
s∈[t,t̂]

‖ω̂|γ−(s)‖∞,

and hence

‖ω̂(t̂)‖∞ − ‖ω̂(t)‖∞ ≤ sup
s∈[t,t̂]

‖ω̂|γ−(s)‖∞ − ‖ω̂(t)‖∞

≤ sup
s∈[t,t̂]

‖ω̂|γ−(s)‖∞ − ‖ω̂|γ−(t)‖∞.

– Otherwise, it is quite clear that

‖ω̂(t̂)‖∞ = |ω̂(t̂, x̂)| = |ω̂(t,Φω,λi(t, t̂, x̂))| ≤ ‖ω̂(t)‖C0(Ω),

which is stronger than (5.5).
Now, using (2.22) and the decomposition (4.22) of F [ω, λi], one gets on
(0, T ) × γ−,

‖ω
(t) − ω
(t̂)‖∞ ≤ max
A∈A

|ω0(Φ
ω,λi(0, t, A)) − ω0(Φ

ω,λi(0, t̂, A))|,(5.9)
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and

(5.10)
∂

∂t

(
ω� + ω	

)
= −

g∑
k=1

Λk(x)
d

dt
λk(t) −Mαω,λi

(t)

×
[
ω0(x) −

∑
A∈A

ω0(A)ΓA(x) +

g∑
k=1

λ0
kΛk(x)

]
exp

(
−M

∫ t

0

αω,λi
(τ)dτ

)
.

In order to have (5.8), it is sufficient that

‖ω
(t) − ω
(t̂)‖∞ ≤ ε/2 and ‖ω�(t) + ω	(t) − ω�(t̂) + ω	(t̂)‖∞ ≤ ε/2

and hence, using points (b), (e), and (f) in the definition of X and (3.18),
(5.9), and (5.10), that

|t− t̂| ≤ 1

c
min(ε,ΞΩ[ω0](ε))

for some c large enough depending on ω0 and λ0
i , but not on ε, t̂, or (ω, λi).

So in all cases, in order to get (5.4) and (5.5), it is sufficient to have

|t− t̂| ≤ 1

c
min

(
ε,ΞΩ[ω0](ε)

)
for proper c, which allows us to conclude.

This ends the proof that F(X) ⊂ X.

5.2. F(X) is compact in C0([0, T ]×Ω; R)×[C0([0, T ]; R)]g. Consider a se-
quence (ωn, λ

n
i )n≥1 in X. Let us prove that one can extract a converging subsequence

from F(ωn, λ
n
i ) in C0([0, T ]×Ω; R)×

[
C0([0, T ]; R)

]g
. We will have to extract subse-

quences from (ωn, λ
n
i )n≥1 several times to get the convergence and, in order to avoid

too heavy notation, we will continue to write those subsequences (ωn, λ
n
i ) (instead of

(ωϕ(n), λ
ϕ(n)
i ), for instance). Moreover, we put an index n to objects constructed in

section 4.2, corresponding to (ωn, λ
n
i ): each (ωn, λ

n
i ) yields a function αn by (4.12)

and then a vector field yωn,λn
i

on [0, T ] × Ω by (4.13), which in turn yields a vector
field ỹωn,λn

i
by (4.14). To these ỹωn,λn

i
one can associate a flow Φn by (3.6).

Using (3.9), (4.1), and (4.13), one easily gets that for some C > 0,

qΩ(yωn,λn
i
(t, ·) −Kαn(t)∇θ(·)) ≤ C ∀t ∈ [0, T ], ∀n ≥ 1,

and hence, using (4.1) again, the regularity of the function ∇θ, and (3.4), that for
some C ′ > 0,

qBR
(ỹωn,λn

i
(t, ·)) ≤ C ′ ∀t ∈ [0, T ], ∀n ≥ 1.

Therefore, it follows from the Wolibner–Yudovich (see (3.7)) and Ascoli–Arzela theo-
rems that Φn is relatively compact in C0([0, T ] × [0, T ] ×BR;BR), say

Φn −→ Φ in C0([0, T ] × [0, T ] ×BR;BR).(5.11)

We now have to prove

F (ωn, λ
n
i ) −→ F in C0([0, T ] × Ω) as n → +∞(5.12)
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for a certain F in C0([0, T ] × Ω; R). To that end, let us first prove that one can get
some compactness on the sequence F (ωn, λ

n
i ) on the boundary, precisely

F (ωn, λ
n
i )|[0,T ]×γ− −→ ω uniformly on [0, T ] × γ− as n → +∞,(5.13)

for some ω in C0([0, T ] × γ−; R).
For this, let us decompose F (ωn, λ

n
i )|[0,T ]×γ− into

F (ωn, λ
n
i ) = ω


n + ω	
n + ω�

n on [0, T ] × γ−,

as described in (4.22). Then we prove (5.13) in several steps.
• First, it follows from points (b) and (g) in the definition of X and the Ascoli–

Arzela theorem that one can extract subsequences s.t.

(5.14) ω

n −→ ω
 :=

∑
A∈A

ω(·, A)ΓA(·)

uniformly on [0, T ] × γ− as n → +∞.

• From the Ascoli–Arzela theorem and points (b) and (e) in the definition of

X, one deduces that the sequence of functions Υn : t �→ M
∫ t

0
αn(τ)dτ is

relatively compact in C0([0, T ]; R+) and hence, up to a subsequence, one has

(5.15) ω	
n −→ ω	 :=

[
ω0(·) −

∑
A∈A

ω0(A)ΓA(·) +

g∑
i=1

λ0
iΛi(·)

]
exp(−Υ),

uniformly on [0, T ] × γ− as n → +∞.

• Extracting again a subsequence if necessary, one can get from points (e) and
(f) in the definition of X that λn

i → λi in C0([0, T ],R). Consequently one
gets

(5.16) ω�
n −→ ω� :=

g∑
i=1

Λi(·)
[
− λi

]
uniformly on [0, T ] × γ− as n → +∞.

We get (5.13) from (5.14), (5.15), and (5.16).
Furthermore, using point (h) and the Ascoli–Arzela theorem one can extract a

converging subsequence from ‖ωn(·)‖L∞(Ω):

‖ωn(t)‖L∞(Ω) −→ N(t) uniformly on [0, T ].

This yields, as n → +∞,

(5.17) αn(t) := max(|λn
1 (t)|, . . . , |λn

g (t)|, ‖ωn(t)‖∞)

−→ α(t) := max(|λ1(t)|, . . . , |λg(t)|, N(t)) in C0([0, T ]; R+).

Let us prove that this implies that Φ satisfies the conclusions of Proposition 3.5. We
proceed exactly as for [4, equation (3.57)ff]. Let us recall the argument. Define

y̌ωn,λn
i

:= yωn,λn
i
−Kαn(t)∇θ.
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Hence y̌ωn,λn
i

satisfies (3.8) for (ωn, λ
n
i ). From (4.1) and usual elliptic estimates con-

cerning (3.8), one deduces that, for any r ∈ (2,+∞),

y̌ωn,λn
i

is bounded in C0([0, T ],W 1,r(Ω; R2)),

∂

∂t
y̌ωn,λn

i
is bounded in L∞([0, T ], H−1(Ω; R2)).

Using [8, Appendix C, Lemma C1] with X = W 1,r(Ω; R2) and Y = H−1(Ω; R2), one
deduces that y̌ωn,λn

i
is relatively compact in C0([0, T ],W 1,r(Ω; R2) − w) and hence,

using the Rellich–Kondrakov theorem, relatively compact in C(ΩT ). Hence using
(5.17), the sequence yωn,λn

i
is itself relatively compact in C(ΩT ).

Hence, up to a subsequence, one has

yωn,λn
i
−→ Y in C0(ΩT ; R2).

As in [4, equation (3.60)], we get that Φ = Φπ(Y ): this is a consequence of the
definition of the flow and of the dominated convergence theorem.

Now let us observe that Y satisfies the assumptions of Proposition 3.5. This is a
consequence of the fact that the sequence (ωn, λ

n
i ) satisfies them and of the fact that

‖ curlY ‖∞ ≤ lim inf
n→+∞

‖ωn‖∞.

Note that by (5.17) and by (4.10)–(4.11), one has α > 0.
Let us now show that, together with (5.11), this yields a convergence for F (ωn, λ

n
i )

in [0, T ]×Ω. The flow Φ yields functions s and a as for (4.16) with Φω,λi replaced by
Φ. Then one can define F by

F (t, x) := ω(s, a),(5.18)

where we extend the definition of ω on {0} × Ω by ω0. Note that in this setting, the
function ω is well-defined and continuous in ({0} × Ω) ∪ ([0, T ] × γ−) .

We have determined the potential limit F ; it remains to prove (5.12). Toward
this end, let us prove the following equivalent assertion (by using a compactness
argument):

(5.19)

∀ε > 0 and ∀(t, x) ∈ [0, T ] × Ω,∃N ∈ N and ∃V a vicinity of (t, x) in [0, T ] × Ω

such that ∀n ≥ N, one has ‖F (ωn, λ
n
i ) − F‖C0(V) ≤ ε.

To prove (5.19), we fix ε > 0 and (t, x) ∈ [0, T ] × Ω, and discuss them relative to
the location of a(t, x).

Case α: a(t, x) in Ω∪ (∂Ω\γ−). Then, by continuity of Φ, one has, for any (t′, x′)
in a neighborhood V1 of (t, x) in [0, T ]×Ω, that a(t′, x′) ∈ Ω∪(∂Ω\γ−). Then

by (5.11) we get that for n large enough, an(t′, x′) ∈ Ω∪(∂Ω\γ−) for (t′, x′) ∈
V1. So on V1, for such n, the expression of F (ωn, λ

n
i ) is ω0(Φn(t, 0, x)). So

enlarging N and reducing V1 if necessary, using (5.18), we get the conclusion
of (5.19) in this case.

Cases β and δ: a(t, x) in γ−\Supp(Γ). In this case—remember that Φ satisfies
the conclusions of Proposition 3.5—one can show that (5.1)–(5.2) is true
for s, exactly as in Case β in section 5.1. Hence, (s, a) is continuous in a
neighborhood of (t, x). Let us distinguish two subcases.
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– Subcase (i): Suppose s(t, x) > 0. In some neighborhood V1 of (t, x) in
[0, T ] × Ω, one has s(t′, x′) > 0. We introduce a neighborhood W of

(s(t, x), a(t, x)) in [0, T ] × (γ−\Supp(Γ)), small enough that on it,

|ω(τ, y) − ω(s(t, x), a(t, x))| ≤ ε/2

(and W̃ containing W in which this is valid with ε). Reducing V1 if
necessary, we have

(s(t′, x′), a(t′, x′)) ∈ W

for (t′, x′) in V1. Using (3.15)–(3.16) and (5.11), one gets that for N
large enough, one has

(sn(t′, x′), an(t′, x′)) ∈ W̃

for (t′, x′) in V1, which yields the conclusion of (5.19).
– Subcase (ii): Suppose s(t, x) = 0. Let us call W a vicinity of (0, a(t, x))

in ({0} × Ω) ∪ ([0, T ] × γ−) such that for (τ, y) in W one has |ω(τ, y) −
ω(0, a(t, x))| ≤ ε/2. For (t′, x′) in a certain neighborhood V of (t, x)

in [0, T ] × Ω and N large enough, we have, for all n ≥ N , either
sn(t′, x′) ∈ pr1(W) or an(t′, x′) ∈ pr2(W), because otherwise, we could

find a subsequence for which Φn(·, t′, x′) meets γ− \ pr2(W) for any n,
which would be in contradiction with (5.11). With (5.13), this yields
again the conclusion of (5.19).

Case γ: a(t, x) in Supp(ΓA) for some A ∈ A. We divide again into subcases:
– Subcase (i): Suppose a(t, x) �= A. Then one can reproduce the proof

of the previous Cases β and δ if we take care that W stays at positive
distance from [0, T ] × {A}.

– Subcase (ii): Suppose a(t, x) = A and s(t, x) > 0. Note that in this case,
F (t, x) = ω0(Φ(0, t, x)) (thanks to (4.19) and (5.14)–(5.16)).
We fix W1 as an open vicinity of (s(t, x), a(t, x)) in [0, T ] × γ− and W2

as an open vicinity of (0,Φ(0, t, x)) in {0} × Ω, small enough such that,
on both W1 and W2, we have |ω(t′, x′) − ω(0, a(t, x))| ≤ ε/2. Reduce
them so that they are disjoint (this is possible thanks to (3.18)). Let
us prove that for (t′, x′) in some neighborhood of (t, x) and for n large
enough, we have

(sn(t′, x′), an(t′, x′)) ∈ W1 ∪W2.(5.20)

If not, we would have an increasing sequence of integers ϕ(n) and a
sequence of points (t′n, x

′
n) converging to (t, x), for which

(sϕ(n)(t
′
n, x

′
n), aϕ(n)(t

′
n, x

′
n)) �∈ W1 ∪W2.

By compactness of [0, T ] × Ω, one would have, up to a subsequence,

(sϕ(n)(t
′
n, x

′
n), aϕ(n)(t

′
n, x

′
n)) → (ŝ, â) �∈ W1 ∪W2.

This would be in contradiction with (t′n, x
′
n) → (t, x) and (5.11):
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– Suppose indeed that ŝ > 0. By continuity of Φ one has

Φ(sϕ(n)(t
′
n, x

′
n), t′n, x

′
n) → Φ(ŝ, t, x) as n → +∞.

This involves ŝ = s, because for τ �= s, we have Φ(τ, t, x) �∈ γ.
Consequently, we have â ∈ γ−\pr2(W1). But the trajectory from x
to Φ(0, t, x) has no such point, so this is impossible.

– Suppose now that ŝ = 0. Then by (5.11) one should have

aϕ(n)(t
′
n, x

′
n) ∼ Φ(0, t′n, x

′
n) → Φ(0, t, x)

and hence (ŝ, â) ∈ W2.
Now (5.20) gives again the conclusion in (5.19).

– Subcase (iii): Suppose a(t, x) = A and s(t, x) = 0. Again, we have
F (t, x) = ω0(Φ(0, t, x)). We fix W as a vicinity of (0, A) in ({0} ×
Ω) ∪ ([0, T ] × γ−) on which again |ω(t′, x′) − ω(0, a(t, x))| ≤ ε/2 occurs.
Then again, as in Subcase (ii) one can see that, for (t′, x′) in a small
neighborhood of (t, x) and n large enough, one has

(sn(t′, x′), an(t′, x′)) ∈ W,

which leads to the conclusion.
So in all cases (5.19) is obtained; thus we get (5.12), and then the relative compactness
of the sequence Gi(ωn, λ

n
1 , . . . , λ

n
g ) follows. This concludes this section.

5.3. F is continuous for the C0([0, T ] × Ω; R) × [C0([0, T ]; R)]g topol-
ogy. Using the previous section; we see that it is enough to prove that if (ωn, λ

n
i ) →

(ω, λi) for the C0 topology, then F [ωn, λ
n
i ] → F (ω, λ) pointwise. This is essentially

the same argument as in the previous section; we do not repeat it. Now, as the
convergence of F (ωn, λ

n
i ) is established, obtaining the convergence of Gk(ωn, λ

n
i ),

k = 1, . . . , g, is straightforward.

5.4. Conclusion. Hence we get by the Leray–Schauder fixed point theorem a
fixed point (ω∗, λ∗

i ) ∈ X of the operator F described in section 4.2.
It follows from the construction that on [0, T ] × Ω, one has

∂tF (ω∗, λ∗
i ) + div(yω∗,λ∗

i
F (ω∗, λ∗

i )) = 0(5.21)

and

F (ω∗, λ∗
i )|t=0 = ω0.(5.22)

Let us assume for the moment that the following lemma is proven.
Lemma 5.2. If M has been chosen large enough (depending on Ω, Σ, θ, and K),

then for any k ∈ {1, . . . , g} and all t ∈ [0, T ],∣∣∣∣λ0
k +

∫ t

0

∫
Γk

yω∗,λ∗
i
(σ, x).n(x)ω∗(σ, x)dxdσ

∣∣∣∣ ≤ Mω0,λ0
i
.(5.23)

If (5.23) is true, then by (1.8) one has

λ∗
k = Gk(ω

∗, λ∗
1, . . . , λ

∗
g)(t) = λ0

k +

∫ t

0

∫
Γk

yω∗,λ∗
i
(σ, x).n(x)ω∗(σ, x)dxdσ.(5.24)
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Hence (ω∗, λ∗
1, . . . , λ

∗
g) satisfies (1.6)–(1.8). Moreover, this fixed point satisfies the

initial conditions (2.30). That F (ω∗, λ∗
i ) satisfies the boundary condition (2.27)–

(2.28) is a clear consequence of the construction of F . So it remains only to prove
Lemma 5.2.

Proof of Lemma 5.2. In the proof of Lemma 5.2, we will not use the specific form
of T (in particular, Remark 8). This will be useful in section 6. Denote y∗ := yω∗,λ∗

i
,

α∗ := αω∗,λ∗
i
, and Φ∗ := Φω∗,λ∗

i . For any k ∈ {1, . . . , g}, we have (using (2.22), (2.23),
and (4.22))

∫ t

0

∫
Γk

y∗(σ, x).n(x)F [ω∗, λ∗
i ](σ, x)dxdσ

= K

∫ t

0

∫
Γk

α∗(σ)∇θ(x).n(x)ω∗(σ, x)dxdσ

= K

∫ t

0

α∗(σ)

[
−λ∗

k(σ) +

∫
Γk∩γ−

∇θ(x).n(x)ω∗	(x)

+

∫
Γk∩γ+

∇θ(x).n(x)ω∗(σ, x)

]
dxdσ

= −K

∫ t

0

α∗(σ)λ∗
k(σ)dxdσ

+K

∫ t

0

α∗(σ)

∫
Γk∩γ−

∇θ(x).n(x)
[
ω0(x) + λ0

kΛk(x)
]

· exp

(
−M

∫ σ

0

α∗(τ)dτ

)
dxdσ

+K

∫ t

0

∫
Γk∩γ+

α∗(σ)∇θ(x).n(x)ω∗(σ, x)dxdσ.(5.25)

Put

C0 = −
∫
γ−

∇θ(x).n(x)

∣∣∣∣∣ω0(x) +

g∑
i=1

λ0
iΛi(x)

∣∣∣∣∣ dx(5.26)

and

C1 =

∫
γ−

|∇θ(x).n(x)|dx.(5.27)

We will show that (5.23) is valid provided M is large enough (in terms of Ω, Σ, θ,
and K) to satisfy

KC0

M
<

max(|λ0
1|, . . . , |λ0

g|, ‖ω0‖∞)

4
and

K(2C1 + T (Γ))

M
<

1

4
,(5.28)

which we suppose from now on. In fact, the most problematic term in (5.25) is the
last one. To estimate λ∗

k, we thus introduce the following function:

h(t) = K

∫ t

0

∫
g
∪

k=1
(Γk∩γ+)

α∗(σ)∇θ(x) · n(x)|ω∗(σ, x)|dxdσ.
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In order to estimate h(t), let us consider ω̃ := F̃ [ω∗, λ∗
i ]. As y∗ satisfies the as-

sumptions of Proposition 3.5, one easily sees (using (3.17)) that ω̃ = ω∗ on [0, T ] ×
∪g
k=1(Γk ∩ γ+). Also, by (4.23), one has

(5.29) ω̃(t, x) =

(
ω0(x) −

∑
A∈A

ω0(A)ΓA(x)

)
exp

(
−M

∫ t

0

α∗(τ)dτ

)

+
∑
A∈A

ω∗(t, A)ΓA(x) on [0, T ] × γ−.

But as ω̃ satisfies

∂tω̃ + div(y∗ω̃) = 0,

one deduces that

d

dt

(∫
Ω

|ω̃|
)

(t) = −
∫
∂Ω

(y∗ · n)|ω̃|(t) = −K

∫
∂Ω

α∗(t)∇θ(x) · n(x)|ω̃|(t, x)dx.

Consequently, one gets

h(t) ≤ K

∫ t

0

∫
γ+

α∗(σ)∇θ(x) · n(x)|ω̃(σ, x)|dσdx

≤
∫

Ω

|ω̃(0, ·)| −K

∫ t

0

∫
γ−

α∗(σ)∇θ(x) · n(x)|ω̃(σ, x)|dσdx.

Using (5.29), one gets

h(t) ≤
∫

Ω

|ω(0, ·)| + 2KC1‖ω0‖∞
∫ t

0

α∗(σ) exp

(
−M

∫ σ

0

α∗(τ)dτ

)
dσ

−K
∑
A∈A

∫ t

0

∫
γ−

α∗(σ)∇θ(x) · n(x)|ω∗(σ,A)ΓA(x)|dσdx,

and hence

h(t) ≤
∫

Ω

|ω(0, ·)| + 2K
C1‖ω0‖∞

M
+ KT (Γ) max

A∈A

∫ t

0

α∗(σ)|ω∗(σ,A)|dσ.(5.30)

Let us now concentrate on the last term. For A ∈ A and σ ∈ [0, T ], let us define

s(σ,A) := min
{
t ∈ [0, σ]

/
Φ∗([t, σ], σ, A) ⊂ Ω

}
,

a(σ,A) := Φ∗(s(σ,A), σ, A).
(5.31)

Using (3.20), (2.28), and the fact that ω∗ is constant along the flow, one deduces that
for any A ∈ A and any σ, one has

ω(σ,A) = ω0(a(σ,A)) exp

(
−M

∫ s(σ,A)

0

α∗(τ)dτ

)
.(5.32)

To estimate the last term in (5.30), we fix A ∈ A.
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• If t is such that ∫ t

0

α∗(σ)dσ ≤ V (θ)

κK
,(5.33)

then using (5.32), one easily gets

∫ t

0

α∗(σ)|ω(σ,A)|dσ ≤ V (θ)

κK
‖ω0‖∞.

(When considering a time T with the specific form (4.9), one could prove that
on such a time interval we always have (5.33).)

• If not, call ξ the (unique) time for which

∫ ξ

0

α∗(σ)dσ =
V (θ)

κK
.

Let us prove that for σ > ξ, one has

∫ σ

s(σ,A)

α∗(τ)dτ ≤ V (θ)

κK

(
=

∫ ξ

0

α∗(τ)dτ

)
.(5.34)

This results from the fact that if one defines

μ(t) = θ(Φ∗[t, s(σ,A), A]),

then one has (in the classical sense) for any t ∈ [s(σ,A), σ]

dμ

dt
= y∗(t,Φ∗[t, s(t, A), A]) · ∇θ(Φ∗[t, s(t, A), A])

≥ κKα∗(t).

Integrating this inequality between s(σ,A) and σ yields (5.34). In particular,
as a consequence of (5.34), one gets that for σ > ξ, one has s(σ,A) > 0.
Consequently, using (5.32),

∫ t

0

α∗(σ)|ω(σ,A)|dσ =

∫ ξ

0

α∗(σ)|ω(σ,A)|dσ +

∫ t

ξ

α∗(σ)|ω(σ,A)|dσ

≤ V (θ)

κK
‖ω0‖∞

+

∫ t

ξ

α∗(σ)‖ω0‖∞ exp

(
−M

∫ s(σ,A)

0

α∗(τ)dτ

)
dσ.

Now using (5.34), one gets

∫ s(σ,A)

0

α∗(τ)dτ =

∫ σ

0

α∗(τ)dτ −
∫ σ

s(σ,A)

α∗(τ)dτ

≥
∫ σ

0

α∗(τ)dτ −
∫ ξ

0

α∗(τ)dτ.
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Hence,

∫ t

ξ

α∗(σ)‖ω0‖∞ exp

(
−M

∫ s(σ,A)

0

α∗(τ)dτ

)
dσ

≤
∫ t

ξ

α∗(σ)‖ω0‖∞ exp

(
−M

∫ σ

ξ

α∗(τ)dτ

)
dσ ≤ ‖ω0‖∞

M
.

Finally, in all cases we get

h(t) ≤
∫

Ω

|ω0| +
(

2KC1

M
+ T (Γ)

[
V (θ)

κ
+

K

M

])
‖ω0‖∞.

Let us go back to λ∗
k. At times t for which (5.23) is valid in [0, t] (this is at least the

case for times in a neighborhood of 0), one has (5.24) and consequently, one gets

|λ∗
k(t)| ≤ |λ0

k| + h(t) + K

∫ t

0

[
−α∗(s)λ∗

k(s) + C0α
∗(s) exp

(
−M

∫ s

0

α∗(τ)dτ

)]
ds

≤ |λ0
k| +

∫
Ω

|ω(0, ·)| + V (θ)T (Γ)

κ
‖ω0‖∞ + K

(2C1 + T (Γ))‖ω0‖∞ + C0

M

−K

∫ t

0

α∗(s)λ∗
k(s)ds.

Hence, with α∗(t) ≥ 0, we get

(5.35) |λ∗
k(t)| ≤ |λ0

k| +
∫

Ω

|ω(0, ·)| + V (θ)T (Γ)

κ
‖ω0‖∞

+ K
(2C1 + T (Γ))‖ω0‖∞ + C0

M
.

Using (5.28), one gets

|λk(t)| <
(

3

2
+ |Ω| + V (θ)T (Γ)

κ

)
max(|λ0

1|, . . . , |λ0
g|, ‖ω0‖∞)

< Mω0,λ0
i
.(5.36)

Hence (5.23) propagates during the whole time interval [0, T ].
So at this point, we have proven that for any (ω0, λ

0
i ), there exists a local solution

of the closed-loop system.

6. End of the proof. To finish the proof, we still have to establish two propo-
sitions:

• any maximal solution of the closed-loop system is global,
• for any global solution of the closed-loop system, 0 is asymptotically stable.

6.1. Maximal solutions are global solutions. Consider a maximal solution
(ω, λi) of the closed-loop system, say it is defined on [0, T ∗), with T ∗ maximal. Let
us prove that T ∗ = +∞. Toward this end, let us suppose by contradiction that
T ∗ < +∞, and prove that

(ω(t), λi(t)) −→ (ω(T ∗), λi(T
∗)) as t → T ∗−(6.1)
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in C0(Ω; R) × R
g. Using again the local existence result, this yields a contradiction.

This is done as in [4, Proposition 3.4]. We first establish the following lemma.
Lemma 6.1. Let T > 0 and let (ω, λi) ∈ C0([0, T ]×Ω)×C0([0, T ])g be a solution

of the closed-loop system. Then one has for (t, x) ∈ ΩT and any s ∈ [0, t]

ω(t, x) = ω(sω,λi(t, x), aω,λi
(t, x)),(6.2)

and for any t in [0, T ], one has

(6.3) max(‖ω(t)‖∞, |λ1|(t), . . . , |λg|(t))

≤
(

3 + |Ω| + V (θ)T (Γ)

κ

)
(1 + ‖Λ‖∞) max(‖ω0‖∞, |λ0

1|, . . . , |λ0
g|).

Proof of Lemma 6.1. First, such a solution satisfies

∂tω + div(yω,λiω) = 0.

A classical regularization argument shows that ω is constant along the flow of yω,λi ,
which yields (6.2).

We suppose that (ω(t), λ1(t), . . . , λg(t)) does not vanish. If it does, then using the
definition of the feedback and the fact that the vorticity is constant along the flow,
(ω(t), λ1(t), . . . , λg(t)) stays null. From now on, we work on the initial interval where
(ω(t), λ1(t), . . . , λg(t)) is not zero.

Now, the “λi” part in (6.3) can be reproduced from what was already done
in (5.36), because we did not use the particular form of T but only (2.27)–(2.28),
the fact that the vorticity follows the flow, and the fact that the velocity satisfies
Proposition 3.5.

It remains to prove the “ω” part of (6.3). Having proved the estimate on the λi,
this is done as for point (b) in the proof of F(X) ⊂ X (see section 5.1), except that
now the estimate

|ω(·, A)| ≤ ‖ω0‖∞ for any A ∈ A

comes now from (5.32) (and not from the choice of T ).
Having proved Lemma 6.1, we get Hölder estimates on the flow from (3.7), which

can consequently be extended on [0, T ∗], and then we get (6.1) approximately as for
the continuity of F (ω, λi) in section 5.1 (we omit the details). Hence, using again the
local existence theorem, we find a contradiction to T ∗ < +∞.

6.2. 0 is asymptotically stable. Now that we have proved (6.3), it remains
to prove (2.32). We consider again a global solution (ω, λi) of the closed-loop system;
let us show that ‖(ω, λi)(t)‖∞ → 0 as t → +∞.

We suppose that (ω(t, ·), λi(t)) never vanishes. If it does vanish for some T > 0,
it follows from (2.26) and from the fact that the vorticity is constant along the flow of
yω,λi that (ω, λi) is null in the neighborhood in time of +∞; hence the result is valid.

This is done in several steps. First, we prove that ω(t, ·) → 0 on the entering zone
γ− and in a second step that this convergence holds in the rest of the domain. The
convergence to zero of λ1, . . . , λg is proved in the same step.

Again, we denote

α(t) := max (|λ1(t)|, . . . , |λg(t)|, ‖ω(t)‖∞) .
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We first prove the following lemma.
Lemma 6.2. Let (ω, λi) ∈ C0([0,+∞) × Ω) × C0([0,+∞))g be a global solution

of the closed-loop system. Then it satisfies

‖ω(t)‖C0(γ−\[Supp(Λ)∪Supp(Γ)]) −→ 0 as t → +∞.(6.4)

Proof of Lemma 6.2. Consider x ∈ γ−\(Supp(Γ) ∪ Supp(Λ)). If ω(t0, x) = 0 for
some time t0, then it follows from (2.28) that ω(t, x) = 0 for all t. Let us suppose
that ω0(x) �= 0. Then it follows from (2.28) that on γ−\[Supp(Λ) ∪ Supp(Γ)],

∂t|ω(t, x)| ≤ −M |ω(t, x)|2;

hence

|ω(t, x)| ≤ |ω0(x)|
1 + M |ω0(x)|t ,

and hence ω(t, x) → 0 as t → +∞. One sees that the estimate is uniform and hence
that (6.4) holds.

Now, we have the following lemma.
Lemma 6.3. Let (ω, λi) ∈ C0([0,+∞) × Ω) × C0([0,+∞))g be a global solution

of the closed-loop system. Then it satisfies

‖ω(t)‖C0(Supp(Γ)) −→ 0 as t → +∞.(6.5)

Proof of Lemma 6.3. Let us first prove that for any A ∈ A, one has

ω(t, A) −→ 0 as t → +∞.(6.6)

It follows from (3.20) that

Φω,λi(s(t, A), t, A) �∈ Supp(Γ) ∪ Supp(Λ),

with s(t, A) given by (5.31). Now, we fix ε > 0 and let t0 be a time such that for
t ≥ t0, one has

‖ω(t)‖
C0(γ−\[Supp(Λ)∪Supp(Γ)])

≤ ε.

Then if t1 is such that |ω(t1, A)| > ε, one deduces that s(t1, A) ≤ t0. Hence, using
Φω,λi(s, t1, A) ∈ Ω for t0 ≤ s ≤ t1 and the fact that the vorticity is constant along
the flow, one gets

‖ω(s)‖C0(Ω) ≥ ε for t0 ≤ s ≤ t1.

But (3.14) implies that, in the classical sense,

d

ds

[
θ(Φω,λi(s, t0, x))

]
= yω,λi

(s,Φω,λi(s, t0, x)) · ∇θ(Φω,λi(s, t0, x)) ≥ κKα(s) ≥ κKε.

(6.7)

With the boundedness of θ in Ω, one sees that |t1 − t0| must be bounded, which gives
(6.6).



STABILIZATION OF FLUIDS IN MULTICONNECTED DOMAINS 1141

Now, consider x ∈ Supp(ΓA) for a certain A ∈ A and t large enough. Then, (6.5)
follows from the fact, due to (2.28), that for t ∈ [0, T ] and x ∈ Supp(ΓA), one has

ω(t, x) = (ω0(x) − ω0(A)ΓA(x)) exp

(
−M

∫ t

0

α(τ)dτ

)
+ ω(t, A)ΓA(x).(6.8)

Indeed, given any ε > 0, for t0 large enough, one has |ω2(s, x)| ≤ ε on Supp(ΓA) for
any s ≥ t0 (with the notation of ω1 and ω2 in (2.27)). One gets for any s ≥ t0 that

|α(s)| ≥ K max(0, |ω1(s, x)| − |ω2(s, x)|) ≥ K max(0, |ω1(s, x)| − ε).

Then
• if |ω1(t, x)| ≤ 2ε, then, because ω1 has the form

ω1(s, x) =

(
ω0(x) −

∑
A∈A

ω0(A)ΓA(x)

)
exp

(
−M

∫ s

0

α(τ)dτ

)
,

this inequality stays valid for s ≥ t, or
• if |ω1(t, x)| ≥ 2ε, then for s ≥ t such that this is still valid, one has |α(s)| ≥ ε;

then with (6.8), one sees that |ω1(s, x)| decreases until it reaches the previous
situation.

Then, we establish the following lemma.
Lemma 6.4. Let (ω, λi) ∈ C0([0,+∞) × Ω) × C0([0,+∞))g be a global solution

of the closed-loop system. Then it satisfies

‖ω(t)‖C0(γ+∩Γk) −→ 0 as t → +∞ ∀k = 1, . . . , g.(6.9)

Proof of Lemma 6.4. The limit (6.9) follows from (3.17), (6.2), and Lemmas 6.2
and 6.3. Indeed, we introduce t0 such that for t ≥ t0, one has |ω(t, ·)| ≤ ε on
γ−\Supp(Λ). Suppose that we could find, for times arbitrarily large, some points in
∪g
i=1(γ

+ ∩ Γk) for which |ω(t, x)| > ε and hence, by (3.17), such that sω,λi(t, x) ≤ t0.
This contradicts (6.7) and the boundedness of θ in Ω.

Now, we have the following lemma.
Lemma 6.5. Let (ω, λi) ∈ C0([0,+∞) × Ω) × C0([0,+∞))g be a global solution

of the closed-loop system. Then it satisfies

‖ω(t)‖C0(Supp(Λ)) −→ 0 as t → +∞.(6.10)

Proof of Lemma 6.5. Fix k ∈ {1, . . . , g}. It follows from (1.8), (2.22), (2.23),
(2.27), and (2.28) that λk satisfies

(6.11)
d

dt
λk(t) = −Kα(t)λk(t) + Kα(t)

∫
Γk∩γ−

∇θ(x) · n(x)ω1(t, x)dx

+ Kα(t)

∫
Γk∩γ+

∇θ(x) · n(x)ω(t, x)dx.

But ω1 converges uniformly to 0 (this is proved exactly as Lemma 6.2), and by Lemma
6.4, the second integral in (6.11) converges to 0 (remember that α(t) is bounded thanks
to (6.3)). Hence, given ε > 0, there exists t0 such that for t ≥ t0,∣∣∣∣

∫
Γk∩γ−

∇θ(x) · n(x)ω1(t, x)dx

∣∣∣∣+
∣∣∣∣
∫

Γk∩γ+

∇θ(x) · n(x)ω(t, x)dx

∣∣∣∣ ≤ ε.
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Consequently, for t ≥ t0, if λk(t) ≥ 2ε, using |λk(t)| ≤ α(t), one gets

d

dt
λk(t) ≤ −εKλk(t),

and if λk(t) ≤ −2ε, one gets

d

dt
λk(t) ≥ −εKλk(t).

This yields

λi(t) −→ 0 as t → +∞ for i = 1, . . . , g.(6.12)

Then having proved (6.12), (6.10) follows from the same procedure as the one at the
end of Lemma 6.3.

These lemmas allow us to establish the following proposition.
Proposition 6.6. Let (ω, λi) ∈ C0([0,+∞) × Ω) × C0([0,+∞))g be a global

solution of the closed-loop system. Then it satisfies

max(‖ω(t)‖C0(Ω), |λ1(t)|, . . . , |λg(t)|) −→ 0 as t → +∞.(6.13)

Proof of Proposition 6.6. The λi(t)-part is precisely (6.12). For the ω-part,
consider τ(ε) such that for t ≥ τ(ε), one has

‖ω|(γ+∪γ−)(t, ·)‖L∞ ≤ ε and |λi(t)| ≤ ε ∀i = 1, . . . , g.

Suppose that for any τ̃ , one can find t ≥ τ̃ for which ‖ω(t, ·)‖C0(Ω) > ε. Then

there is some x ∈ Ω for which |ω(t, x)| > ε, and hence by (6.2) one has sω,λi(t, x) ≤
τ(ε) and hence α(t) ≥ ε on [τ(ε), t]. Consequently, there exists x0 ∈ Ω such that
|ω(τ(ε), x0)| > ε and for which

Φω,λi([τ(ε), t], τ(ε), x0) ⊂ Ω.

With (6.7), this contradicts the fact that θ is bounded in Ω.

7. Appendix.

7.1. Proof of Corollary 2.2. We reduce Σ a little in order to keep some kind of
margin. Introduce θ̃ as in Proposition 2.1. We describe a procedure that allows us to
slightly modify θ̃ to get rid of problematic points “E,” while preserving (2.11)–(2.16).
The idea is the following: consider an E point as in (2.17); by Φ̃ it is first transported

along ∂Ω\(γ+(θ̃) ∪ γ−(θ̃)) (remember (2.12) and (2.13)); call γE the corresponding

connected component of ∂Ω\(γ+(θ̃) ∪ γ−(θ̃)). Consider tE the biggest positive time
for which Φ̃((0, t), 0, E) ⊂ γE . There are two cases:

• If Φ̃(tE , 0, E) ∈ γ+(θ̃), it is clear from (2.12)–(2.13) that this point is in
∂γ+(θ̃), pointing inside γ+(θ̃). And consequently for t just after tE , one has
Φ̃(t, 0, E) ∈ BR\Ω, so the E point under consideration satisfies (2.17).

• If Φ̃(tE , 0, E) ∈ γ−(θ̃), we consider the following time t′E :

t′E = sup
{
t ∈ (tE ,+∞), Φ̃((tE , t), 0, E) ∈ Ω

}
.
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It is indeed quite clear that for times t > tE with t− tE small, Φ̃(t, 0, E) ∈ Ω,
and it follows from |∇θ̃|(x) > 0 in Ω that the preceding set is bounded from

above. Then Φ̃(t′E , 0, E) ∈ γ+(θ̃) (for it cannot be in ∂Ω\(γ−(θ̃) ∪ γ+(θ̃))

because of the uniqueness of the flow and it cannot be in γ−(θ̃) because

points in γ−(θ̃) come from (BR\Ω) ∪ ∂Ω by the flow of ∇θ).
If Φ̃(t′E , 0, E) ∈ γ+(θ̃), then (2.17) is valid for this E; we now suppose that

E2 := Φ̃(t′E , 0, E) ∈ ∂γ+(θ̃).
We consider a small connected neighborhood U of E2 in ∂Ω; thanks to the
margin we kept on Σ, one can require U ⊂ Σ. We also consider a point F ∈
γ+(θ̃) and VF a small connected neighborhood of F in γ+(θ̃), not touching

∂γ+(θ̃) or U .
We introduce a function on ∂Ω, say ψ, supported in U ∪ VF , nonnegative in
U , nonpositive in VF , and such that∫

∂Ω

ψ = 0 and ψ(E2) = 1.

Then we define θ̂ ∈ C∞(Ω; R) by

⎧⎨
⎩

Δθ̂ = 0 in Ω,

∂nθ̂ = ψ on ∂Ω,∫
Ω
θ̂ = 0.

(7.1)

Using elliptic estimates and Lemma 3.3, one sees that θ̃ + εθ̂ still satisfies
(2.11)–(2.16) for ε > 0 small enough. Let us particularly emphasize that, for

ε > 0 small enough, one has ∂n(θ̃ + εθ̂) > 0 on VF . The E considered now
satisfies (2.17). The procedure has not added an E point, but it has slightly
moved the frontier of γ+(θ̃): introduce

γ+(θ̃ + εθ̂) := {x ∈ ∂Ω / ∂n(θ̃ + εθ̂) > 0}.

Then E2 ∈ γ+(θ̃ + εθ̂), and the new frontier of γ+ is now given by

∂γ+(θ̃ + εθ̂) = ∂γ+(θ̃) ∪ {E3} \ {E2},

where E3 is the point in ∂U that does not belong to γ+(θ̃).
Now if E2 satisfied (2.17), then E3 also does for ε small enough: we have two
cases:

– ∇θ̃ is pointing inside γ+(θ̃) at E2. This case is in fact not possible
because of the definition of E2 and t′E : points in ∂γ+(θ̃) at which ∇θ̃ is

pointing inside γ+(θ̃) come from ∂Ω when following the flow.
– ∇θ̃ is pointing outside γ+(θ̃) at E2. Then using (2.13), one sees that the

trajectory of E2 under the flow of ∇θ̃ follows the connected component
of E2 in ∂Ω\[γ+(θ̃) ∪ γ−(θ̃)]. In particular, this trajectory meets E3.

But for ε small enough, the trajectories under the flow of ∇(θ̃ + εθ̂) are
almost the same as the ones in the flow of ∇θ̃ (as seen by Lemma 3.3
and elliptic estimates). This yields the conclusion.

So one can get rid of problematic points one after another.
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7.2. Proof of Proposition 3.5.
• Proof of (3.14). Introduce ŷ as the solution of⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

curl ŷ(t, x) = ω(t, x) for (t, x) ∈ ΩT ,
div ŷ(t, x) = 0 for (t, x) ∈ ΩT ,
ŷ(t, x) · n(x) = 0 for (t, x) ∈ ΣT ,∫

Γi

ŷ(t, x) · �τ(x)dx = λi(t) for t ∈ [0, T ], for i = 1, . . . , g.

Of course, one has y = ŷ + Kα(t)∇θ(x). Now (3.9) involves

‖ŷ(t)‖L∞(Ω) ≤ CLL max (|λ1(t)|, . . . , |λg(t)|, ‖ω(t)‖∞) ∀t ∈ [0, T ].

(The constant CLL does not depend on t.) Hence

y(t, x) · ∇θ(x) ≥ Kα(t)|∇θ(x)|2 − CLL‖∇θ‖∞α(t).(7.2)

Equation (2.13) and the compactness of Ω allow us to introduce

m := min
x∈Ω

|∇θ(x)| > 0.

One easily deduces from (7.2) that (3.14) holds if K ≥ 2CLL‖∇θ‖∞/m2 and
κ = m2/2 (which we suppose in what follows).

• Proof of (3.17). Property (3.17) will essentially follow from Gronwall’s in-
equality (3.11), from (2.13), and from (2.16).
We extend the definition of α and (ω, λi) for times t ≥ T by α(T ) and
(ω, λi)(T ), respectively.
We write Θα(t, x) := Kα(t)θ(x). We consider Φ, Φy, and Φα the respective
flows of π(∇θ), π(y(t, x)), and π(∇Θα(t, x)).
First, by a compactness argument and using (2.13), one sees that there exist
Tθ > 0 and dθ > 0 such that

∀x ∈ Ω, ∃t ∈ [0, Tθ] such that dist(Φ(t, 0, x),Ω) ≥ dθ.

It suffices, for instance, to observe that

d

dt
θ(Φ(t, 0, x)) = |∇θ(Φ(t, 0, x))|2

if x and t are such that Φ(t, 0, x) ∈ Ω, and to use (2.13) and the boundedness
of θ on Ω.
Hence

∀x ∈ Ω, ∃T (x) such that

∫ T (x)

0

Kα(τ)dτ ≤ Tθ

and such that dist(Φα(T (x), 0, x),Ω) ≥ dθ.

Now by Lemma 3.3 one has

|Φy(t, 0, x) − Φα(t, 0, x)|

≤ exp

(
K‖π(∇θ)‖Lip

∫ t

0

α(τ)dτ

)
‖π(ŷ)‖L1([0,T ],L∞(BR)).
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Consequently, one sees that for x ∈ Ω and t such that 0 ≤ t ≤ T (x),

|Φy(t, 0, x) − Φα(t, 0, x)| ≤ exp(Tθ‖π(∇θ)‖Lip(BR))‖ŷ‖L1([0,t],L∞
x )

≤ CLL exp(Tθ‖π(∇θ)‖Lip(BR))‖(ω, λi)‖L1([0,t],L∞
x ).

Now one deduces from (3.12) that for 0 ≤ t ≤ T (x),

‖(ω, λi)‖L1([0,t],L∞
x ) ≤

∫ t

0

α(τ)dτ ≤ Tθ

K
.

This yields

|Φy(t, 0, x) − Φα(t, 0, x)| ≤
CLL exp(Tθ‖π(∇θ)‖Lip(BR))Tθ

K
.(7.3)

Consequently, if K is large enough (in terms of only θ), one has

∀x ∈ Ω, ∃T (x) such that

∫ T (x)

0

Kα(τ)dτ ≤ Tθ

and such that dist(Φy(T (x), 0, x),Ω) ≥ dθ/2,

with (7.3) valid between times 0 and T (x). With (2.18), this gives (3.17) for
K large enough.

• Proof of (3.18). This is due to the uniqueness of the flow: on γA, y(s, x) is of
the form λ(s, x)�τ(x), the sign of λ(s, x) being constant in such a way that the
direction of y(s,A) is pointing inside γ− (indeed, thanks to (3.13) and (3.14),
y(s, x) has the same direction as ∇θ(x) on ∂Ω). So one finds a local in time
backward solution of (3.6) inside γA. This solution does not go outside γA
for times τ ∈ [0, t) if t− τ is small enough so that

cπ(K‖∇θ‖∞ + CLL)

(∫ t

τ

α(s)ds

)
≤ �/2,(7.4)

because the velocity is estimated by

|π[y](s, x)| ≤ ‖π[ŷ](s, ·)‖L∞(BR) + Kα(s)‖π[∇θ]‖L∞(BR)

≤ cπ(CLL + K‖∇θ‖∞)α(s)(7.5)

and because of the definition of �.
• Proof of (3.15)–(3.16). This is mutatis mutandis [4, Lemma 3.3]. Let us treat

separately the points in γ− and the B points.
– Let us consider (3.16) for a point B ∈ B. Using again (3.13) and (3.14),

one sees that, as for s ∈ [0, T ], y(s,B) is tangent to ∂Ω and by (3.14)
pointing outside γ−, there is a solution for the flow starting from B
and that stays inside ∂Ω\(γ− ∪ γ−) at least for small times. So the
uniqueness of the flow gives (3.16).

– Consider x ∈ γ−. Let us use the coordinates in the reference frame given
by (�τ(x), n(x)). Then using (3.9) and (3.13), we see that for any ε > 0,
one finds some neighborhood U of (t, x) in (0, T ]×BR for which one has
for any (t̃, x̃) in U ,

|{π[y](t̃, x̃) −Kα(t̃)π[∇θ](x̃)} · n(x)| ≤ ε.
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(And the left-hand side is null when x̃ is on γ−.) Hence for suitable ε
and U the second coordinate of y(t̃, x̃) is positive in a neighborhood of
(t, x) in [0, T ] × BR. Using (3.6), one deduces (3.15) and (3.16) except
for B points.
Before dealing with (3.15) for points B ∈ B, let us make (3.15) more
precise for points in γ−. We consider τ < t sufficiently close to t for (7.4)
to hold. Consider s the smallest time s ∈ [τ, t] such that Φy((s, t), t, E) ⊂
BR\Ω, and let us suppose s > τ . One can estimate the velocity by (7.5)
and consequently in our case, one has Φy(s, t, x) �∈ γ+. Certainly, one
also has that Φy(s, t, x) �∈ Ω∪γ−∪B because of (3.16) that we just proved
for points in γ− ∪ B. This point can thus only be in ∂Ω\(γ+ ∪ γ− ∪ B)
(unless it is in BR\Ω). Hence it must lie in γB for the other components
are too far because of (7.4). But by uniqueness of the flow, this is not
possible. Consequently one has, for any s ∈ [τ, t] with τ satisfying (7.4),

Φy(s, t, x) ∈ BR\Ω.(7.6)

– Now, let us deal with (3.15) for B points. We see, using Remark 6(i) and
the same procedure as for the proof of (3.17), that for some ν, one has
Φy(t−ν, t, B) ∈ BR\Ω. Now we claim that, at least if ν has been chosen
small enough, Φy(s, t, B) ∈ BR\Ω for any s in [t − ν, t). Indeed, when
considering a sequence of points xn in γ− converging to B, by continuity
of the flow we have that Φy(s, t, xn) is converging to Φy(s, t, B). Using
(7.6), one gets that Φy(s, t, B) �∈ Ω for s ∈ [t − ν, t). But Φy(s, t, B)
cannot belong to γ− by (3.15), which is already established for points
in γ−; nor can it belong to γB by uniqueness of the flow (and the other
components of ∂Ω\(γ+ ∪γ−) are too far by the choice of ν). Hence, one
must have Φy(s, t, B) ∈ BR\Ω.

• Proof of (3.19). This is a consequence of the continuity of the flow. Suppose
indeed by contradiction that for some ω, (λi)i=1,...,g, and α, one has (3.19)
not satisfied by an A point. Then for some τ > t, Φy(τ, t, A) ∈ BR\Ω (note
indeed that this point cannot be in γA by uniqueness of the flow or in other
components of ∂Ω\(γ+ ∪ γ−) by the choice of τ (which is not too far from
t), and if this point is in γ−, we conclude by (3.15) that there indeed exists
a point Φy(τ − ν, t, A) in BR\Ω ). We look at the trajectories starting from
x in γ− close to A. By (3.16) they are inside Ω for small time and, in fact,
by the same argument as previously, in Ω as long as τ − t is small enough so
that

cπ(K‖∇θ‖∞ + CLL)

(∫ τ

t

α(s)ds

)
≤ �/2.

So our assumption would be in contradiction with the continuity of the flow.
• Proof of (3.20). This follows again from the procedure of the proof of (3.17)

and the choices of Supp(ΓA) and Supp(Λi) (which are at positive distance
from A).
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Fiz., 3 (1963), pp. 1032–1066 (in Russian); U.S.S.R. Comput. Math. Math. Phys., 3 (1963),
pp. 1407–1456 (in English).


