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Résumé. — We consider the motion of several solids in a bounded cavity filled with a perfect incompressible

fluid, in two dimensions. The solids move according to Newton’s law, under the influence of the fluid’s

pressure. On the other hand the fluid dynamics is driven by the 2D incompressible Euler equations, which
are set on the time-dependent domain corresponding to the cavity deprived of the sets occupied by the

solids. We assume that the fluid vorticity is initially bounded and that the circulations around the solids

may be non-zero. The existence of a unique corresponding solution, à la Yudovich, to this system, up to a
possible collision, follows from the arguments in [11].

The main result of this paper is to identify the limit dynamics of the system when the radius of some of

the solids converge to zero, in different regimes, depending on how, for each body, the inertia is scaled with
the radius. We obtain in the limit some point vortex systems for the solids converging to particles and a

form of Newton’s law for the solids that have a fixed radius; for the fluid we obtain an Euler-type system.

This extends the earlier works [7], which deals with the case of a single small heavy body immersed in an
incompressible perfect fluid occupying the rest of the plane, [8], which deals with the case of a single small

light body immersed in an incompressible perfect fluid occupying the rest of the plane, and [9] which deals
with the case of a single small, heavy or light, body immersed in a irrotational incompressible perfect fluid

occupying a bounded plane domain.

In particular we consider for the first time the case of several small rigid bodies, for which the strategy
of the previous papers cannot be adapted straightforwardly, despite the partial results recently obtained in

[10]. The main difficulty is to understand the interaction, through the fluid, between several moving solids.

A crucial point of our strategy is the use of normal forms of the ODEs driving the motion of the solids in
a two-steps process. First we use a normal form for the system coupling the time-evolution of all the solids

to obtain a rough estimate of the acceleration of the bodies. Then we turn to some normal forms that are

specific to each small solid, with an appropriate modulation related to the influence of the other solids and
of the fluid vorticity. Thanks to these individual normal forms we obtain some precise uniform a priori

estimates of the velocities of the bodies, and then pass to the limit. In the course of this process we make

use of another new main ingredient of this paper, which is an estimate of the fluid velocity with respect to
the solids, uniformly with respect to their positions and radii, and which can be seen as an refinement of

the reflection method for a div/curl system with prescribed circulations.

Keywords: fluid-solid interactions, incompressible perfect fluid, vortex-wave system.

MSC: 35Q31, 35Q70, 76D27.

Nous considérons le mouvement de plusieurs corps rigides dans une cavité remplie d’un fluide parfait

incompressible en deux dimensions. Les corps rigides se déplacent selon les lois de Newton, sous l’influence

de la pression du fluide. La dynamique du fluide est régie par les équations d’Euler incompressible 2D, qui
sont posées sur le domaine, qui dépend du temps, correspondant à la cavité privée des domaines occupés

par les solides. Nous supposons que la vorticité du fluide est initialement bornée et les circulations autour

des solides peuvent être non nulles. L’existence d’une unique solution à la Yudovich, tant qu’il n’y a pas
de collision, découle des arguments donnés dans [11].

Le résultat principal du papier est d’identifier les dynamiques limites du système quand le rayon de

certains des solides converge vers zéro, avec différents régimes, selon, pour chaque solide, le ratio de son
inertie avec son rayon. Nous obtenons à la limite des systèmes de point vortex pour les solides convergeant
vers des particules ponctuelles, une loi de type Newton pour les solides qui gardent leur rayon fixé et un
système du type Euler incompressible pour le fluide. Ceci étend les travaux précédents: [7], qui traite le

cas d’un seul corps solide, de rayon tendant vers zéro avec une masse positive fixée, immergé dans un fluide

parfait incompressible occupant le reste du plan, [8], qui traite le cas d’un seul corps solide, dont le rayon
et la masse tendent vers zéro avec une corrélation naturelle, immergé dans un fluide parfait incompressible

occupant le reste du plan, et [9] qui traite du cas d’un seul corps solide, dans les deux régimes d’inertie

précédents, immergé dans un fluide parfait incompressible occupant un domaine plan borné.
En particulier nous considérons pour la première fois le cas de plusieurs petits corps solides, pour lequel

la stratégie des papiers précédents ne semble pas s’adapter facilement, malgré les résultats obtenus dans
[10] dans le cas de solides de taille fixe. La difficulté principale est de comprendre l’interaction, par le
biais du fluide, entre les différents solides. Un point crucial de notre stratégie est l’utilisation de formes

normales pour les EDOs donnant la dynamique des solides dans une approche en deux temps. En premier

lieu nous utilisons une forme normale pour le système couplant l’évolution en temps de tous les solides pour
obtenir une estimation grossière de l’accélération des solides. Ensuite nous établissons des formes normales

spécifiques à chaque solide, avec une modulation appropriée reliée à l’influence des autres solides et de la
vorticité du fluide. Grâce à ces formes normales individuelles nous obtenons des estimées uniformes précises

des vitesses des solides, et passons à la limite. Au cours de ce processus, nous établissons une estimée de

la vitesse du fluide due aux solides, uniformément par rapport à leurs positions et rayons, qui peut être
considérée comme un raffinement de la méthode des réflexions pour un système div/curl avec circulations

prescrites.

Mots clés: interactions fluide-solide, fluide parfait incompressible, système “Euler+point vortex”.
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1. Introduction and statement of the main result

1.1. The fluid-solid system. — The general situation that we describe is that of N solids immersed
in a bounded domain of the plane. The total domain (containing the fluid and the solids) is denoted
by Ω, that is a nonempty bounded open connected set in R2, with smooth boundary. In the domain Ω
are embedded N solids S1, . . . , SN , which are nonempty, simply connected and closed sets with smooth
boundaries. To simplify, we assume that Ω is simply connected and that the solids S1, . . . , SN are not
discs (though the general case could be treated similarly). We will systematically suppose them to be at
positive distance one from another and from the outer boundary BΩ during the whole time interval:

(1.1) @t, @κ P t1, . . . , Nu, Sκptq Ă Ω, distpSκptq, BΩq ą 0 and @λ ‰ κ, distpSκptq,Sλptqq ą 0.

Their positions depend on time, so we will denote them S1ptq, . . . , SN ptq. Since they are rigid bodies,
each solid Sκptq is obtained through a rigid movement from Sκp0q. The rest of the domain, occupied by
the fluid, will be denoted by Fptq so that

Fptq “ Ω z pS1ptq Y ¨ ¨ ¨ Y SN ptqq.

Let us now describe the dynamics of the fluid and of the solids.

1.1.0.1. Dynamics of the fluid. — The fluid is supposed to be inviscid and incompressible, and con-
sequently driven by the incompressible Euler equation. We denote u “ upt, xq the velocity field (with
values in R2) and π “ πpt, xq the (scalar) pressure field, both defined for t in some time interval r0, T s

and x P Fptq. The incompressible Euler equation reads

(1.2)

"

Btu` pu ¨ ∇qu` ∇π “ 0,
div u “ 0,

for t P r0, T s, x P Fptq.

This equation is supplemented by boundary conditions which correspond to the non-penetration condi-
tion, precisely

(1.3) u ¨ n “ 0 on BΩ, and u ¨ n “ vS,κ ¨ n on BSκ for κ P t1, . . . , Nu,

where n denotes the unit normal on BFptq directed outside Fptq and vS,κ denotes the velocity field of
the solid Sκ.

Hence there is no difference with the classical situation, except the fact that the space-time domain
is not cylindrical.

1.1.0.2. Dynamics of the solids. — To describe the position of the κ-th solid Sκ, we denote hκ and ϑκ
the position of its center of mass and its angle with respect to its initial position. Correspondingly, the
solid’s position at time t is obtained by the following rigid movement with respect to its initial position:

(1.4) Sκptq “ hκptq `RpϑκptqqpSκp0q ´ hκp0qq,

where Rpϑq is the linear rotation of angle ϑ, that is

(1.5) Rpϑq “

ˆ

cospϑq ´ sinpϑq

sinpϑq cospϑq

˙

.

Note also that the velocity field of the solid Sκ mentioned in (1.3) is given by

(1.6) vS,κpt, xq :“ h1
κptq ` ϑ1

κptqpx´ hκptqqK,

where px1, x2qK :“ p´x2, x1q. Now we denote the mass and momentum of inertia of the solid Sκ by mκ

and Jκ respectively. The assumption is that the solids evolve according to Newton’s law, under the
influence of the fluid’s pressure on its boundary. Hence the equations of hκ and ϑκ read

(1.7)

$

’

’

&

’

’

%

mκh
2
κptq “

ż

BSκptq

πpt, xqnpt, xq dspxq,

Jκϑ
2
κptq “

ż

BSκptq

πpt, xqpx´ hkptqqK ¨ npt, xq dspxq,
in r0, T s.
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Remark 1.1. — It could be possible to add some external forces such as gravity in the right hand side
of (1.7) with only minor modifications in the reasonings below.

1.1.0.3. Initial conditions. — The system is supplemented with initial conditions:

– At initial time the solids S1, . . . , SN occupy the positions S1,0, . . . , SN,0 such that

(1.8) @κ P t1, . . . , Nu, Sκ,0 Ă Ω, distpSκ,0, BΩq ą 0 and @λ ‰ κ, distpSκ,0,Sλ,0q ą 0.

We introduce the initial values of the centers of masses h1,0, . . . , hN,0, and the angles ϑ1,0 “ ¨ ¨ ¨ “

ϑN,0 “ 0 (by convention), which characterize these positions. We denote F0 the corresponding
initial fluid domain.

– The solids have initial velocities ph1
κ, ϑ

1
κqp0q “ ph1

κ,0, ϑ
1
κ,0q P R3 for κ P t1, . . . , Nu,

– The circulations of velocity around the solids S1, . . . , SN , gathered as γ “ pγ1, . . . , γN q, are given,
– We consider an initial vorticity ω0 P L8pF0q.

Note that this data is sufficient to reconstruct the initial velocity field u0 P C0pF0;R2q in a unique way,
see (2.23). In particular curlu0 “ ω0 and

ű

BSν
u0 ¨ τ ds “ γν for ν “ 1, . . . , N , where τ is the unit

clockwise tangent vector field.

1.1.0.4. Cauchy theory à la Yudovich. — The system (1.2)-(1.7) admits a suitable Cauchy theory in the
spirit of Yudovich [30]. Precisely, by a straightforward adaptation of the arguments of [11], we obtain
the following result where initial conditions are given, as described above.

Theorem 1. — Given the initial conditions above, there is a unique maximal solution ph1, ϑ1, . . . , hN , ϑN , uq

in the space C2pr0, T˚qq3N ˆ rL8
locpr0, T˚q;LLpFptq;R2qq X C0pr0, T˚q;W 1,qpFptq;R2qqs (for all q in

r1,`8q) of System (1.2)–(1.7) for some T˚ ą 0. Moreover, as t ÝÑ T˚,

min
!

min
`

distpSκptq, BΩq, κ P t1, . . . , Nu
˘

,min
`

distpSκptq,Sλptqq, κ, λ P t1, . . . , Nu, λ ‰ κ
˘

)

ÝÑ 0.

Finally the velocity circulations around the solids γ “ pγ1, . . . , γN q are constant in time.

Above, LLpFptq;R2q stands for the space of log-Lipschitz vector fields on Fptq; we recall that LLpXq

that is the space of functions f P L8pXq such that

}f}LLpXq :“ }f}L8pXq ` sup
x­“y

|fpxq ´ fpyq|

|px´ yqp1 ` ln´
|x´ y|q|

ă `8.

Also we used the slightly abusive notation L8p0, T ;LLpFptq;R2qq: it describes the space of functions
defined for almost all t, with values for such t in LLpFptqq, with a uniform log-Lipschitz norm. We will
quite systematically use such notations from the cylindrical case to describe our situation. There should
be no ambiguity coming from this abuse of notation.

Let us also mention that the pressure π associated with the solution in Theorem 1 belongs to
L8
locpr0, T˚q;H1pFptq;Rqq, see [11, Corollary 2], so that its trace on the solids boundaries is well-defined,

giving a sense to the integrals in the right hand side of (1.7). The pressure is defined up to constant,
but this has no influence on these integrals. Theorem 1 indicates in particular that the lifespan of the
solutions is only limited by a possible collision between solids or between a solid and the boundary.
Regarding the issue of collisions we refer to [14], [15] and the recent paper [3].

1.2. The problem of small solids. — The main question raised by this paper is to determine a limit
system when some of the solids S1, . . . , SN shrink to a point. To describe this problem, we will denote
the scale of the κ-th solid by εκ and suppose that the κ-th solid Sκ is obtained initially by applying a
homothety of ratio εκ and center hκ,0 on the solid of fixed size S1

κ,0:

(1.9) Sεκ,0 “ hκ,0 ` εκ
`

S1
κ,0 ´ hκ,0

˘

.
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1.2.0.1. The three sets of solids. — Now let us be more specific about the indices κ. The set of indices
t1, . . . , Nu is split in three:

t1, . . . , Nu “ Ppiq Y Ppiiq Y Ppiiiq with

Ppiq :“ t1, . . . , Npiqu, Ppiiq :“ tNpiq ` 1, . . . , Npiq `Npiiqu, Ppiiiq :“ tNpiq `Npiiq ` 1, . . . , Nu,

corresponding respectively to the solids:

– (i) of fixed size and inertia:

(1.10) for κ P Ppiq, εκ “ 1, mε
κ “ m1

κ, Jεκ “ J1
κ,

– (ii) of size going to zero but with fixed mass:

(1.11) for κ P Ppiiq, εκ Ñ 0`, mε
κ “ m1

κ, Jεκ “ ε2κJ
1
κ,

– (iii) of size and mass converging to zero:

(1.12) for κ P Ppiiiq, εκ Ñ 0`, mε
κ “ εακ

κ m1
κ, Jεκ “ εακ`2

κ J1
κ for some ακ ą 0.

Remark 1.2. — Case (iii) encompasses the case of fixed density, for which ακ “ 2. This is actually
the main motivation for the difference in the scaling of mε

κ and Jεκ.

It will be useful to consider the indices corresponding to small solids (here s stands for small):

(1.13) Ps :“ Ppiiq Y Ppiiiq “ tNpiq ` 1, . . . , Nu, Ns :“ Npiiq `Npiiiq.

We collect the various εκ as follows:

ε “ pε1, . . . , εN q, and ε “ pεNpiq`1, . . . , εN q.

The total size of small solids will be denoted as follows

(1.14) |ε| :“
ÿ

κPPs

εκ.

For ε0 ą 0, we will write ε ă ε0 or ε ď ε0 to express that the inequality is valid for each coordinate.
We assume, for any κ in Ps, that hκ,0 is in Ω so that Sεκ,0 Ă Ω for εκ small enough. Up to a redefinition

of S1
κ,0 we may assume that

(1.15) Sεκ,0 Ă Ω for all εκ ď 1.

1.2.0.2. Description of the position of the solids. — Grouping the positions of the center of mass and
angles together, we denote the position variable as follows:

qκ “ phκ, ϑκqT and q “ pq1, . . . , qN q.

It follows that the κ-th solid is determined by qκ and εκ; we will denote it by Sκpεκ, qκq, or in a simpler
manner Sεκpqκq. Moreover when it does not play an important role in the discussion or when it is clear,
we will drop the exponent ε and/or the dependence on qκ to lighten the notations.

When one considers only the non-shrinking solids, it is useful to introduce

qpiq “ pq1, . . . , qNpiq
q.

1.2.0.3. Fluid domains. — Corresponding to the above notations, the fluid domain is

Fεpqq “ ΩzpSε1pq1q Y ¨ ¨ ¨ Y SεN pqN qq.

When the small solids have disappeared, it remains merely the final domain

(1.16) qFpqpiqq “ ΩzpS1pq1q Y ¨ ¨ ¨ Y SNpiq
pqNpiq

qq.
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1.2.0.4. Initial conditions. — We consider the initial vorticity ω0, the circulations around the solids
γ “ pγ1, . . . , γN q, the initial solid positions q0 “ pq1,0, . . . , qN,0q “ ph01, 0, . . . , h

0
N , 0q and the initial

solid velocities p0 “ pp1,0, . . . , pN,0q “ ph1
1,0, ϑ

1
1,0, . . . , h

1
N,0, ϑ

1
N,0q fixed independently of ε. Moreover we

assume that γκ ‰ 0 when κ P Ppiiiq.
To be more precise on the vorticity, we set for δ ą 0 the space L8

c,δpFq of essentially bounded functions

f satisfying that for almost all x P Fpqq such that dpx,Sκq ď δ for some κ P Ps, one has fpxq “ 0. Now
we suppose that

ω0 P L8
c

`

ΩzrS1,0 Y ¨ ¨ ¨ Y SNpiq,0 Y th0j , j P Psus
˘

.

Hence for some δ ą 0 and for suitably small ε, one has ω0 P L8
c,δpF0q.

We are now in position to state our main result.

1.3. Main result. — We first introduce a convention. To express convergences in domains that actu-
ally depend on the solutions themselves, we will take the convention to extend the vorticity ω and the
velocity u (defined in Fptq) by 0 inside S1, . . . ,SN . In the same way, the limit vorticity and velocity

(defined in qFptq) are extended by 0 inside S1, . . . ,SNpiq
as well.

Our main result is as follows.

Theorem 2. — Under the above assumptions there exists ε0 ą 0 and some T ą 0 such that the following
holds. To each family ε of scale factors with ε ď ε0 we associate the corresponding maximal solution
pqε, uεq on r0, T εq given by Theorem 1. Then the maximal existence times T ε satisfy T ε ě T and, as
ε Ñ 0`, up to a subsequence, one has

uε ÝÑ u‹ in C0pr0, T s;LqpΩqq for q P r1, 2q,(1.17)

ωε ÝÑ ω‹ in C0pr0, T s;L8pΩq ´ w‹q,(1.18)

hεκ ÝÑ h‹
κ in

"

W 2,8p0, T q weak ´ ‹ for κ P Ppiq Y Ppiiq,
W 1,8p0, T q weak ´ ‹ for κ P Ppiiiq,

(1.19)

ϑεκ ÝÑ ϑ‹
κ in W 2,8p0, T q weak ´ ‹ for κ P Ppiq,(1.20)

and at the limit the following system holds in the final domain:

(1.21)

$

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

%

div u‹ “ 0 in qFpq‹
piqq,

curlu‹ “ ω‹ `
ÿ

κPPs

γκδh‹
κ

in qFpq‹
piqq,

u‹ ¨ n “
“

ph‹
κq1 ` pϑ‹

κq1px´ h‹
κqK

‰

¨ n on BSκpq‹
κq for κ P Ppiq,

u‹ ¨ n “ 0 on BΩ,
¿

BSκpq‹
κq

u‹ ¨ τ ds “ γκ for κ P Ppiq,

where q‹
κ “ phκ, ϑκqT and q‹

piq “ pq‹
1 , . . . , q

‹
Npiq

q,

(1.22) Btω
‹ ` div pu‹ω‹q “ 0 in r0, T s ˆ qFpq‹

piqptqq,

(1.23) for all t P r0, ts, ´pBtu
‹ ` pu‹ ¨ ∇qu‹q is a gradient in qFpq‹

piqptqq z th‹
κptq, κ P Psu,

regular in the neighborhood of

Npiq
ď

κ“1

BSκpq‹
κq, which we denote ∇π‹,

(1.24)

$

’

’

&

’

’

%

mκph‹
κq2ptq “

ż

BSκpq‹
κq

π‹pt, xqnpt, xq dspxq,

Jκpϑ‹
κq2ptq “

ż

BSκpq‹
κq

π‹pt, xqpx´ h‹
κptqqK ¨ npt, xq dspxq,

in r0, T s for κ P Ppiq,

mκph‹
κq2 “ γκ

“

ph‹
κq1 ´ u‹

κpt, h‹
κq
‰K

in r0, T s for κ P Ppiiq,(1.25)

ph‹
κq1 “ u‹

κpt, h‹
κq in r0, T s for κ P Ppiiiq,(1.26)
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where u‹
κ is the “desingularized version” of u‹ at h‹

κ defined by

(1.27) u‹
κpt, xq “ u‹pt, xq ´

γκ
2π

px´ h‹
κptqqK

|x´ h‹
κptq|2

, t P r0, T s, x P qFpq‹
piqptqq.

1.3.0.1. On the limit system. — Theorem 2 identifies the limit dynamics of a family of solutions of the
system (1.2)-(1.7), when some of the solids shrink to points, as a system compound of the Euler-type
system (1.21)-(1.22) for the fluid, the Newton’s laws (1.24) for the solids that have a fixed radius and
the point vortex systems (1.25)-(1.26) for the limit point particles. The interest of (1.23) is to give a
meaning for the trace of the limit fluid pressure π‹ on the boundary of the solids that have a fixed radius;
this gives a sense to the right hand sides in (1.24). Regarding the solids with a vanishing radius the limit
equation is not the same in case (ii) and in case (iii), as we can see in (1.25)-(1.26). A common feature
is that the limit equation is independent of the shape of the rigid body which has shrunk.p1q

In case (ii) the rigid body reduces at the limit in a point-mass particle which satisfies the second
order differential equation (1.25). This type of systems has already been discussed by Friedrichs in [4,
Chapter 3], see also [12]. The force in the right hand side of (1.25) extends the classical Kutta-Joukowski
force, as it is a gyroscopic force orthogonally proportional to its relative velocity and proportional to the
circulation around the body. The Kutta-Joukowski-type lift force was originally studied in the case of a
single body in a irrotational unbounded flow at the beginning of the 20th century in the course of the
first mathematical investigations of aeronautics; see for example [19].

In case (iii) the rigid body reduces at the limit in a massless point particle which satisfies the first
order differential equation (1.26), which can be seen as a classical point vortex equation, its vortex
strength being given by the circulation around the rigid body. Historically the point vortex system,
which dates back to Helmholtz, Kirchhoff, Kelvin and Poincaré, has been seen as a simplification of the
the 2D incompressible Euler equations when the vorticity of the fluid is concentrated in a finite number
of points, see for instance [25]. The key feature of the derivation of the point vortex equations from the
2D incompressible Euler equations is that the self-interaction has to be discarded. Theorem 2 proves
that such equations can also be obtained as the limit of the dynamics of rigid bodies of type (iii). The
desingularization of the background fluid velocity u‹ mentioned in (1.27) precisely corresponds to the
cancellation of the self-interaction.

On the other hand the genuine fluid vorticity ω‹ is convected by the background fluid velocity u‹,
according to (1.22). A precise decomposition of the velocity field u‹ obtained in the limit will be given
below, see (2.26). Systems mixing an evolution equation for absolutely continuous vorticity such as (1.22)
and some evolution equations for point vortices such as (1.26) have been coined as vortex-wave systems
by Marchioro and Pulvirenti in the early 90s, see [25].

1.3.0.2. On the lifespan, on the convergences, and on the uniqueness. — Observe that the existence of
a common lifetime for a subsequence ε Ñ 0` is a part of the result, as Theorem 1 does not provide any
quantitative information on the existence times T ε before collisions.

Let us also stress that the convergences in (1.19) are different depending on whether the rigid body
has a positive mass in the limit or not. Indeed the weaker convergence obtained in Case (iii) is associated
with the degeneracy of the solid dynamics into a first order equation. Except for some well-prepared
initial data the convergence is indeed limited to the weak-‹ topology of W 1,8p0, T q. We refer here to
[1] for partial results regarding multi-scale features of the time-evolution of some toy models of the limit
system above which attempts to give more insight on this issue. The issue of the uniqueness of the
solution to the limit system and the associated issue of the convergence of the whole sequence, not only
a subsequence, is a delicate matter. We refer to [24, 25, 17] for some positive results concerning the
vortex-wave system with massless point vortices (the system occupying the whole plane). In the case
of several massive point vortices, we refer to the recent work [18] which gives results when the initial
vorticity is bounded, compactly supported and locally constant in a neighborhood of the point vortices.
A key ingredient in all these uniqueness results is that the point vortices stay away one from another

p1qHowever let us recall that we assume that the solids S1, . . . , SN are not discs. The case of a disk is peculiar as several
degeneracies appear in this case. We refer to [9] for a complete treatment of this case for a single small body of type

(ii) or (iii) immersed in a irrotational incompressible perfect fluid occupying the full plane or a bounded plane domain; in

particular it is shown that the case of a homogeneous disk is rather simple whereas the case of a non-homogeneous disk
requires appropriate modifications.
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and remain distant from the support of the vorticity (or at least, that the vorticity remains constant in
their neighborhood.)

In the particular cases where uniqueness holds and the point vortices and the vorticity remain distant,
we can improve a bit the statement of Theorem 2 into the following one.

Theorem 3. — Suppose the assumptions of Theorem 2 to be satisfied, and suppose moreover that
for this data the limit system (1.21)-(1.27) admits a unique solution in r0, T ‹q (of class W 2,8

loc pr0, T˚qq

for the solids and the massive point vortices, W 1,8
loc pr0, T˚qq for the massless point vortices, and

C0pr0, T˚q;L8pΩq ´ w‹q for the vorticity) for which for all t P r0, T ‹q, the point vortices and the large
solids do not meet one another and do not meet the support of vorticity nor the outer boundary. Then
the maximal existence times T ε satisfy lim infεÑ0 T

ε ě T ‹, and the convergences (1.17)-(1.20) hold on
any time interval r0, T s Ă r0, T ‹q and are valid without restriction to a subsequence.

1.3.0.3. On the relationships with earlier results. — Theorem 2 extends results obtained in the earlier
works [7], which deals with the case of a single small body of type (ii) immersed in an incompressible
perfect fluid occupying the rest of the plane, [8], which deals with the case of a single small body of type
(iii) immersed in an incompressible perfect fluid occupying the rest of the plane, and [9], which deals
with the case of a single small body of type (ii) or (iii) immersed in an irrotational incompressible perfect
fluid occupying a bounded plane domain. In particular we consider for the first time the case of several
small rigid bodies, for which the strategies of the previous papers cannot be adapted straightforwardly,
despite the results recently obtained in [10] in the case of several rigid bodies of type (i). We refer to
Section 2.3 for a more detailed exposition of the strategy.

1.3.0.4. On the relationships with the case of the Navier-Stokes equations. — Let us mention that the
Euler system is a rough modeling for a fluid in a neighborhood of rigid boundaries as even a slight
amount of viscosity may drastically change the behavior of the fluid close to the boundary, due to
boundary layers, and sometimes even in the bulk of the fluid when the boundary layers detach from the
boundary. While the Navier-Stokes equations certainly represent a better choice in terms of modeling,
it is certainly useful to first understand the case of the Euler equations. In this direction let us mention
that Gallay has proven in [5] that the point vortex system can also be obtained as vanishing viscosity
limits of concentrated smooth vortices driven by the incompressible Navier-Stokes equations, see also the
recent extension to vortex-wave systems in [26].

2. Preliminaries

In this section, we introduce some notations and basic tools that are needed in the sequel. Then we
describe briefly the proof and the organization of the rest of the paper.

2.1. Solid variables and configuration spaces. — Below we introduce notations for the solid ve-
locities and for the admissible configurations of the location of the solids and of the support of the
vorticity.

2.1.0.1. Solid velocities. — The solid velocities will be denoted as follows:

(2.1) pκ “ ph1
κ, ϑ

1
κqT , ppκ “ ph1

κ, εκϑ
1
κqT , p “ pp1, . . . , pN q and pp “ ppp1, . . . , ppN q.

For i P t1, 2, 3u, pκ,i denotes the i-th coordinate of pκ. In terms of these coordinates, (1.6) reads as
follows

(2.2) vS,κpt, xq “

3
ÿ

i“1

pκ,iξκ,i,

with ξκ,i “ ei for i “ 1, 2 and ξκ,3 “ px ´ hκqK on BSκ (this anticipates the notation (2.7)). Above e1
and e2 are the unit vectors of the canonical basis.

2.1.0.2. Admissible configurations. — We introduce notations for the spaces of configuration of the
solids which can also possibly incorporate the configuration for the vorticity. Given δ ą 0, we let

(2.3) Qδ :“ tpε,qq P p0, 1qNs ˆ R3N :

@ν, µ P t1, . . . , Nu s.t. ν ‰ µ, dpSεµpqq,Sενpqqq ą 2δ and dpSεµpqq, BΩq ą 2δu.
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(2.4) Qδ :“ tpε,q, ωq P p0, 1qNs ˆ R3N ˆ L8pΩq : pε,qq P Qδ and

@µ P t1, . . . , Nu, dpSεµpqq,Supppωqq ą 2δu.

Given ε0 ą 0, we refine the above sets by limiting the size of small solids as follows

(2.5) Qε0
δ :“ tpε,qq P Qδ { ε ă ε0u and Qε0

δ :“ tpε,q, ωq P Qδ { ε ă ε0u,

where as before ε ă ε0 expresses that εi ă ε0 for all i P Ps.
2.1.0.3. ν-neighborhoods in Ω. — In many situations, it will be helpful to consider some neighborhoods
of the solids or of their boundaries; we therefore denote for A Ă Ω and ν ą 0:

(2.6) VνpAq :“ tx P Ω { dpx,Aq ă νu.

For instance the above conditions for Qδ can be rephrased in the form VδpSεµpqqq X VδpSενpqqq “ H and
so on.

2.2. Potentials and decomposition of the fluid velocity. — Below we first recall the definition
of the so-called Kirchhoff potentials and the associated notion of added inertia. Then we introduce
the stream functions for the circulation terms, the hydrodynamic Biot-Savart operator and we finally
conclude by recalling the standard decomposition of the velocity field in terms of vorticity, solid velocities
and circulations.

2.2.0.1. The Kirchhoff potentials. — First, for κ P t1, . . . , Nu and j P t1, . . . , 5u we introduce the
function ξκ,jpq, ¨q : BFpqq Ñ R2 as follows:

on BFpqqzBSκ, ξκ,jpq, ¨q :“ 0,

on BSκ,

$

’

&

’

%

ξκ,jpq, xq :“ ej for j “ 1, 2,

ξκ,3pq, xq :“ px´ hκqK,

ξκ,4pq, xq :“ p´x1 ` hκ,1, x2 ´ hκ,2q and ξκ,5pq, xq :“ px2 ´ hκ,2, x1 ´ hκ,1q.

(2.7)

We denote by

Kκ,jpq, ¨q :“ n ¨ ξκ,jpq, ¨q

the normal trace of ξκ,j on BFpqq, where n denotes the unit normal vector pointing outside Fpqq. We
introduce the Kirchhoff potentials φκ,jpq, ¨q, as the unique (up to an additive constant) solutions in Fpqq

of the following Neumann problems:

∆φκ,j “ 0 in Fpqq,(2.8a)

Bφκ,j
Bn

pq, ¨q “ Kκ,jpq, ¨q on BFpqq.(2.8b)

We fix the additive constant by requiring (for instance) that
ż

BSκpqq

φκ,j ds “ 0.

In the same spirit, we define the standalone Kirchhoff potentials as the solutions in R2zSκpqq of the
following Neumann problem:

∆pφκ,j “ 0 in R2zSκpqq,(2.9a)

B pφκ,j
Bn

pq, ¨q “ Kκ,jpq, ¨q on BSκpqq,(2.9b)

∇pφκ,jpxq ÝÑ 0 as |x| Ñ `8,(2.9c)
ż

BSκ

pφκ,jpxq dspxq “ 0.(2.9d)

We underline that this potential is defined as if Sκ were alone in the plane, and consequently merely
depends on the position qκ.

10



We also define the final Kirchhoff potentials corresponding to the domain qFpqpiqq where small solids
have disappeared as to satisfy

∆qφκ,j “ 0 in qFpqpiqq,(2.10a)

B qφκ,j
Bn

pq, ¨q “ Kκ,jpq, ¨q on B qFpqpiqq.(2.10b)

2.2.0.2. Inertia matrices. — We first define the (diagonal) 3N ˆ3N matrix of genuine inertia by Mg “

pMg,κ,i,κ1,i1 q1ďi,i1ď3 with

(2.11) Mg,κ,i,κ1,i1 “ δκ,κ1δi,i1 pδiPt1,2umκ ` δi,3Jκq.

The 3N ˆ 3N matrix of added inertia is defined by Ma “ pMa,κ,i,κ1,i1 q with

(2.12) Ma,κ,i,κ1,i1 pqq “

ż

Fpqq

∇φκ,ipq, ¨q ¨ ∇φκ1,i1 pq, ¨q dx.

This allows to define the total mass matrix Mpqq by

(2.13) Mpqq “ Mg ` Mapqq.

We also define the κ-th added inertia matrix as the 3 ˆ 3 matrix defined by

(2.14) pMa,κqi,jpqq “

ż

Fpqq

∇φκ,ipq, ¨q ¨ ∇φκ,jpq, ¨q dx,

and the κ-th standalone added inertia matrix as the 3 ˆ 3 matrix defined by

(2.15) p xMa,κqi,jpϑκq “

ż

R2zSκpqq

∇pφκ,i ¨ ∇pφκ,j dx.

Finally, when the small solids have disappeared, we also consider the 3Npiq ˆ 3Npiq final added mass

matrix |Mapqpiqq “ pMa,κ,i,κ1,i1 qpqpiqq defined by

(2.16) |Ma,κ,i,κ1,i1 pqpiqq “

ż

qFpqpiqq

∇qφκ,ipqpiq, ¨q ¨ ∇qφκ1,i1 pqpiq, ¨q dx.

Remark 2.1. — All those added mass matrices are Gram matrices, and consequently symmetric and
positive semi-definite. Moreover, an elementary consequence of our assumption that the solids S1, . . . ,SN
are not balls is that they are symmetric positive definite matrices, as Gram matrices of independent fami-

lies of vectors. This will be of particular interest for the standalone added mass matrices xMa,1, . . . , xMa,N .
In the case of balls, these matrices are singular. In that case, mass-vanishing small solids require a dif-
ferent treatment (see [9]).

2.2.0.3. Stream functions for the circulation terms. — To take into account the circulations of velocity
around the solids, we introduce for each κ P t1, . . . , Nu the stream function ψκ “ ψκpq, ¨q defined on
Fpqq of the harmonic vector field which has circulation δνκ around BSνpqq for ν “ 1, . . . , N . More
precisely, for every q, there exist unique constants Cκνpqq P R such that the unique solution ψκpq, ¨q of
the Dirichlet problem:

∆ψκpq, ¨q “ 0 in Fpqq(2.17a)

ψκpq, ¨q “ Cκ,νpqq on BSνpqq, ν “ 1, . . . , N,(2.17b)

ψκpq, ¨q “ 0 on BΩ,(2.17c)

satisfies

(2.17d)

ż

BSνpqq

Bψκ
Bn

pq, ¨q ds “ ´δνκ, ν “ 1, . . . , N.

These functions ψκ have their standalone counterparts, the stream functions pψκ “ pψκpq, ¨q defined on
R2zSκpqq of the harmonic vector field which has circulation 1 around BSκpqq. They are defined as follows:
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for every q, there exists a solution pψκpq, ¨q, unique up to an additive constant, of the Dirichlet problem:

∆ pψκpq, ¨q “ 0 in R2zSκpqq(2.18a)

pψκpq, ¨q is constant on BSκpqq,(2.18b)

∇ pψκpq, xq Ñ 0 as |x| Ñ `8,(2.18c)

with the constraint

(2.18d)

ż

BSκpqq

B pψκ
Bn

pq, ¨q ds “ ´1.

This allows to introduce the following vector depending merely on Sεκ, that is on εκ and qκ:

(2.19) ζεκpqκq “ ´

ż

BSκ

px´ hκq
B pψκ
Bn

pqκ, xq dspxq “ Rpϑκqζεκpqκ,0q “ εκRpϑκqζ1κpqκ,0q.

To simplify the notations, we denote ζ1κ,0 :“ ζ1κpqκ,0q. This is referred to as the conformal center of solid.
Finally, as for the Kirchhoff potentials, we can introduce the final stream functions for the circulation

qψκpqpiqq, κ “ 1, . . . , Npiq, defined in qFpqpiqq. Here qψκpqpiqq is the stream function of the harmonic vector
field which has circulation δνκ around BSνpqq for ν “ 1, . . . , Npiq. It can be obtained as follows: for every

qpiq, there exist unique constants qCκνpqpiqq P R such that the unique solution qψκpqpiq, ¨q of the Dirichlet
problem:

∆ qψκpqpiq, ¨q “ 0 in qFpqpiqq,(2.20a)

qψκpqpiq, ¨q “ qCκνpqpiqq on BSνpqνq, ν “ 1, . . . , Npiq,(2.20b)

qψκpqpiq, ¨q “ 0 on BΩ,(2.20c)

satisfies

(2.20d)

ż

BSνpqpiqq

B qψκ
Bn

pqpiq, ¨q ds “ ´δνκ, ν “ 1, . . . , Npiq.

2.2.0.4. Biot-Savart kernel. — Following [22, 23] we introduce two hydrodynamic Biot-Savart opera-

tors as follows. Given ω P L8pFq, we define the velocities Krωs and qKrωs as the solutions of

(2.21)

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

div Krωs “ 0 in Fpqq,

curlKrωs “ ω in Fpqq,

Krωs ¨ n “ 0 on BFpqq,
¿

BSν

Krωs ¨ τ ds “ 0 for ν “ 1, . . . , N,

and

(2.22)

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

div qKrωs “ 0 in qFpqq,

curl qKrωs “ ω in qFpqq,

qKrωs ¨ n “ 0 on B qFpqq,
¿

BSν

Krωs ¨ τ ds “ 0 for ν “ 1, . . . , Npiq.

These are the standard and the final Biot-Savart operators, respectively.
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2.2.0.5. Standard decomposition of the velocity field. — These potentials allow to decompose the veloc-
ity field u in several terms. Since it is the unique solution to the following div /curl system:

(2.23)

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

div u “ 0 in Fpqq,

curlu “ ω in Fpqq,

u ¨ n “ ph1
ν ` ϑ1

νpx´ hνqKq ¨ n on BSν for ν “ 1, . . . , N,

u ¨ n “ 0 on BΩ,
¿

BSν

u ¨ τ ds “ γν for ν “ 1, . . . , N,

we have the standard decomposition of the velocity field u:

(2.24) u “
ÿ

νPt1,...,Nu

iPt1,2,3u

pν,i∇φν,i `
ÿ

νPt1,...,Nu

γν∇Kψν `Krωs in Fpqq.

We introduce the following notation for the first term in the decomposition: we let upot be the potential
part of the fluid velocity

(2.25) upot :“
ÿ

νPt1,...,Nu

iPt1,2,3u

pν,i∇φν,i.

Note that the velocity field u‹ obtained in the limit (see (1.21)) can be decomposed as in (2.24) with the
“final” quantities:

(2.26) u‹ “
ÿ

νPt1,...,Npiqu

iPt1,2,3u

p‹
ν,i∇qφν,i `

ÿ

νPt1,...,Npiqu

γν∇K
qψν ` qK

«

ω‹ `
ÿ

νPPs

γνδh‹
ν

ff

in qFpq‹
piqq,

where p‹
ν :“ ph‹

ν , ϑ
‹
νq for ν “ 1, . . . , Npiq.

2.3. Brief description of the proof and organization of the paper. — Let us now give a rough
idea of the proof. One of the main difficulties to pass to the limit is to obtain uniform estimates as the
sizes of the small solids go to zero. A standard energy estimate proves insufficient since the energy is
not bounded as the size of small solids diminish (notice that the energy of a point vortex is infinite).
The hardest case is the one of small and massless solids, for which the kinetic energy gives the weakest
information. We first recall the main ideas to obtain uniform estimates in the case of a single solid,
which was already treated in [8, 9], and then we explain our strategy to overcome the extra difficulties
which appear in the case of several solids, due to the multiplicity of their couplings.

Case of a single solid. The starting point consists in decomposing the velocity field using the potentials
described above. In particular, one extracts the singularity due to the fixed velocity circulation along
the solid by decomposing uε in the form

(2.27) uεpt, xq “ γ1∇K
pψ1pq1ptq, xq ` uregpt, xq,

where ureg is the “regular part” of the velocity. Then we inject this decomposition in (1.7), which we
can rewrite

(2.28) Mgp
1
1,i “ ´

ż

BF
pBtu` pu ¨ ∇quq ¨ ∇Φ1,i dx.

The fact that we use the standalone circulation stream function in (2.27) allows to get rid of the most
singular terms arising in the right-hand side of (2.28) when using the decomposition (2.27). This is due
to the following properties

Bt∇K
pψ1 ` ∇pvS,1 ¨ ∇K

pψ1q “ 0 and

ż

BS1

|∇ pψ1|2K1,i ds “ 0,

which will be proved in a more general setting in (5.26), and which allow to treat the terms containing

Bt∇K
xψ1 and |∇K

xψ1|2. Then the most singular remaining term is linear in ∇K
pψ1. Studying this term,

we see that, in order to have a chance to perform an energy estimate in which this term does not give a
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too strong contribution (we will say that this term is gyroscopic or more precisely weakly gyroscopic), it
is necessary to consider a modulated variable

p̃ “ p´ modulationpε, q, p, uεq.

This modulation is imposed by the system, and one must incorporate it in the other terms of the
equation and show that they do not contribute too strongly to the time evolution of the modulated
energy associated with p̃. This will give a normal form of the equation. To obtain this normal form, it is
needed to decompose ureg in (2.27) in a potential part upot (only due to the movement of the solid) and
an “exterior” part uext, this exterior part being actually the source of the modulation. The terms that
arise when taking upot, uext and the modulation into account will either be proven to contribute mildly
to the modulated energy or be incorporated in the estimate as added inertia terms.

Case of several solids. When several solids are present, their dynamics are coupled by a variety of
interactions between themselves, including one due to their acceleration. Should we write right away a
normal form for each small solid such as described above then the equations would be coupled by some
bad terms associated with the acceleration of the other solids. Because of this difficulty the strategy
used in our previous papers [7, 8, 9] seems to fail. To overcome this difficulty, we follow a two-steps
process: first we use a collective normal form for the system coupling the time-evolution of all the solids
to make appear all the second-order time derivatives with a good structure, associated with the collective
added mass effect. This allows to obtain a rough estimate of the acceleration of the bodies. However,
this single, common, collective normal form is not sufficient to deal with other interactions between the
solids, which require an individual treatment, taking into account the scale of each solid. Therefore, we
turn to individual normal forms that are specific to each small solid, with an appropriate modulation
related to the influence of the other solids and of the fluid vorticity. Actually, these two types of normal
forms, collective and individual, correspond to different hierarchies: one based on the number of time
derivatives, for which the added inertia is the cornerstone, and another one based on the powers of the
solid radii, for which some nonlinear effects, in particular gyroscopic ones, are the most singular. The
rough estimate of the acceleration, obtained by the collective normal form, is in particular used to obtain
the individual ones, to prove that the coupling due to the acceleration of the other solids is weaker than
expected in the limit.

An important and delicate matter to tackle the different couplings, and to obtain these normal forms,
is the use of various splittings of the fluid velocity-field based on fine studies of Laplace problems in the
fluid domain with ad hoc boundary conditions, to quantify the interactions between the moving bodies
through the fluid with a precision adapted to the scale of each solid. This process is made more difficult
by the fact that each solid possesses its own scale. This leads us to revisit the reflection method.

Then, thanks to these individual normal forms, we obtain precise uniform a priori estimates of the
velocities of the bodies. After that uniform estimates are obtained, we use compactness arguments to
pass to the limit. The normal forms obtained above play a central role to describe the dynamics in the
limit of the small solids. For what concerns the large solids, we must study in particular the convergence
of the pressure near their boundary, we refer here in particular to (9.14) in the case where κ P Ppiq.

Organization of the sequel of the paper. A central tool to develop the arguments above is a
careful description of the potentials used in the decomposition (2.24) of the velocity field. Indeed we
analyze their behavior as the size of some of the solids go to zero, and of their derivative with respect to
position. We use an extension of the reflection method for a div/curl system with prescribed circulations,
see Section 3. In Section 4 we prove the first a priori estimates on the system. This encompasses in
particular vorticity estimates and (not yet modulated) energy estimates. In Section 5 we establish a first
normal form, which is tailored for extracting the coupling due to the solids’ accelerations, and which
allows to obtain the above-mentioned rough acceleration estimates. Then in Section 6 we describe the
modulations, and explain in particular how they are determined and estimated. Then in Section 7 we
establish some individual normal forms, specific to each solid. This allows to obtain the modulated
energy estimates in Section 8. Finally, in Section 9 we pass to the limit.
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3. Estimates on the potentials

In this section, we show how the various potentials appearing in the decomposition (2.24) of the
velocity (including the Kirchhoff potentials φκ,i, the circulation stream functions ψκ and the stream
function associated with the Biot-Savart kernel Krωs) can be approximated and estimated by using in

particular their standalone counterparts in R2zSκ or their final counterparts in qF .

Convention on the higher-order Hölder spaces. Throughout this section, we will take the following
convention for the Ck,α-seminorms, k ě 1, α P p0, 1q, when considered on a curve. The 0-th order Hölder
seminorms | ¨ |α are the standard ones, and for an open set O in R2, we also consider the same seminorms
| ¨ |Ck,αpOq as usual. For a smooth curve γ on the plane and k ě 1, we set for f P Ck,αpγq:

|f |Ck,αpγq :“ inf
!

|u|Ck,αpOq, u is an extension of f to some neighborhood O of γ
)

(3.1)

}f}Ck,αpγq :“ }f}Lippγq ` |f |Ck,αpγq.

For a fixed curve γ, this is equivalent to the usual norm }f}8 `|Bkτ f |α (due to the existence of continuous
extension operators), but the constants in this equivalence of norms are not uniform as a curve shrinks
(due to curvature terms in Bkτ f).

To study the above-mentioned potentials we begin the section by considering an auxiliary general
problem.

3.1. An auxiliary Dirichlet problem. — In this subsection we consider a general problem of Dirich-
let type that will be helpful to study all the functions used in the decomposition (2.24) and their behavior
as ε goes to 0. The general idea is that the Dirichlet boundary conditions will be merely satisfied up to
an additive constant on each component of the boundary, but in return we impose a zero-flux condition
on these components.

To be more specific, we consider the general situation of a domain Ω in which are embedded N solids
S1, . . . , SN , such as described before. The fluid domain is then F :“ ΩzpS1 Y ¨ ¨ ¨ Y SN q. Note that the
results of this subsection will be applied not only to Fε such as described in the introduction, but also

in other domains (such as qF or a domain in which one of the small solids has been removed).
We consider N functions ακ P C8pBSκ;Rq, κ “ 1, . . . , N , and a function αΩ P C8pBΩ;Rq, and study

the following problem

(3.2)

$

’

’

&

’

’

%

∆Hrα1, . . . , αN ;αΩs “ 0 in F ,
Hrα1, . . . , αN ;αΩs “ αΩ on BΩ,
Hrα1, . . . , αN ;αΩs “ ακ ` cκ on BSκ for κ P t1, . . . , Nu,
ş

BSκ
BnHrα1, . . . , αN ;αΩspxq dspxq “ 0 for κ P t1, . . . , Nu.

where the unknowns are the function Hrα1, . . . , αN ;αΩs defined in F and the constants c1, . . . , cN .

3.1.1. Existence of solutions for problem (3.2). —

3.1.1.1. A general existence result. — The existence of solutions to problem (3.2) is granted by the
following statement. For the moment, all solids are considered of fixed size.

Lemma 3.1. — Given N functions ακ P C8pBSκ;Rq, κ “ 1, . . . , N , and a function αΩ P C8pBΩ;Rq,
there exist a unique function Hrα1, . . . , αN ;αΩs and unique constants c1,. . . ,cN solution to System (3.2).

Proof of Lemma 3.1. — We first introduce the solution rHrα1, . . . , αN ;αΩs of the standard Dirichlet prob-
lem

$

’

&

’

%

∆rHrα1, . . . , αN ;αΩs “ 0 in F ,
rHrα1, . . . , αN ;αΩs “ αΩ on BΩ,
rHrα1, . . . , αN ;αΩs “ ακ on BSκ for κ P t1, . . . , Nu.
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Then we correct this solution by means of the following ones: for κ P t1, . . . , Nu one defines hκ as the
unique solution to

$

’

’

&

’

’

%

∆hκ “ 0 in F ,
hκ “ 0 on BΩ,
hκ “ 1 on BSκ,
hκ “ 0 on BSν for ν ‰ κ.

Obviously, this family is linearly independent (it is connected to the first De Rham cohomology space of
F). Then it remains to prove that the linear mapping from Spanth1, . . . , hNu to RN , defined by

(3.3) N : h ÞÑ

ˆ
ż

BS1

Bnhpxq dspxq, . . . ,

ż

BSN

Bnhpxq dspxq,

˙

is an isomorphism. This is easy, since when h belongs to its kernel, one has
ż

F
|∇h|2 dx “

ż

BF
hBnh dspxq “ 0.

Hence, since h “ 0 on BΩ, we deduce h “ 0 in F .

3.1.1.2. Uniform estimates for fixed sizes. — In the sequel, a case of particular interest is the case of
the “final” fluid domain where all small solids have been removed (hence the fluid domain is larger).
Therefore we consider a domain Ω in which are embedded Npiq solids S1, . . . , SNpiq

of fixed size, each

of them being obtained by a rigid movement from a fixed shape, such as described before (in particular

we still use the notation Sipqiq). The fluid domain is then qF :“ ΩzpS1 Y ¨ ¨ ¨ Y SNpiq
q. We obtain a sort

of maximum principle for Hrα1, . . . , αNpiq
;αΩs as long as the solids remain a distance at least δ ą 0 one

from another and from the outer boundary.

Lemma 3.2. — Let δ ą 0. There exists a constant C ą 0 depending merely on δ, Ω, and the shapes of
S1, . . . ,SNpiq

such that for any

qpiq “ pq1, . . . , qNpiq
q P Qpiq,δ :“

!

pq1, . . . , qNpiq
q P R3Npiq

M

@i P t1, . . . , Npiqu, distpSipqiq, BΩq ą 2δ

and @j P t1, . . . , Npiqu with i ‰ j, distpSipqiq,Sjpqjqq ą 2δ
)

,

for any functions αλ P C8pBSλ;Rq, λ “ 1, . . . , Npiq and any function αΩ P C8pBΩ;Rq, one has

(3.4) }Hrα1, . . . , αNpiq
;αΩs}L8p qFq

ď C}pα1, . . . , αNpiq
;αΩq}L8pB qFq

.

In particular, Hrα1, . . . , αNpiq
;αΩs can be defined for any functions αλ P C0pBSλ;Rq, λ “ 1, . . . , Npiq and

any function αΩ P C0pBΩ;Rq.

Before getting to the proof of Lemma 3.2 we state the following uniform Schauder estimates, see e.g.
[6, p. 98].

Lemma 3.3. — Let δ ą 0. There exists a uniform constant C ą 0 such that for all qpiq P Qpiq,δ the

following Schauder estimate holds for u P C2, 12 p qFpqpiqqq:

}u}
C2, 1

2 p qFpqpiqqq
ď C

ˆ

}∆u}
C

1
2 p qFpqpiqqq

` }u}
C2, 1

2 pB qFpqpiqqq

˙

.

Proof of Lemma 3.3. — First one establishes the result locally by using smooth diffeomorphisms close
to the identity from Fpqpiqq to Fprqpiqq when rqpiq is close to qpiq. Using elliptic regularity for smooth
operators with coefficients close to those of the Laplacian, this yields the result in the neighborhood of
qpiq. One concludes by compactness of Qpiq,δ. We omit the details.

We now prove Lemma 3.2.

Proof of Lemma 3.2. — We consider αλ P C8pBSλ;Rq, λ “ 1, . . . , Npiq and αΩ P C8pBΩ;Rq and prove
(3.4); the conclusion that H can be extended to continuous functions follows then immediately by density.

We examine the proof of Lemma 3.1: we see that rHrα1, . . . , αN ;αΩs satisfies the maximum principle,
and hence (3.4). It remains to prove that the correction in Spanth1, . . . , hNu can be estimated in the
same way.
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It follows from Lemma 3.3 that the functions hλ are uniformly bounded in C2, 12 p qFq. This involves in
particular that the integrals

ż

BSλ

BnrHrα1, . . . , αN ;αΩs dspxq “

ż

B qF
rHrα1, . . . , αN ;αΩsBnhλ dspxq, λ “ 1, . . . , N,

can be bounded uniformly in terms of }pα1, . . . , αNpiq
;αΩq}L8pB qFq

. It remains to prove that the iso-

morphism N defined in (3.3) is uniformly invertible for qpiq P Qpiq,δ. Let h in Spanth1, . . . , hNpiq
u, say

h “
řNpiq

λ“1 ρλhλ. We observe that for some positive constant C:

(3.5)
ÿ

λPPpiq

|ρλ| ď C}h}H1{2pB qFq
,

since the functions in Spanth1, . . . , hNu are constant on B qF . Now we have
ż

qF
|∇h|2 dx “

ż

B qF
hBnh dspxq ď

ÿ

λPPpiq

|ρλ|

ˇ

ˇ

ˇ

ˇ

ż

BSλ

Bnh dspxq

ˇ

ˇ

ˇ

ˇ

ď C}h}H1{2pB qFq

ÿ

λPPpiq

ˇ

ˇ

ˇ

ˇ

ż

BSλ

Bnh dspxq

ˇ

ˇ

ˇ

ˇ

,

where we have used that h “ ρλ on BSλ. Moreover, by the trace inequality (which is uniform in Qpiq,δ

by straightforward localization arguments),

}h}H1{2pB qFq
ď C}h}H1p qFq

,

and, since for h in Spanth1, . . . , hNu we have h “ 0 on BΩ, by Poincaré’s inequality (which is also uniform
in qpiq, since it merely depends on the diameter of the domain),

}h}2
H1p qFq

ď C

ż

qF
|∇h|2 dx.

Gathering the inequalities above we deduce that

}h}H1{2pB qFq
ď C

Npiq
ÿ

λ“1

ˇ

ˇ

ˇ

ˇ

ż

BSλ

Bnh dspxq

ˇ

ˇ

ˇ

ˇ

.

The conclusion follows by using again (3.5).

3.1.2. A potential for a standalone solid. — Now we consider the situation where the single solid Sκ,
rather than being embedded in Ω together with other solids Sν , ν ‰ κ, is alone in the plane. This will
play a central role in the description of the asymptotic behavior of the general potentials as some solids
shrink to points.

To be more specific, we consider the solid Sκ obtained by a rigid movement and a homothety of scale
εκ with respect to its counterpart of size 1 at initial position:

Sεκ “ Sεκphκ, ϑκq “ hκ ` εκRpϑκqpS1
κ,0 ´ hκ,0q,

and we study the above outer Dirichlet problem on R2zSεκ. Precisely we show the following.

Proposition 3.4. — Let εκ ą 0, and let α P C8pBSεκ;Rq. Then there exist a unique constant pcκrαs

and a unique function pfεκrαs P C8pR2zSεκq solution to the system

(3.6)

$

’

’

&

’

’

%

∆pfεκrαs “ 0 in R2zSεκ,
pfεκrαspxq “ α ` pcκrαs on BSεκ,
pfεκrαspxq ÝÑ 0 as |x| ÝÑ `8.

Moreover one has the following estimates, where the constant C merely depends on S1
κ,0 and k P Nzt0, 1u

(hence is independent of εκ):

}pfεκrαs}L8pR2zSε
κq ď 2}α}L8pBSε

κq and |pcκrαs| ď }α}L8pBSε
κq,(3.7)

εκ}∇pfεκrαs}L8pR2zSε
κq ` ε

k` 1
2

κ |pfεκrαs|
Ck, 1

2 pR2zSε
κq

ď C
´

}α}L8pBSε
κq ` ε

k` 1
2

κ |α|
Ck, 1

2 pBSε
κq

¯

,(3.8)
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and

(3.9) @x s.t. |x´ hκ| ě C εκ, |pfεκrαspxq| ď C
εκ

|x´ hκ|
}α}L8pBSε

κq

and |∇pfεκrαspxq| ď C
εκ

|x´ hκ|2
}α}L8pBSε

κq.

Remark 3.5. — Notice that Estimate (3.9) and the divergence theorem involve that

(3.10)

ż

BSε
κ

Bnpf
ε
κrαs ds “ 0.

Proof of Proposition 3.4. — We proceed in two steps.

Step 1. We first consider the case when εκ “ 1. Since the above estimates are invariant by translation
and rotation, without loss of generality, we can suppose that ϑκ “ 0 and that 0 is in the interior of S1

κ.
Identifying R2 and C, we use the inversion z ÞÑ 1{z with respect to 0. Denoting the Riemann sphere by
pC, we set

Ω1 :“
!

1{z, z P pCzS1
κ

)

,

which is a regular simply connected bounded domain since 0 is in the interior of S1
κ, and consider the

Dirichlet problem:

(3.11) ∆θ “ 0 in Ω1 and θpzq “ α p1{zq for z P BΩ1.

Notice that 0 P
˝

Ω1 because it is the image of the point at infinity by the inversion z ÞÑ 1{z. Then we can
set for z P S1

κ:

(3.12) pf1rαspzq “ θ p1{zq ´ θp0q and pcκrαs “ ´θp0q.

By conformality of the inversion z ÞÑ 1{z, this function satisfies (3.6).

Conversely, starting from a solution pf1rαs to (3.6), we set

(3.13) θpzq :“pf1rαsp1{zq.

Moreover, the harmonic function pf1rαs admits a Laurent series of the form:

(3.14) pf1rαspzq “
1

z

ÿ

kě0

akpηq

zk
.

Thus the function θ is defined and vanishes at z “ 0. Moreover, using again the conformality of the
inversion z ÞÑ 1{z, t the function θ is harmonic in Ω1 with Dirichlet data α ` pcκrαs on BΩ1, Let θ0 the
unique solution of this Dirichlet problem with data α on BΩ1, then θ “ θ0 ` pcκrαs. But, since θp0q “ 0,

it follows that pcκrαs “ ´θ0p0q and that θ “ θ0 ´ θ0p0q, which completely determines pf1rαs by inverting

back (3.13) and therefore proves the uniqueness of the solution pf1rαs to (3.6).
Now (3.7) is a direct consequence of (3.12) and of the maximum principle. Estimate (3.8) is also a

consequence of (3.12): we make use of Schauder’s estimates in Ω1, then we invert using that dpR2zS1
κ, 0q ą

0. Let us now focus on (3.9). The function

(3.15) ηpzq :“ Bzθpzq “ Bxθpzq ´ iByθpzq

is holomorphic in Ω1. We call akpηq, k in N, the coefficients of its power series expansion at 0, so that

(3.16) ηpzq “
ÿ

kě0

akpηqzk.

We introduce r ą 0 such that the circle Sp0, rq lies inside Ω1 at positive distance from BΩ1. Using interior
elliptic estimates (see e.g. [6, Theorem 2.10, p. 23]), we see that }η}C0pSp0;rqq ď C}α}L8pBS1

κq for some

constant C ą 0 merely depending on S1
κ. Then, by using the Cauchy integral formula on Sp0, rq, we

deduce that there exists CS ą 0 depending only on S1
κ such that |akpηq| ď CkS}α}L8pBS1

κq for all k P N.
Now, by (3.14),

Bzpf
1rαspzq “ ´

1

z2

ÿ

kě0

akpηq

zk
,
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for some new coefficients akpηq, for k ě 0. Thus |∇pf1rαspxq| ď CS |z|´2}α}L8pBS1
κq for |z| large enough, for

instance |z´hκ| ě 2CS . But for |z´hκ| large enough (depending on S1
κ only) we have that |z´hκ| ď 2|z|.

Hence we deduce the second inequality in (3.9), and then the first one by integration from infinity.

Step 2. Obtaining the estimates for arbitrary εκ ą 0 is just a matter of rescaling. We call pf1κ the

potential obtained above in the exterior domain R2zS1
κ and pfεκ the corresponding potential in R2zSεκ.

Given α in C8pBSεκ;Rq we set αεpxq “ αpεκxq defined on BS1
κ. Then clearly

@x P R2zSεκ, pfεκrαspxq “pf1κrαεspx{εκq, ∇pfεκrαspxq “
1

εκ
∇pf1κrαεspx{εκq.

The estimates (3.7)–(3.9) follow; Estimate (3.8) in particular is just the rescaled Schauder estimate (note
that the seminorms defined in (3.1) scale in the same way as Hölder seminorms on open sets).

3.1.3. A construction of the potential in the presence of small solids. — Now we consider again the
situation of a domain Ω in which are embedded N solids, among which Npiq stay of fixed size and Ns are
shrinking. The only constraints that we will use is distpBSκ, BSνq ě δ for κ ‰ ν and distpBSκ, BΩq ě δ
for all κ where δ ą 0 is fixed. The constants that follow will merely depend on δ, Ω and on the shape of
the unscaled solids S1

κ at size 1. In particular they are independent of εNpiq`1, ¨ ¨ ¨ , εN (as long as they

are small enough) and of the exact positions of the solids (as long as the above constraints are satisfied).
In this context we give a particular construction of Hrα1, . . . , αN ;αΩs, inspired by the method of

successive reflections (see e.g. [20] and references therein). The solution Hrα1, . . . , αN ;αΩs will be
obtained by means of the inversion of an operator on

pη1, . . . , ηN , ηΩq P EBF :“ C0pBS1q ˆ ¨ ¨ ¨ ˆ C0pBSN q ˆ C0pBΩq,

which will be a perturbation of the identity by a contractive map.

Let us describe this contractive map. We first recall that qF refers to the larger fluid domain where

the small solids have been removed, see (1.16). Correspondingly, B qF “ BS1 Y ¨ ¨ ¨ Y BSNpiq
Y BΩ. Now

given pη1, . . . , ηN , ηΩq P EBF we first introduce qg “ qgrη1, . . . , ηNpiq
; ηΩs and qcλ “ qcλrη1, . . . , ηNpiq

; ηΩs as

the solution in qF of the Dirichlet problem

(3.17)

$

’

’

&

’

’

%

´∆qg “ 0 in qF ,
qg “ ηΩ on BΩ,
qg “ ηλ ` qcλ on BSλ, @λ “ 1, . . . , Npiq,
ş

BSλ
Bnqg dspxq “ 0, @λ “ 1, . . . , Npiq.

This problem has a solution as described in Lemma 3.2. Note in particular that Lemma 3.2 brings the
following estimate:

(3.18) }qg}L8p qFq
ď C}pη1, . . . , ηNpiq

, ηΩq}L8pBS1ˆ¨¨¨ˆBSNpiq
ˆBΩq.

Next we introduce the function m “ mrη1, . . . , ηN ; ηΩs in F by

(3.19) m :“ qg `
ÿ

λPPs

pfλrηλ ´ qg|BSλ
s with qg “ qgrη1, . . . , ηNpiq

; ηΩs,

where, as in (1.13), we have denoted Ps “ tNpiq ` 1, . . . , Nu the set of indices for shrinking solids. Note
that m is the unique solution to the following Dirichlet problem of type (3.2) (for some constants c1, . . . ,
cN ):

(3.20)

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

´∆m “ 0 in F ,
m “ ηΩ `

ř

λPPs

pfλrηλ ´ qg|BSλ
s on BΩ,

m “ ην `
ř

λPPs

pfλrηλ ´ qg|BSλ
s ` cν on BSν for ν P Ppiq,

m “ ην `
ř

λPPsztνu
pfλrηλ ´ qg|BSλ

s ` cν on BSν for ν P Ps,
ş

BSν
Bnm dspxq “ 0, @ν “ 1, . . . , N,

where for the last equation we have used (3.6), (3.10), (3.17) and the divergence theorem.
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Our goal is to prove that one can put the solution Hrα1, . . . , αN ;αΩs of (3.2) in the form
mrη1, . . . , ηN ; ηΩs with η1, . . . , ηN , ηΩ determined from α1, . . . , αN , αΩ. For that we define the op-
erator T : EBF Ñ EBF by

(3.21) T rη1, . . . , ηN ; ηΩs :“

#
ř

λPPs

pfλrηλ ´ qg|BSλ
s on B qF “ BS1 Y ¨ ¨ ¨ Y BSNpiq

Y BΩ,
ř

λPPsztνu
pfλrηλ ´ qg|BSλ

s on BSν , for ν P Ps,

where again qg “ qgrη1, . . . , ηNpiq
; ηΩs. Then

(3.22) mrη1, . . . , ηN ; ηΩs “

"

pId ` T qrη1, . . . , ηN ; ηΩs on BΩ,
pId ` T qrη1, . . . , ηN ; ηΩs ` cν on BSν , ν “ 1, . . . , N.

Now we have the following lemma, where we recall that ε “ pεNpiq`1, . . . , εN q.

Lemma 3.6. — There exists ε0 ą 0 depending only on δ, Ω and on the shape of the unscaled solids S1
λ

such that if ε ď ε0, then T is a 1
2 -contraction.

Proof of Lemma 3.6. — The main argument is that the value of T rη1, . . . , ηN ; ηΩs on a connected com-
ponent of the boundary, say BSν , is actually given by a sum of restrictions on BSν of potentials generated
on other connected components of the boundary (and the same holds for BΩ). We first see that by

Lemma 3.2, qg satisfies (3.18). Then we use (3.9): for ν ‰ λ, this allows to estimate pfλrηλ ´qg|BSλ
s on the

δ-neighborhood VδpBSνq of BSν (see (2.6)) by

(3.23) }pfλrηλ ´ qg|BSλ
s}L8pVδpBSνqq ď Cελ

`

}pη1, . . . , ηNpiq
, ηΩq}L8pBS1ˆ¨¨¨ˆBSNpiq

ˆBΩq ` }ηλ}L8pBSλq

˘

,

and the same holds for VδpBΩq.

By the definition (3.21) of T , we deduce that on B qF “ BS1 Y ¨ ¨ ¨ Y BSNpiq
Y BΩ,

}T rη1, . . . , ηN ; ηΩs}L8pB qFq
ď C

ÿ

λPPs

ελ
`

}ηλ}L8pBSλq ` }pη1, . . . , ηNpiq
, ηΩq}L8pBS1ˆ¨¨¨ˆBSNpiq

ˆBΩq

˘

ď C

˜

ÿ

λPPs

ελ

¸

}pη1, . . . , ηN , ηΩq}L8pBS1ˆ¨¨¨ˆBSNˆBΩq,

while on BSν for ν P Ps, we get

}T rη1, . . . , ηN ; ηΩs}L8pBSνq ď C
ÿ

λPPsztνu

ελ
`

}ηλ}L8pBSλq ` }pη1, . . . , ηNpiq
, ηΩq}L8pBS1ˆ¨¨¨ˆBSNpiq

ˆBΩq

˘

ď C

¨

˝

ÿ

λPPsztνu

ελ

˛

‚}pη1, . . . , ηN , ηΩq}L8pBS1ˆ¨¨¨ˆBSNˆBΩq.

Hence the operator T is a 1
2 -contraction if ε is small enough.

Now we consider such an ε. From Lemma 3.6 we infer that Id`T is invertible. We deduce the following
lemma.

Lemma 3.7. — Given pα1, . . . , αN ;αΩq in EBF we introduce

(3.24) pβ1, . . . , βN , βΩq :“ pId ` T q´1pα1, . . . , αN , αΩq.

Then

Hrα1, . . . , αN ;αΩs “ mrβ1, . . . , βN ;βΩs.

Proof of Lemma 3.7. — From (3.20), (3.22) and (3.24), we see that mrβ1, . . . , βN ;βΩs is the unique
solution to (3.2) corresponding to the boundary data pα1, . . . , αN ;αΩq.

We finish this paragraph by noticing the fact that T has important regularizing properties. Recall
that δ was introduced at the beginning of Subsection 3.1.3.
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Lemma 3.8. — Given δ ą 0, there exists ε0 ą 0 such that for all ε with ε ď ε0, for all k P N, there
exists a positive constant C merely depending on k, δ, Ω and on the unscaled solids S1

λ such that for any
pη1, . . . , ηN ; ηΩq P EBF , one has

}T pη1, . . . , ηN ; ηΩq}
Ck, 1

2 pBFq
ď C}pη1, . . . , ηN , ηΩq}8.

Proof of Lemma 3.8. — We introduce for each ν P t1, . . . , Nu a neighborhood Uν of BSν of size Opδq,
and hence independent of εν . More precisely, for ν P Ppiq, we let Uν “ Vδ{2pSνq (where we recall the
notation (2.6)). For ν P Ps, we let Uν “ Bphν , δ{2q and we notice that for suitably small ε, one has
Sν Ă Bphν , δ{8q. We also introduce some neighborhood U 1

ν of Sν depending only on δ and satisfying
U 1
ν Ă Uν : for instance for ν P Ppiq, we consider U 1

ν “ Vδ{4pSνq and for ν P Ps, we let U 1
ν “ Bphν , δ{4q. In

the same way we introduce the δ{2-neighborhood (respectively δ{4-neighborhood ) U0 (resp. U 1
0) of BΩ.

Then by interior elliptic regularity estimates we find a positive constant C “ Cpk,Uν ,U 1
νq such that for

any harmonic function f on Uν one has

}f}
Ck, 1

2 pU 1
νq

ď C}f}L8pUνq.

We apply it to pfλrηλ ´ qg|BSλ
s for λ ‰ ν to get a Hölder estimate on U 1

ν and restrict it to BSν and BΩ
(which is trivial with the convention (3.1)). Finally we use (3.21) and (3.23). This ends the proof of
Lemma 3.8.

3.1.4. Asymptotic behavior for problem (3.2). — In this paragraph we study the behavior of the solu-
tions (3.2) as some of the embedded solids shrink to points. Let ε satisfy the assumptions of Lemma 3.6.
We consider a particular case of Hrα1, . . . , αN ;αΩs, when all ακ but one are zero and αΩ “ 0 as well.
Let κ P t1, . . . , Nu and ακ P C0pBSκ;Rq. We denote

(3.25) fκrακs :“ Hr0, . . . , 0, ακ, 0, . . . , 0; 0s,

where ακ is on the κ-th position. The first result of this section, concerning the case when the κ-th solid
is small, is the following one. We recall the notation Ps for the set of indices for shrinking solids, see
(1.13), and the notation (2.6) for a ν-neighborhood.

Proposition 3.9. — Let δ ą 0. There exists ε0 ą 0 such that the following holds. There exists a
constant C ą 0 depending only on δ, Ω, k ě 2 and the reference solids S1

λ, λ “ 1, . . . , N , such that for
any ε such that ε ď ε0, for any κ P Ps, for any q P Qδ, for any αε P C8pBSεκ;Rq, one has

}∇fκrαεs ´ ∇pfκrαεs}L8pFεq ď Cεκ}αε}L8pBSε
κq,(3.26)

ˇ

ˇfκrαεs
ˇ

ˇ

Ck, 1
2 pVδpB qFqq

`
ÿ

λPPsztκu

ε
k´ 1

2

λ

ˇ

ˇfκrαεs
ˇ

ˇ

Ck, 1
2 pVδpBSε

λqq

`ε
k´ 1

2
κ

ˇ

ˇfκrαεs ´pfκrαεs
ˇ

ˇ

Ck, 1
2 pVδpBSε

κqq
ď Cεκ}αε}L8pBSε

κq,(3.27)

where fκrαεs P C8pFε
pqqq is the unique solution given by (3.25), pfκrαεs P C8pR2zSεκq is the unique

solution to (3.6).

Let us highlight that there is no Hölder norm in the right-hand side of (3.27), as opposed to (3.8).

Proof of Proposition 3.9. — First, we fix ε0 so that Lemma 3.6 and Lemma 3.8 apply. We let the
pN ` 1q-tuple A be

A :“ p0, . . . , 0, α, 0, . . . , 0, 0q,

where α is on the κ-th position and we introduce

(3.28) B “ pβ1, . . . , βN , βΩq :“ pI ` T q´1pAq.

Then according to Lemma 3.7 we have

(3.29) fκrαs “ mrBs in F .

Now relying on (3.19), we arrive at the formula

(3.30) fκrαs ´pfκrαs “ qgβ `
ÿ

λPPs

pfλ

”

rβλ

ı

in F ,
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with

(3.31) qgβ :“ qgrβ1, . . . , βNpiq
;βΩs and for λ P Ps, rβλ :“

"

βλ ´ qgβ|BSλ
when λ ‰ κ,

βλ ´ qgβ|BSλ
´ α when λ “ κ.

Our goal is to estimate the right-hand side of (3.30). A first step is to estimate B´A. To that purpose
we first notice that

(3.32) B ´ A “ ´T pBq “ ´T ˝ pI ` T q´1pAq.

Due to Lemma 3.6, we have }pI ` T q´1}LpC0pBFqq ď 2, so in particular we deduce

(3.33) }B ´ A}L8pBFq ď }T pAq}L8pBFq.

Now when computing T pAq with (3.21), we see that the function qg involved in (3.21) and the constants
qcλ from (3.17) are zero because the only non-trivial boundary data α is located on a small solid Sκ,
κ P Ps. Hence (3.21) gives

(3.34) T pAq “

"

pfκrαs on BΩ and on BSλ for λ P t1, . . . , Nuztκu,
0 on BSκ.

We deduce from (3.33), (3.34), (3.9) and the separation between the connected components of the
boundary, that

(3.35) B “ A ` Opεκ}α}L8pBSκqq in L8pBFq.

Now we obtain higher order estimates. By (3.34), (3.9) and interior elliptic regularity estimates,
}T pAq}

Ck, 1
2 pBFq

ď Cεκ}α}L8pBSκq. By (3.35) and Lemma 3.8, }T pB´Aq}
Ck, 1

2 pBFq
ď Cεκ}α}L8pBSκq.We

deduce

(3.36) }T pBq}
Ck, 1

2 pBFq
ď Cεκ}α}L8pBSκq,

which together with (3.32) gives

(3.37) B “ A ` Opεκ}α}L8pBSκqq in Ck,
1
2 pBFq.

Now the terms in the right-hand side of (3.30) can be estimated as follows. By (3.37), the fact that

Ai “ 0 for i “ 1, . . . , Npiq, uniform Schauder estimates in qF (Lemma 3.3) and (3.31),

(3.38) }qgβ}
Ck, 1

2 p qFq
ď Cεκ}α}L8pBSκq.

Let us now turn to the estimate of pfλ
“

rβλ
‰

, λ P Ps. From B ´ A “ pβ1 ´ δκ,1α, . . . , βN ´ δκ,Nα, βΩq,

(3.37), (3.38) and (3.31), we infer that for all λ in Ps, }rβλ}
Ck, 1

2 pBSλq
ď Cεκ}α}L8pBSκq. Recalling the

convention (3.1) we deduce that
›

›

›

›

rβλ ´
1

|BSλ|

ż

BSλ

rβλ

›

›

›

›

L8pBSλq

ď Cεκελ}α}L8pBSκq.

Using (3.8) on the solid Sλ and the fact that the operators pfλ do not see constants we deduce

(3.39) @λ P Ps,
›

›∇pfλ
“

rβλ
‰
›

›

L8pR2zSλq
` ε

k´ 1
2

λ

ˇ

ˇpfλ
“

rβλ
‰
ˇ

ˇ

Ck, 1
2 pR2zSλq

ď Cεκ}α}L8pBSκq.

Then interior regularity for Laplace equation involves that in the δ-neighborhood VδpBFεzBSλq of
BFεzBSλ,

(3.40) @λ P Ps,
ˇ

ˇpfλ
“

rβλ
‰
ˇ

ˇ

Ck, 1
2 pVδpBFεzBSλqq

ď Cεκ}α}L8pBSκq.

Now (3.30), (3.38), (3.39) and (3.40) give (3.26) and

ˇ

ˇfκrαεs ´pfκrαεs
ˇ

ˇ

Ck, 1
2 pVδpB qFqq

`
ÿ

λPPs

ε
k´ 1

2

λ

ˇ

ˇfκrαεs ´pfκrαεs
ˇ

ˇ

Ck, 1
2 pVδpBSε

λqq
ď Cεκ}αε}L8pBSε

κq.

Now we estimate
ˇ

p̌fκrαεs
ˇ

ˇ

Ck, 1
2 pVδpBFεzBSε

κqq
with (3.9) and interior regularity estimate for the Laplace

equation to arrive at (3.27). This ends the proof of Proposition 3.9.
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There is a corresponding result in the situation where the non-trivial boundary data is not given on
a small solid, but rather on solids of fixed size and on the outer boundary BΩ.

Proposition 3.10. — Let δ ą 0 and k ě 2. There exist two positive constants C and ε0 depending
only on δ, Ω and the reference solids S1

λ, λ “ 1, . . . , N (C depending moreover on k), such that for
any ε with ε ď ε0, the following holds. Fix q P Qδ and consider for each κ P t1, . . . , Npiqu a function

ακ P C0pBSκ;Rq, and let αΩ P C0pBΩ;Rq. Let

(3.41) Hα :“ Hrα1, . . . , αNpiq
, 0, . . . , 0;αΩs P C0pFε

pqqq,

and qgα :“ qgrα1, . . . , αNpiq
;αΩs in C8p qFpqpiqqq where qg is given by (3.17). Then

(3.42)

›

›

›

›

›

∇Hα ´ ∇qgα `
ÿ

λPPs

∇pfλ
“

qgα|BSε
λ

‰

›

›

›

›

›

L8pFεq

ď C|ε|

´

}αΩ}L8pBΩq `
ÿ

κPPpiq

}ακ}L8pBSκq

¯

,

where |ε| is defined in (1.14), and

(3.43)
ˇ

ˇHα ´ qgα
ˇ

ˇ

Ck, 1
2 pVδpB qFqq

`
ÿ

νPPs

ε
k´ 1

2
ν

ˇ

ˇHα
ˇ

ˇ

Ck, 1
2 pVδpBSε

νqq
ď C

´

}αΩ}L8pBΩq `
ÿ

κPPpiq

}ακ}L8pBSκq

¯

.

Moreover, uniformly for α1, . . . , αNpiq
and αΩ in a bounded set of C0 and for in q P Qδ, one has for all

λ P Ps, as ελ Ñ 0`,

(3.44)
›

›

›
∇pfλ

“

qgα|BSε
λ

‰

›

›

›

L8pR2zSε
λq

is bounded,
›

›

›
∇pfλ

“

qgα|BSε
λ

‰

›

›

›

LppR2zSε
λq

ÝÑ 0 for p ă `8

and
›

›

›
∇pfλ

“

qgα|BSε
λ

‰

›

›

›

CkptxPΩ{dpx,Sε
λqěcuq

ÝÑ 0 for any c ą 0 and k P N.

Proof of Proposition 3.10. — We proceed as in the proof as Proposition 3.9. We introduce

A :“ pα1, . . . , αNpiq
, 0, . . . , 0, αΩq,

and define B “ pβ1, . . . , βN , βΩq again by (3.28). Then Lemma 3.7 states that Hα “ mrBs in Fε
. Here,

instead of (3.30), (3.19) allows writing

Hα “ qgβ `
ÿ

λPPs

pfλ
“

βλ ´ qgβ|BSλ

‰

with qgβ :“ qgrβ1, . . . , βNpiq
;βΩs.

Consequently

(3.45) Hα ´ qgα `
ÿ

λPPs

pfλ
“

qgα|BSλ

‰

“ qgβ ´ qgα `
ÿ

λPPs

pfλ rβλs `
ÿ

λPPs

pfλ
“

qgα|BSλ
´ qgβ|BSλ

‰

.

To establish (3.42), we estimate the right-hand side of (3.45), starting with an estimate of B´A. Instead
of (3.34), we now obtain from (3.21) that

T pAq “ ´
ÿ

λPPs

pfλ
“

qgα|BSλ

‰

on B qF and T pAq “ ´
ÿ

λPPsztνu

pfλ
“

qgα|BSλ

‰

on BSν for ν P Ps.

Again, T pAq on BSν is obtained as traces of harmonic functions generated by non-homogeneous data on
boundaries of solids different from Sν . Now Lemma 3.2 involves that

(3.46) }qgα}L8p qFq
ď C}A}L8pBFq,

where with a slight abuse of notation we have set }A}L8pBFq :“ }αΩ}L8pBΩq `
ř

κPPpiq
}ακ}L8pBSκq. By

(3.9) and interior regularity estimates,

}T pAq}
Ck, 1

2 pBFq
ď C|ε|}A}L8pBFq.

Using (3.33) we therefore obtain

B ´ A “ Op|ε|q}A}L8pBFq in L8pBFq,

in place of (3.35). Using Lemma 3.8, we deduce

}T pB ´ Aq}
Ck, 1

2 pBFq
ď C|ε|}A}L8pBFq.
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We arrive at

}T pBq}
Ck, 1

2 pBFq
ď C|ε|}A}L8pBFq,

which replaces (3.36). Since B “ A ´ T pBq,

(3.47) B “ A ` Op|ε|q}A}L8pBFq in Ck,
1
2 pBFq.

Then we deduce estimates on the right-hand side of (3.45). First by (3.47) and the uniform Schauder

elliptic estimates in qF for δ-admissible configurations (Lemma 3.3),

(3.48) }qgβ ´ qgα}
Ck, 1

2 p qFq
ď C|ε|}A}L8pBFq.

Next, for λ P Ps, by (3.47) and the fact that Aλ “ 0 for λ P Ps, }βλ}
Ck, 1

2 pBSλq
ď C|ε|}A}L8pBFq, and

consequently
›

›

›

›

βλ ´
1

|BSλ|

ż

BSλ

βλ

›

›

›

›

L8pBSλq

ď C|ε|ελ}A}L8pBFq.

All the same from (3.48) we deduce
›

›

›

›

qgβ ´ qgα ´
1

|BSλ|

ż

BSλ

pqgβ ´ qgαq

›

›

›

›

L8pBSλq

ď C|ε|ελ}A}L8pBFq.

Hence with (3.8) and the fact that the operators pfµ do not see constants we deduce that for all λ P Ps,
›

›

›
∇pfλrβλs

›

›

›

L8pR2zSλq
`

›

›

›
∇pfλ

“

qgβ|BSλ
´ qgα|BSλ

‰

›

›

›

L8pR2zSλq
ď C|ε|}A}L8pBFq,(3.49)

ε
k´ 1

2

λ

ˆ

ˇ

ˇ

ˇ

pfλrβλs

›

›

›

Ck, 1
2 pR2zSλq

`

ˇ

ˇ

ˇ

pfλ
“

qgβ|BSλ
´ qgα|BSλ

‰

ˇ

ˇ

ˇ

Ck, 1
2 pR2zSλq

˙

ď C|ε|}A}L8pBFq.(3.50)

Putting together (3.45), (3.48) and (3.49) we obtain (3.42).

Now to get (3.43), we estimate the right-hand side of (3.45) in Ck,
1
2 pVδpB pFεqq and in Ck,

1
2 pVδpBSνqq

for ν P Ps. For the first term in (3.45) we simply use (3.48). We now focus on the two remaining sums.

First, we can estimate them in Ck,
1
2 pVδpB pFεqq thanks to (3.49) and local elliptic estimates. Let us now

fix in ν P Ps and estimate these two remaining sums of (3.45) in Ck,
1
2 pVδpBSνqq. We first use (3.49) and

interior elliptic regularity to deduce that
ÿ

λPPsztνu

ˇ

ˇ

ˇ

pfλ
“

βλ
‰

ˇ

ˇ

ˇ

Ck, 1
2 pVδpBSνqq

`
ÿ

λPPsztνu

ˇ

ˇ

ˇ

pfλ
“

qgβ|BSλ
´ qgα|BSλ

‰

ˇ

ˇ

ˇ

Ck, 1
2 pVδpBSνqq

ď C|ε|}A}L8pBFq.

For the remaining terms corresponding to λ “ ν, we use (3.50). Altogether, putting these estimates in
(3.45) we obtain the uniform estimate

ˇ

ˇ

ˇ

ˇ

ˇ

Hα ´ qgα `
ÿ

λPPs

pfλ
“

qgα|BSλ

‰

ˇ

ˇ

ˇ

ˇ

ˇ

Ck, 1
2 pVδpB qFqq

`
ÿ

νPPs

ε
k´ 1

2
ν

ˇ

ˇ

ˇ

ˇ

ˇ

Hα ´ qgα `
ÿ

λPPs

pfλ
“

qgα|BSλ

‰

ˇ

ˇ

ˇ

ˇ

ˇ

Ck, 1
2 pVδpBSνqq

ď C|ε|}A}L8pBFq.

Now using (3.46) and interior regularity estimate, we have uniformly in q P Qδ:

(3.51) @λ P Ps, }qgα}
Ck, 1

2 pVδpBSλqq
ď C}A}L8pBFq.

This implies in particular }qgα´qgαphλq}L8pBSλq ď C}A}L8pBFqελ for λ P Ps. Hence using Proposition 3.4

and the invariance of pfλ with respect to additive constant, we obtain a uniform estimate

@λ P Ps, ε
k´ 1

2

λ

›

›

›

pfλ
“

qgα|BSλ

‰

›

›

›

Ck, 1
2 pR2zSλq

ď C}A}L8pBFq.

Moreover by (3.9) and interior regularity estimates, one has

@λ P Ps,
›

›

›

pfλ
“

qgα|BSλ

‰

›

›

›

Ck, 1
2 pVδpBFεzBSε

λqq
ď C}A}L8pBFq.

This gives (3.43).
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We now turn to (3.44). Since (3.44) corresponds to a phenomenon that we will meet at different stages
of the paper, we encapsulate it in a lemma which establishes the smallness of some correctors on small
solids.

Lemma 3.11. — Let λ P Ps. Let εn P p0, 1qN, εn Ñ 0. Let pgnq a sequence of functions gn : BSεnλ Ñ R
such that, with our convention on the Hölder spaces, }gn}

Ck, 1
2 pBSεn

λ q
ď C. Then, as n Ñ `8, ∇ pfελrgns is

bounded in L8pR2zSεnλ q,
›

›

›
∇ pfελrgns

›

›

›

CkptxPΩ{dpx,Sεn
λ qěcuq

Ñ 0 for any c ą 0 and k P N, and ∇ pfελrgns Ñ 0

in LppΩzSεnλ q, p ă `8.

Proof of Lemma 3.11. — We first observe that up to an additional constant on BSεnλ , one has

}gn}L8pBSεn
λ q ď Cεn. Then the boundedness of ∇ pfλrgns in L8pR2zSεnλ q is a consequence of (3.8).

Moreover the second part of the lemma follows from (3.9). The third assertion is a consequence of the
first two.

Now (3.44) is a direct consequence of Lemma 3.11 and of (3.51). This ends the proof of Proposi-
tion 3.10.

Remark 3.12. — Note that, since εκ “ 1 for κ P Ppiq, Estimate (3.26) is also valid in this case. Indeed

due to (3.42)-(3.44) and (3.8) we see that that ∇fκrαεs and ∇pfκrαεs are both of size Op}αε}q.

3.1.5. Shape derivatives of potentials solving Dirichlet problems. — In this paragraph, we estimate the
shape derivatives of potentials solving Dirichlet problems. This will be useful to estimate the time-
derivative of some velocity fields in forthcoming paragraphs. We refer to [13, 27] for general references
on shape differentiation.

Let us first recall a way to write these shape derivatives. We consider a reference configuration q in
Q. Given µ P t1, . . . , Nu, m P t1, 2, 3u and p˚

µ “ pℓ˚
µ, ω

˚
µq P R3, we define hµptq “ hµ ` tℓ˚

µ and consider

in R2 a smooth time-dependent vector field such that ξ˚
µpt, xq “ ℓ˚

µ ` ω˚
µpx´ hµptqqK in a neighborhood

of BSµpqq and ξ˚
µpxq “ 0 in a neighborhood of BFpqqzBSµpqq. We associate then the corresponding flow

ps, xq ÞÑ T˚
µ ps, xq (for s small and x P Fpqq) that satisfies

BT˚
µ

Bs
ps, xq “ ξ˚

µps, T˚
µ ps, xqq, T˚

µ p0, xq “ x.

For small s, T˚
µ ps, ¨q sends Fpqq into Fpq ` sp˚

µq, where we denote by p˚
µ P R3N the vector given by

p˚
µ “ pδκµp

˚
µqκ“1...N . Then the shape derivative of a potential φ “ φpq, xq (defined and regular on

Ť

qPQtqu ˆ Fpqq) with respect to qµ is then obtained as

Bφ

Bqµ
pq, xq ¨ p˚

µ “
d

ds
φpq ` sp˚

µ, xqˇ
ˇs“0

“
d

ds
φpq ` sp˚

µ, T
˚
µ ps, xqqˇ

ˇs“0
´

Bφ

Bx
pq, xq ¨ ξ˚

µp0, xq.

This is actually independent of the choice of the family of diffeomorphisms T˚
µ ps, ¨q : Fpqq Ñ Fpq` sp˚

µq

as long as T˚
µ p0, ¨q “ Id, BsT

˚
µ p0, ¨q “ ξ˚

µp0, xq on BSµpqq and BsT
˚
µ p0, ¨q “ 0 on BFpqqzBSµpqq. We set

Bφ

Bqµ,m
:“

Bφ

Bqµ
¨ em,

where pe1, e2, e3q is the canonical basis of R3.

Lemma 3.13. — Consider a regular family of functions pΦpq, ¨qqqPQ, with Φpq, ¨q : Fpqq Ñ R satisfying
´∆Φpq, ¨q “ 0 in Fpqq and Φpq, ¨q “ αpq, ¨q on BFpqq, where α is a smooth function on

Ť

qPQtqu ˆ

BFpqq. Then for µ P t1, . . . , Nu and m P t1, 2, 3u the shape derivative BΦpq,¨q
Bqµ,m

is the solution to the system

(3.52)

$

’

’

&

’

’

%

´∆
BΦpq, ¨q

Bqµ,m
“ 0 in Fpqq,

BΦpq, ¨q

Bqµ,m
“

Bαpq, ¨q

Bqµ,m
`

ˆ

Bαpq, ¨q

Bx
´

BΦpq, ¨q

Bx

˙

¨ nKµ,m on BFpqq.
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Remark 3.14. — Note that the material derivative Bαpq,¨q
Bqµ,m

`
Bαpq,¨q

Bx ¨nKµ,m is well-defined for functions

α defined on the boundary
Ť

qPQtqu ˆ BFpqq in the pq, xq plane, because the vector pδµ,m, pξµ,m ¨ nqnq

is tangent to it, where δµ,m denotes the vector in R3N for which only the coordinate corresponding to

pµ,mq is nonzero and is equal to 1. Alternatively, we may smoothly extend α in
Ť

qPQtqu ˆ Fpqq and
define the partial derivatives with respect to qµ,m and x independently.

Proof of Lemma 3.13. — That BΦpq,¨q
Bqµ,m

is harmonic in Fpqq is just a matter of commuting derivatives.

For what concerns the boundary condition, we use that Φpq, xq “ αpq, xq on BFpqq to infer that for
any p˚

µ P R3, Φpq ` sp˚
µ, T

˚
µ ps, xqq “ α

`

q ` sp˚
µ, T

˚
µ ps, xq

˘

for small s and x P BFpqq, where as before
p˚
µ “ pδκµp

˚
µqκ“1...N . Differentiating with respect to s, we deduce

BΦpq, ¨q

Bqµ
¨ p˚
µ `

BΦpq, ¨q

Bx
¨ ξ˚
µ “

Bα

Bqµ
¨ p˚
µ `

Bα

Bx
¨ ξ˚
µ on BFpqq.

It follows that

(3.53)
BΦpq, ¨q

Bqµ
¨ p˚
µ “

Bα

Bqµ
¨ p˚
µ `

Brα ´ Φpq, ¨qs

Bx
¨ ξ˚
µ on BFpqq.

It remains to notice that since Φpq, xq “ αpq, xq on the boundary, the gradient of αp¨q ´ Φpq, ¨q with

respect to x on the boundary is normal. With ξ˚
µ ¨ n “

ř3
m“1 p

˚
µ,mKµ,m, we reach the conclusion.

The equivalent of Lemma 3.13 holds for the variant of the Dirichlet problem that we considered above.

Corollary 3.15. — Consider a smooth function α on
Ť

qPQtqu ˆ BFpqq and a regular family of func-

tions prΦpq, ¨qqqPQ, with rΦpq, ¨q : Fpqq Ñ R and a regular family of constants pc1pqq, . . . , cN pqqqqPQ which
are solution to

$

’

’

’

&

’

’

’

%

´∆rΦpq, ¨q “ 0 in Fpqq,
rΦpq, ¨q “ αpq, ¨q ` cλpqq on BSλpqq, @λ P t1, . . . , Nu,
rΦpq, ¨q “ αpq, ¨q on BΩ,
ş

BSλ
BnrΦpq, xq ds “ 0, @λ P t1, . . . , Nu.

Then for µ P t1, . . . , Nu and m P t1, 2, 3u the shape derivative
BrΦpq, ¨q

Bqµ,m
is the solution to the system

(3.54)
$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

´∆

˜

BrΦpq, ¨q

Bqµ,m

¸

“ 0 in Fpqq,

BrΦpq, ¨q

Bqµ,m
“

Bαpq, ¨q

Bqµ,m
`

˜

Bαpq, ¨q

Bx
´

BrΦpq, ¨q

Bx

¸

¨ nKµ,m ` c1
λpqq on BSλpqq, @λ P t1, . . . , Nu,

BrΦpq, ¨q

Bqµ,m
“

Bαpq, ¨q

Bqµ,m
on BΩ,

ż

BSλ

Bn

˜

BrΦpq, ¨q

Bqµ,m

¸

ds “ 0, @λ P t1, . . . , Nu,

for some constants c1
1pqq, . . . , c1

N pqq.

Proof of Corollary 3.15. — We check the validity of the various equations in (3.54). As for Lemma 3.13,
the first equation is obtained by commuting derivatives with respect to x and q. To obtain the second
equation, we observe that the shape derivative of a constant function with respect to x on BSλ (for each
q) is a constant function on BSλ. Let us highlight that the regularity with respect to q is a consequence
of the construction and of the regularity for the usual Dirichlet problem. The third equation is trivial.

Finally we see that the flux of BrΦpq,¨q
Bqµ,m

across BSλ for λ ‰ µ and across BΩ is zero, since these components

of the boundary are fixed and the flux of rΦpq, ¨q across them is zero for all q. Considering that BrΦpq,¨q
Bqµ,m

is

harmonic and using the divergence theorem, it follows that the flux across BSµ of BrΦpq,¨q
Bqµ,m

is zero as well.
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Remark 3.16. — In both (3.52) and (3.54), we may write

Bαpq, ¨q

Bqµ,m
`

ˆ

Bαpq, ¨q

Bx
´

BΦpq, ¨q

Bx

˙

¨ nKµ,m “
Bαpq, ¨q

Bqµ,m
`

ˆ

Bαpq, ¨q

Bx
´

BΦpq, ¨q

Bx

˙

¨ ξµ,m.

This is just a matter of stopping the computation at (3.53), or of keeping in mind that, since αpq, ¨q ´

Φpq, ¨q is constant on the boundary, its tangential derivative is zero.

3.1.6. Transposing to the Neumann problem. — Let us now describe how the analysis of the paragraphs
above can be transposed to the Neumann problem. Given κ P t1, . . . , Nu, q P Qδ and β P C8pBSκ;Rq

such that

(3.55)

ż

BSκ

βpxq dspxq “ 0,

we consider the solution fNκ rβs P C8pFpqqq (unique up to an additive constant) of the Neumann problem

(3.56)

$

&

%

∆fNκ rβs “ 0 in Fpqq,
Bnf

N
κ rβs “ 0 on BFpqqzBSκ,

Bnf
N
κ rβs “ β on BSκ,

and xfNκ rβs P C8pR2zSκq be the solution (unique up to an additive constant) of the standalone Neumann
problem

$

’

&

’

%

∆pfNκ rβs “ 0 in R2zSκ,
∇pfNκ rβspxq ÝÑ 0 as |x| ÝÑ `8,

Bnpf
N
κ rβs “ β on BSκ.

Condition (3.55) allows to write the function β as

β “ BτB.

Then the following result is elementary to check.

Lemma 3.17. — One has the correspondence ∇fNκ rβs “ ∇KfκrBs and ∇pfNκ rβs “ ∇K
pfκrBs. In particu-

lar, one can apply Proposition 3.4 to pfNκ rβs and Propositions 3.9 and 3.10 and fNκ rβs with }B}L8pBSε
κq “

Opεκ}β}L8pBSε
κqq in the right-hand side in place of }αε}L8pBSε

κq.

Of course, in the same way, we can consider the Neumann counterpart of H defined in (3.2), say
HN rβ1, . . . , βN ;βΩs, and in the same way obtain the correspondence with HrB1, . . . ,BN ;BΩs where B1,
. . . , BN and BΩ are primitives of β1, . . . , βN and βΩ on BS1, . . . , BSN and BΩ, respectively.

In the sequel we will use mainly the case of the Neumann problem.

3.2. Estimates of the Kirchhoff potentials. — In this paragraph we apply the above results in the
case of the Kirchhoff potentials defined in (2.8) and study their shape derivatives as well.

3.2.1. The Kirchhoff potentials. — We first recall several properties of the standalone Kirchhoff poten-
tials proved for instance in [8].

Lemma 3.18. — The standalone Kirchhoff potentials pφεκ,k, κ P t1, . . . , Nu, k P t1, ¨ ¨ ¨ , 5u, have the
following properties:

‚ for fixed qκ, pφεκ,kpx´ hκq “ ε1`δkě3
κ pφ1

κ,k

ˆ

x´ hκ
εκ

˙

and ∇pφεκ,kpx´ hκq “ εδkě3
κ ∇pφ1

κ,k

ˆ

x´ hκ
εκ

˙

,(3.57)

‚ ∇pφεκ,kpxq “ O

˜

ε
2`δkě3
κ

|x´ hκ|2

¸

at infinity,(3.58)

‚ ε´δkě3
κ ∇pφεκ,k is bounded in R2zSεκ and pφεκ,k “ Opε1`δkě3

κ q on BSεκ.(3.59)
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Remark 3.19. — It is elementary to check that given qκ, we recover the κ-th standalone Kirchhoff
potentials at qκ from their equivalent at the basic position through

ˆ

pφκ,1pqκ, hκ `Rpϑκqxq

pφκ,2pqκ, hκ `Rpϑκqxq

˙

“ Rp´ϑκq

ˆ

pφκ,1p0, xq

pφκ,2p0, xq

˙

, pφκ,3pqκ, hκ `Rpϑκqxq “ pφκ,3p0, xq,

and

ˆ

pφκ,4pqκ, hκ `Rpϑκqxq

pφκ,5pqκ, hκ `Rpϑκqxq

˙

“ Rp2ϑκq

ˆ

pφκ,4p0, xq

pφκ,5p0, xq

˙

.

Consequently, all the estimates on the standalone Kirchhoff potentials are independent of the position qκ.

We have the following first statement regarding the behavior of the Kirchhoff potentials φκ,k in Fε

for small values of εκ.

Proposition 3.20. — For δ ą 0, there exists ε0 ą 0 depending only on δ, Ω and the shape of the
reference solids S1

λ, λ “ 1, . . . , N , such that for any ε with ε ď ε0, the following holds. Let κ P t1, . . . , Nu,
k P t1, ¨ ¨ ¨ , 5u and ℓ P Nzt0, 1u. For some constant C ą 0 independent of ε, the following holds uniformly
for q P Qδ:

}∇φκ,k ´ ∇pφκ,k}L8pFεpqqq ď Cε2`δkě3
κ ,(3.60)

ˇ

ˇφκ,k
ˇ

ˇ

Cℓ, 1
2 pVδpB qFqq

`
ÿ

λPPsztκu

ε
ℓ´ 1

2

λ

ˇ

ˇφκ,k
ˇ

ˇ

Cℓ, 1
2 pVδpBSλqq

` ε
ℓ´ 1

2
κ

ˇ

ˇφκ,k ´ pφκ,k
ˇ

ˇ

Cℓ, 1
2 pVδpBSκqq

ď Cε2`δkě3
κ ,

(3.61)

}∇φκ,k}L8pFεpqqq ď Cεδkě3
κ and ∇φκ,kpxq “ O

˜

ε
2`δkě3
κ

|x´ hκ|2

¸

for x P Fεpqq s.t. |x´ hκ| ě Cεκ,(3.62)

and one has, up to an additional constant on each connected component of the boundary,

(3.63) φκ,k “

$

’

&

’

%

Opε2`δkě3
κ q on BΩ,

Opε2`δkě3
κ εµq on BSµ if µ ‰ κ,

pφκ,k ` Opε3`δkě3
κ q “ Opε1`δkě3

κ q on BSκ.

Proof of Proposition 3.20. — We use Lemma 3.17 with β “ Kκ,k, hence we may apply to it Proposi-

tion 3.9 if κ P Ppiq and Remark 3.12 otherwise. Since }Kκ,k}L8pBSκq “ Opε
δkě3
κ q, we obtain from (3.26)

and (3.27) that (3.60) and (3.61) hold. To obtain (3.62) we use (3.60) together with (3.57) and (3.58).
For what concerns (3.63), it suffices then integrate ∇φκ,k ´∇pφκ,k on BSµ taking into account (3.60) and
(3.58) when µ ‰ κ.

Remark 3.21. — The Kirchhoff potentials φκ,k are defined up to a single additional constant (while the
aforementioned additional constants in (3.63) many differ from one connected component of the boundary
to the other). We can however normalize this global additional constant so that

(3.64) φκ,k “ Opε1`δkě3
κ q on BSκ and φκ,k “ Opε2`δkě3

κ q on BFzSκ.
It suffices for instance to take yφκ,kpXq “ φκ,kpXq for some point X P BΩ (and integrate starting from
this point).

In the case of Kirchhoff potentials corresponding to a solid of fixed size, we have the following more
accurate result.

Proposition 3.22. — Let δ ą 0. There exists ε0 ą 0 such that for all ε with ε ď ε0 the following
holds. Let κ P Ppiq, k P t1, 2, 3u. Let ℓ P Nzt0, 1u. Then for some constant C ą 0 independent of ε, the
following holds uniformly for q P Qδ:

›

›

›

›

›

∇φκ,k ´ ∇qφκ,k `
ÿ

λPPs

∇pfλ
“

qφκ,k
‰

›

›

›

›

›

L8pFpqqq

ď C|ε|,(3.65)

ˇ

ˇφκ,k ´ qφκ,k
ˇ

ˇ

Cℓ, 1
2 pVδpB qFqq

`
ÿ

νPPs

ε
ℓ´ 1

2
ν

ˇ

ˇφκ,k
ˇ

ˇ

Cℓ, 1
2 pVδpBSε

νqq
ď C.(3.66)

and the terms ∇pfλ
“

qφκ,k
‰

are bounded in L8pR2zSλq, converge to 0 in Cℓptx P Ω{dpx,Sλq ě cu for all
c ą 0 and ℓ P N and in LppΩzSλq, p ă `8.
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Proof of Proposition 3.22. — We let ε0 as in Lemma 3.6 and we reason as for Proposition 3.20, using
the correspondence between Dirichlet and Neumann problems (Lemma 3.17) and Proposition 3.10.

This has the following corollary on the added mass matrix. Recall that the added mass matrices where
defined in (2.12)–(2.15).

Corollary 3.23. — Let δ ą 0. There exist constants C ą 0 and ε0 ą 0 such that for all κ, κ1 P

t1, . . . , Nu and all i, i1 P t1, 2, 3u, as long as pε,qq P Qε0
δ ,

(3.67)
ˇ

ˇ

ˇ
Ma,κ,i,κ1,i1 ´ δκ,κ1 xMa,κ,i,i1

ˇ

ˇ

ˇ
ď Cε2`δ3i

κ ε
2`δ3i1

κ1 .

Moreover one has, uniformly for q P Qδ,

(3.68) Ma,κ,i,κ1,i1 ÝÑ δκPPpiq
δκ1PPpiq

|Ma,κ,κ1,i,i1 as ε ÝÑ 0.

Proof of Corollary 3.23. — We first write

(3.69) Ma,κ,i,κ1,i1 “

ż

BSκ1

φκ,iKκ1,i1 ds,

and notice that this formula is insensitive to a constant added to φκ,i. Estimate (3.67) is then a direct
consequence of (3.63). The convergence (3.68) follows in the same way from Proposition 3.22.

Remark 3.24. — Notice that both (3.67) and (3.68) prove the convergence to 0 of Ma,κ,i,κ1,i1 when
κ or κ1 belongs to Ps. When both indices κ and κ1 belong to Ppiq, (3.67) merely proves that it remains

bounded. Notice also that, as a consequence of (3.57), xMa,κ,i,i1 satisfies the scale relation xMε
a,κ,i,i1 “

ε
2`δ3i`δ3i1

κ
xM1
a,κ,i,i1 .

3.2.2. Shape derivatives of the Kirchhoff potentials. — In this paragraph, we estimate the shape deriva-
tives of the Kirchhoff potentials. An expression of the shape derivative of the Kirchhoff potentials was
already obtained in [10]. Here we give a slightly different proof for this expression by relying on the
results of Section 3.1.5 (and extend it for indices 4 and 5). Precisely we consider the shape derivative
Bφλ,ℓ
Bqµ,m

pq, ¨q of the Kirchhoff potentials φλ,ℓ for λ P t1, . . . , Nu and ℓ P t1, . . . , 5u with respect to the

variable qµ,m, for µ “ 1, . . . , N , m “ 1, 2, 3.

Lemma 3.25. — For λ “ 1, . . . , N , ℓ P t1, . . . , 5u, µ “ 1, . . . , N , m “ 1, 2, 3, the function
Bφλ,ℓ
Bqµ,m

pq, ¨q

is harmonic in Fpqq and satisfies:

B

Bn

ˆ

Bφλ,ℓ
Bqµ,m

˙

pq, ¨q “ 0 on BFpqqzBSµ,(3.70)

B

Bn

ˆ

Bφλ,ℓ
Bqµ,m

˙

pq, ¨q “
B

Bτ

„ˆ

Bφλ,ℓ
Bτ

´ pξλ,ℓ ¨ τq

˙

pξµ,m ¨ nq

ȷ

` δℓě3δmPt1,2uBτ
`

ξK
λ,ℓ ¨ em

˘

on BSµ.(3.71)

We recall that the notation ξλ,ℓ is defined in (2.7).

Proof of Lemma 3.25. — As previously, we translate the Neumann problem defining the Kirchhoff po-
tential φλ,ℓ into a Dirichlet problem (or in other words, we consider the harmonic conjugate of φλ,ℓ).
Hence we introduce the function φ˚

λ,ℓ and the constants c1, ¨ ¨ ¨ , cN that satisfy
$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

´∆φ˚
λ,ℓ “ 0 in Fpqq,

φ˚
λ,ℓ “ Jλ,ℓ ` cλ on BSλpqq,

φ˚
λ,ℓ “ cκ on BSκpqq, @κ ‰ λ,

φ˚
λ,ℓ “ 0 on BΩ,

ż

BSκ

Bnφ
˚
λ,ℓ ds “ 0, @κ P t1, . . . , Nu,
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where Jλ,ℓ is defined as a primitive of Kλ,ℓ on Sλ. Namely we take Jλ,ℓ “ 0 on BFzBSλ, and on BSλ,

(3.72) Jλ,ℓ “ ´x2 if ℓ “ 1, Jλ,ℓ “ x1 if ℓ “ 2, Jλ,ℓ “
|x´ hλ|2

2
if ℓ “ 3,

Jλ,ℓ “ px1 ´ hλ,1qpx2 ´ hλ,2q if ℓ “ 4 and Jλ,ℓ “
px1 ´ hλ,1q2 ´ px2 ´ hλ,2q2

2
if ℓ “ 5.

We extend Jλ,ℓ in the neighborhood of these boundaries by the same formulas. In particular, one has
the relation

(3.73) ∇Jλ,ℓ “ ´ξK
λ,ℓ in the neighborhood of BF .

Then ∇φλ,ℓ “ ∇Kφ˚
λ,ℓ in Fpqq, and thus ∇

´

Bφλ,ℓ

Bqµ,m

¯

“ ∇K

ˆ

Bφ˚
λ,ℓ

Bqµ,m

˙

in Fpqq. By Corollary 3.15, we find

Bφ˚
λ,ℓ

Bqµ,m
“ δκλδµλ

BJλ,ℓ
Bqλ,m

` pδκλ∇Jλ,ℓ ¨ n´ Bnφ
˚
λ,ℓqKµ,m ` c1

κ on BSκpqq, κ P t1, . . . , Nu,

Bφ˚
λ,ℓ

Bqµ,m
“ 0 on BΩ.

We compute
BJλ,ℓ

Bqλ,m
as follows:

BJλ,ℓ
Bqλ,m

“ δℓě3δmPt1,2u∇Jλ,ℓ ¨ em on BSλ.

Since Bτφλ,ℓ “ ´Bnφ
˚
λ,ℓ and Bn

ˆ

Bφλ,ℓ
Bqµ,m

˙

“ Bτ

ˆ

Bφ˚
λ,ℓ

Bqµ,m

˙

, using (3.73) we obtain (3.71).

This allows us to prove the following estimates on the shape derivatives of the Kirchhoff potentials.

Proposition 3.26. — Let δ ą 0. There is ε0 ą 0 such that for all ε such that ε ď ε0, for λ, µ, κ P

t1, . . . , Nu, for ℓ P t1, 2, 3u and m P t1, 2, 3, 4, 5u, uniformly for q P Qδ, one has

Bφλ,ℓ
Bqµ,m

“ Opε
δℓě3`2δλ‰µ

λ εδm3`2δµ‰κ
µ q on BSκ (up to an additive constant),(3.74)

›

›

›

›

∇ Bφλ,ℓ
Bqµ,m

›

›

›

›

L8pFq

“ Opε
δℓě3`2δλ‰µ

λ ε´1`δm3
µ q,(3.75)

∇ Bφλ,ℓ
Bqµ,m

pxq “ Opε
δℓě3`2δλ‰µ

λ ε1`δm3
µ q for x such that dpx,Sµq ě δ.(3.76)

Proof of Proposition 3.26. — We proceed in three steps.

Step 1. By Lemma 3.25,

(3.77)
Bφλ,ℓ
Bqµ,m

“ fNµ rBτBs,

where we recall that fNµ was defined in (3.56) and where B is given on BSµ by a primitive of the data
(3.71) on Sµ:

B “

ˆ

Bφλ,ℓ
Bτ

´ pξλ,ℓ ¨ τq

˙

pξµ,m ¨ nq ` δℓě3δmPt1,2uξ
K
λ,ℓ ¨ em on BSµ,

where we recall the convention (2.7) on ξλ,ℓ (in particular, this is 0 away from Sλ).

Step 2. Now we evaluate B on BSµ. For λ ‰ µ, Proposition 3.20 gives directly

ε
j´ 1

2
µ |φλ,ℓ|

Cj, 1
2 pVδpBSµqq

ď Cε
2`δℓě3

λ ,

In the case µ “ λ, by Proposition 3.20, for j ě 2, one has ε
j´ 1

2

λ |φλ,ℓ ´ pφλ,ℓ|
Cj, 1

2 pVδpBSλqq
ď Cε

2`δℓě3

λ .

Moreover from Proposition 3.4, using the scale relation (3.57), we see that ε
j` 1

2

λ |pφλ,ℓ|
Cj, 1

2 pFq
ď Cε

1`δℓě3

λ .
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We deduce that

ε
j´ 1

2

λ |φλ,ℓ|
Cj, 1

2 pVδpBSλqq
ď Cε

δℓě3

λ .

On the other hand, for all µ (including λ), the tangent τ on BSµ satisfies itself ε
j` 1

2
µ |τ |

Cj, 1
2 pBSµq

ď C

(this is a scaling argument consistent with (3.1)). For what concerns the L8 norm, it follows from

Propositions 3.20 and 3.22 that }∇φλ,ℓ}L8pBSµq “ Opε
2δλ‰µ`δℓ3
λ q. We deduce with the Leibniz rule that

for all µ P t1, . . . , Nu

ε
5
2
µ |Bτφλ,ℓ|

C2, 1
2 pBSµq

ď Cε
2δµ‰λ`δℓě3

λ .

It follows then that

(3.78) }B}L8pBSµq ` ε
5
2
µ |B|

C2, 1
2 pBSµq

“ Opε
2δµ‰λ`δℓě3

λ εδm3
µ q.

Step 3. Now we deduce estimates on fNµ rBτBs as follows: we apply Lemma 3.17, Proposition 3.9 and

Remark 3.12 to fNµ rBτBs to obtain that for µ P t1, . . . , Nu,

(3.79) ∇fNµ rBτBs “ ∇pfNµ rBτBs ` O
`

εµ}B}L8pBSµq

˘

in L8pFpqqq.

To estimate ∇pfNµ rBτBs, we use Proposition 3.4 and (3.78). Hence (3.76) is a consequence of (3.79)
and (3.9), and (3.75) follows from (3.8). We deduce (3.74) by integrating (3.75) (if κ “ µ) and (3.76)
(otherwise) over BSκ. The estimate on BΩ is performed in the same way.

3.3. Estimates on the circulation stream function. — In this section we study the circulation
stream functions ψεκ, for κ “ 1, ¨ ¨ ¨ , N , introduced in (2.17).

We first recall several elementary properties of the standalone circulation stream functions pψεκ, for
κ “ 1, ¨ ¨ ¨ , N , introduced in (2.18). We refer for instance to [7] for a proof.

Lemma 3.27. — For εκ “ 1,

(3.80) pψ1
κ

`

phκ, ϑκq, x
˘

“ pψ1
κ

`

p0, 0q, Rp´ϑκqpx´ hκq
˘

,

for fixed qκ,

(3.81) ∇ pψεκpx´ hκq “
1

εκ
∇ pψ1

κ

ˆ

x´ hκ
εκ

˙

,

the function B1 pψκ ´ iB2 pψκ admits the following Laurent series expansion for C such that S1
κ Ă Bp0, Cq,

(3.82) B1 pψκ ´ iB2 pψκ “
1

2iπz
`

ÿ

kě2

ak
zk

for z “ x1 ´ h1,κ ` ipx2 ´ h2,κq and |z| ě C.

Note in particular that (3.81)-(3.82) involve

(3.83) ∇K
pψεκpxq “

px´ hκqK

2π|x´ hκ|2
` O

ˆ

εκ
|x´ hκ|2

˙

for |x´ hκ| ě Cεκ,

and consequently

(3.84) px´ hκqK ¨ ∇K
pψεκpxq “

1

2π
` O pεκq for |x´ hκ| ě Op1q.

The O pεκq above can be taken in any norm, because this functions is harmonic, since

(3.85) px´ hκqK ¨ ∇K
pψεκpxq “ Reripz ´ hκqpB1 pψκ ´ iB2 pψκqs.

We are now in position to study ψεκ.
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3.3.1. Estimates on the reflected circulation stream function. — For κ “ 1, . . . , N , we consider in the

difference between the circulation stream function ψκ and its standalone version pψκ, that is

(3.86) ψrκ :“ ψκ ´ pψκ.

By (2.17) and (2.18) there are some constants cλ, for λ “ 1, . . . , N , such that

(3.87)

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

∆ψrκ “ 0 in F ,
ψrκ “ cκ on BSκ,

ψrκ “ ´ pψκ ` cν on BSν , @ν ‰ κ,

ψrκ “ ´ pψκ on BΩ,
ş

BSν
Bnψ

r
κ “ 0, for all ν “ 1, . . . , N.

Thus ψrκ can be considered as a “reflected” circulation stream function: one can view it as the part of

ψκ due to the response of the domain to the standalone stream function pψκ. We have the following
estimates on ψrκ.

Lemma 3.28. — Let δ ą 0. There exists ε0 ą 0 such that the following holds. Let κ P t1, . . . , Nu and
k P N. There exists C ą 0 such that for any ε such that ε ď ε0 and any q P Qδ, one has

}∇ψrκ}L8pFq ď C,(3.88)

@λ P t1, . . . , Nu, ε
k´ 1

2

λ |ψrκ|
Ck, 1

2 pVδpBSλqq
ď C.(3.89)

Proof of Lemma 3.28. — We let

(3.90) A :“ p pψκ|BS1
, . . . , pψκ|BSNpiq

, 0, . . . , 0, pψκ|BΩq and qA :“ p pψκ|BS1
, . . . , pψκ|BSNpiq

, pψκ|BΩq,

where moreover we replace the κ-th element pψκ|BSκ
with 0 whenever κ P Ppiq.

With Propositions 3.9 and 3.10 in mind, we rewrite ψrκ as

(3.91) ψrκ “ ´HrAs ´
ÿ

νPPsztκu

fνr pψκ|BSν
s.

Due to Lemma 3.27, ∇ pψκ is bounded on tx {dpx, BSκq ě δu, and hence so is pψκ. Thanks to interior
elliptic estimates we may even obtain that

(3.92) ε´1
ν } pψκ ´ pψκphνq}L8pBSνq ` | pψκ|

Ck, 1
2 pBSνq

is bounded for ν ‰ κ.

With uniform Schauder estimates in qF (Lemma 3.3), this involves that }qgrqAs}
Ck, 1

2 p qFq
is bounded. With

Proposition 3.10 we deduce that HrAs gives a bounded contribution to (3.88) and (3.89).
For what concerns the second term in (3.91), we use Proposition 3.9 and (3.92). It remains then

to estimate the corresponding combination of standalone potentials pfνr pψκ|BSν
s for ν P Psztκu. The

conclusion follows from Proposition 3.4.

From Lemma 3.28 we can deduce in particular the following uniform estimates of the constants Cκ,νpqq

introduced in (2.17).

Corollary 3.29. — Let δ ą 0. There exists ε0 ą 0 such that the following holds. Let κ, ν P t1, . . . , Nu

with κ ‰ ν. There exists C ą 0 such that for any ε such that ε ď ε0 and any q P Qδ, one has

(3.93) |Cκ,νpqq| ď C.

Proof of Corollary 3.29. — From (3.83), (3.86) and Lemma 3.28, we deduce that ∇ψκ is uniformly
bounded for |x´hκ| ě Op1q. Since ψκ “ 0 on BΩ, we infer that ψκ is uniformly bounded on

Ť

ν‰κ BSν .

In addition to these uniform estimates, one may describe the limit of these circulation vector fields.
For that we rely on the decomposition

(3.94) ∇Kψκ “ ∇K
pψκ ` ∇Kψrκ,
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and introduce two particular velocity vector fields that appear in the limit. For κ P Ps, we denote

(3.95) Hκpxq :“
px´ hκqK

2π|x´ hκ|2
,

and for κ P Ps, the potential qψrκ as the solution (up to an additive constant) of

(3.96)

$

’

’

’

’

’

&

’

’

’

’

’

%

∆ qψrκ “ 0 in qFpqpiqq,

∇K
qψrκpxq ¨ npxq “ ´Hκpxq ¨ npxq on BΩ Y

Ť

νPPpiq
BSν ,

¿

BSν

∇K
qψrκ ¨ τ ds “ 0 for ν P Ppiq.

It is straightforward to see that for any κ P Ps,

(3.97) Hκ ` ∇K
qψrκ “ qKrδhκ

s in qFpqpiqq.

Then we have the following convergences, where all vector fields are put to 0 inside the solids.

Proposition 3.30. — Let δ ą 0. Uniformly for q P Qδ, one has as ε Ñ 0 for any k P N, p ă `8 and
any c ą 0:

@κ P Ps, ∇K
pψκ ÝÑ Hκpxq in LppΩq for p P r1, 2q and in Ckptx P Ω { |x´ hκ| ě cuq,(3.98)

@κ P Ps, ∇Kψrκ ÝÑ ∇K
qψrκ in LppΩq and in L8ptx P Ω { dpx,

Ť

νPPs
Sνq ě cuq,(3.99)

@κ P Ppiq, ∇Kψεκ ÝÑ ∇K
qψκ in LppΩq and in L8ptx P Ω { dpx,

Ť

νPPs
Sνq ě cuq.(3.100)

Proof of Proposition 3.30. — We begin with the proof of (3.98). Considering κ P Ps and p P r1, 2q, we
first cut the integral in two:
ż

ΩzSε
κ

ˇ

ˇ

ˇ
∇K

pψεκ ´Hκpxq

ˇ

ˇ

ˇ

p

dx “

ż

Bphκ,CεκqzSε
κ

ˇ

ˇ

ˇ
∇K

pψεκ ´Hκpxq

ˇ

ˇ

ˇ

p

dx`

ż

ΩzBphκ,Cεκq

ˇ

ˇ

ˇ
∇K

pψεκ ´Hκpxq

ˇ

ˇ

ˇ

p

dx,

where C is taken as in (3.83). For the first integral, using Lemma 3.27 and a change of variable, we get
ż

Bphκ,CεκqzSε
κ

ˇ

ˇ

ˇ
∇K

pψεκ ´Hκpxq

ˇ

ˇ

ˇ

p

dx “ ε2´p
κ

ż

Bphκ,CqzS1
κ

ˇ

ˇ

ˇ
∇K

pψ1
κ ´Hκpxq

ˇ

ˇ

ˇ

p

dx “ Opε2´p
κ q.

Concerning the second integral, by (3.83), for some R ą 0 such that Ω Ă Bphκ, Rq,
ż

ΩzBphκ,Cεκq

ˇ

ˇ

ˇ
∇K

pψεκ ´Hκpxq

ˇ

ˇ

ˇ

p

dx ď Cεpκ

ż

Bp0,RqzBphκ,Cεq

1

|x´ hκ|2p
dx “ Opε2´p

κ q.

Since p P r1, 2q, the convergence (3.98) in LppΩq follows. The convergence in L8 away from hκ is a direct
consequence of (3.83) and interior regularity estimates for harmonic functions.

We now prove (3.99). Let κ P Ps. We use the same notations (3.90) as in the proof of Lemma 3.28

and rely on (3.91). Due to Lemma 3.11, each of the terms ∇Kfνr pψκ|BSν
s, for ν P Psztκu, converges to 0

in LppΩq, p ă `8 and in L8ptx P Ω{dpx,
Ť

νPPs
Sνq ě cuq. Now by Proposition 3.10,

›

›

›

›

›

∇HpAq ´ ∇qgrqAs `
ÿ

λPPs

∇pfλ
“

qgrqAs
‰

›

›

›

›

›

L8pFq

ď C|ε|

´

} pψκ|BΩ}L8pBΩq `
ÿ

νPPpiq

} pψκ|BSν
}L8pBSνq

¯

.

We recall that |ε| was defined in (1.14). Using again Lemma 3.11, we see that each of the terms

∇pfλ
“

qgrqAs|BSλ

‰

above converges to 0 in LppΩq and in L8ptx P Ω{dpx,
Ť

νPPs
Sνq ě cuq. Now from (3.96)

and (3.98), using the uniform Schauder estimates (see Lemma 3.3), we see that ∇K
qgrqAs converges to

´∇K
qψrκ in Ck,

1
2 p qFq for all k. This proves (3.99).

The proof of (3.100) is analogous. Let κ P Ppiq. Here (3.86) and (3.91) give

ψεκ “ pψκ ´ HpAq ´
ÿ

νPPs

fνr pψκ|BSν
s,
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where A was defined in (3.90). Again, due to Lemma 3.11, each of the terms ∇Kfνr pψκ|BSν
s above

converges to 0 in LppΩq (for p ă `8) and in L8ptx P Ω{dpx,
Ť

νPPs
Sνq ě cuq. Moreover, Proposition 3.10

gives us here that
›

›

›

›

›

∇HpAq ´ ∇qgrqAs `
ÿ

λPPs

∇pfλ
“

qgrqAs
‰

›

›

›

›

›

L8pFq

ď C|ε|

´

} pψκ|BΩ}L8pBΩq `
ÿ

νPPpiqztκu

} pψκ|BSν
}L8pBSνq

¯

.

Using again Lemma 3.11, we see that each of the terms ∇pfλ
“

qgrqAs
‰

above converges to 0 in LppΩq and in

L8ptx P Ω{dpx,
Ť

νPPs
Sνq ě cuq. It remains to observe that here pψκ ´ qgrqAs “ qψκ in qF since both sides

satisfy (2.20). This gives (3.100).

3.3.2. Shape derivatives of the reflected circulation stream function. — Here we are interested in differ-
entiating ψrκ with respect to qµ,m.

Lemma 3.31. — Let δ ą 0. There exist ε0 ą 0 and C ą 0 such that for all ε such that ε ď ε0, for all
κ, µ P t1, . . . , Nu, m P t1, 2, 3u, for all q P Qδ,

›

›

›

›

∇ Bψrκ
Bqµ,m

›

›

›

›

L8pFzVδ{2pBSµqq

ď Cεδm3
µ and

›

›

›

›

∇ Bψrκ
Bqµ,m

›

›

›

›

L8pVδpBSµqq

ď Cε´1`δm3
µ ,(3.101)

›

›

›

›

∇ Bψrκ
Bqµ,m

›

›

›

›

LppFq

ď Cεδm3
µ for p ă 2.(3.102)

Proof of Lemma 3.31. — We proceed in two steps.

Step 1. We rely on (3.87) and use Corollary 3.15 and Remark 3.16 to write

(3.103)
Bψrκ

Bqµ,m
“

$

’

’

&

’

’

%

´δλ‰κδµκ
B pψκ

Bqµ,m
´

´

δλ‰κ∇ pψκ ` ∇ψrκ
¯

¨ ξµ,m ` c1
λ on BSλ for λ “ 1, . . . , N,

´δµκ
B pψκ

Bqµ,m
on BΩ.

We now study the various terms in the first line of (3.103). Due to Lemma 3.27 we have
(3.104)

B pψκ
Bqκ,m

“ ´∇ pψκ ¨ ξ˚
κ,m in R2zSκ with ξ˚

κ,jpq, xq :“ ej for j “ 1, 2 and ξ˚
κ,3pq, xq :“ px´ hκqK in R2.

The term δλ‰κδµκ
B pψκ

Bqκ,m
merely gives a contribution when µ “ κ on all the connected components of

the boundary but BSµ “ BSκ. Due to (3.83) and (3.104), this contribution satisfies, up to an additional
constant,

›

›

›

›

›

δµκ
B pψκ

Bqµ,m

›

›

›

›

›

L8pFzVδ{2pBSκqq

ď Cεδm3
µ .

Using inner regularity for the Laplace equation and (3.85), the same holds in Ck,
1
2 pFzVδpBSκqq. Hence,

up to an additive constant, we deduce
›

›

›

›

›

δλ‰κδµκ
B pψκ

Bqµ,m

›

›

›

›

›

L8pBSλq

ď Cελε
δm3
µ .

Let us now turn to the second term, which merely gives a contribution on BSλ when λ “ µ ‰ κ (recall

(2.7)). By Lemma 3.27 and (3.83), we see that the term δλ‰κ∇ pψκ ¨ ξµ,m gives a contribution of order

εδm3
µ in L8-norm and in Ck,

1
2 -norm on BSµ.

Finally we consider the last term, which again only gives a contribution on BSλ when λ “ µ. By
Lemma 3.28, the term ∇ψrκ ¨ ξµ,m gives a contribution of size εδm3

µ in L8-norm and at worst of order

Opεδm3
µ ε

´k´ 1
2

λ q in Ck,
1
2 -norm on BSµ.
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Gathering these estimates we obtain, up to an additive constant on each connected component Sλ of
the boundary, that for k ě 1,

›

›

›

›

Bψrκ
Bqµ,m

›

›

›

›

L8pBSλq

ď Cεδm3
µ ε

δλ‰µ

λ , ε
k` 1

2

λ

›

›

›

›

Bψrκ
Bqµ,m

›

›

›

›

Ck, 1
2 pBSλq

ď Cεδm3
µ ε

δλ‰µ

λ ,

›

›

›

›

Bψrκ
Bqµ,m

›

›

›

›

L8pBΩq

ď Cεδm3
µ and

›

›

›

›

Bψrκ
Bqµ,m

›

›

›

›

Ck, 1
2 pBΩq

ď Cεδm3
µ .

Step 2. As before we write

Bψrκ
Bqµ,m

“ H

»

–

Bψrκ
Bqµ,m |BS1

, . . . ,
Bψrκ

Bqµ,m |BSNpiq

, 0, . . . , 0;
Bψrκ

Bqµ,m |BΩ

fi

fl `
ÿ

λPPs

fλ

«

Bψrκ
Bqµ,m |BSλ

ff

.

The H term is bounded inW 1,8p qFq due Proposition 3.10, the above estimates and the uniform Schauder

estimates in qF (Lemma 3.3). The fλ terms can be replaced by their standalone counterpart pfλ thanks to

Proposition 3.9. These pfλ are estimated by Proposition 3.4 which gives the estimates in (3.101).

Concerning (3.102), by the above considerations, we only need to discuss the contribution of the pfλ
terms. Mixing (3.8) and (3.9), and distinguishing x P Bphλ, CεqzSελ and x P FzBphλ, Cελq, we see that

(3.105) @x P F ,

ˇ

ˇ

ˇ

ˇ

ˇ

∇pfλ
”

Bψrκ
Bqµ,m |BSλ

ı

pxq

ˇ

ˇ

ˇ

ˇ

ˇ

ď C
ελ

|x´ hλ|2

˜

›

›

›

›

Bψrκ
Bqµ,m

›

›

›

›

L8pBSλq

` ε
k` 1

2

λ

›

›

›

›

Bψrκ
Bqµ,m

›

›

›

›

Ck, 1
2 pBSλq

¸

.

Now we put the above inequality to the power p and integrate. We can inject Ω in some ball Bphλ, Rq

with R ą 0 fixed so that we write F Ă Bphλ, RqzBphλ, C
1ελq for some positive C 1. The result follows.

3.3.3. Reflected circulation stream function of a phantom solid. — In this paragraph, we extend the
above estimates on the reflected circulation stream function ψrκ to a slight variant. This variant will play
an important role in the definition of the modulation and in the passage to the limit, in particular for
what concerns the desingularization (1.27).

For κ P Ps we first introduce the following “κ-augmented” fluid domain as follows:

(3.106) qFκpqq :“ Fpqq Y Sκpqq.

Note in particular that

B qFκpqq “ BFpqqzBSκpqq “ BΩ Y
ď

νPt1,...,Nuztκu

BSν .

Now we introduce ψr, ­κκ as the solution in qFκpqq (together with constants cλ, λ P t1, . . . , Nuztκu) to the
system:

(3.107)

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

∆ψr, ­κκ “ 0 in qFκpqq,

ψr, ­κκ “ ´ pψκ ` cλ on BSλpqq, for λ P t1, . . . , Nuztκu,

ψr, ­κκ “ ´ pψκ on BΩ,
ż

BSνpqq

Bnψ
r, ­κ
κ ds “ 0 for ν P t1, . . . , Nuztκu.

The only difference indeed between ψrκ and ψr, ­κκ is that the constraint ψrκ “ cκ on BSκ in (3.87) has

disappeared in (3.107), and that the domain is qFκ rather than F . Adapting the arguments above we
obtain the following result.

Lemma 3.32. — Let δ ą 0. There exists ε0 ą 0 such that the following holds. Let κ P Ps and k P N.
There exists C ą 0 such that for any ε such that ε ď ε0 and any q P Qδ, one has

}∇ψr, ­κκ }L8pFq ď C, and @λ P t1, . . . , Nu, ε
δκ‰λpk´ 1

2 q

λ }ψr, ­κκ }
Ck, 1

2 pVδpBSλqq
ď C,(3.108)

›

›

›

›

∇ Bψr, ­κκ
Bqµ,m

›

›

›

›

L8pFzVδ{2pBSµqq

ď Cεδm3
µ and

›

›

›

›

∇ Bψr, ­κκ
Bqµ,m

›

›

›

›

L8pVδpBSµqq

ď Cε´1`δm3`δµκ
µ .(3.109)
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Moreover, uniformly for q P Qδ, one has as ε Ñ 0 for any k P N, p ă `8 and any c ą 0:

(3.110) ∇Kψr, ­κκ ÝÑ ∇K
qψrκ in LppΩq and in L8ptx P Ω{dpx,

Ť

νPPsztκu Sνq ě cuq.

Proof of Lemma 3.32. — This is a mere adaptation of Lemmas 3.28 and 3.31 and of (3.99). Hence we
only stress the variations in the proofs.

To get (3.108), the main point is that (3.91) has to be replaced by

(3.111) ψr, ­κκ “ ´H­κpAq ´
ÿ

νPPsztκu

f­κν r pψκ|BSν
s,

where the potentials H­κ and f ­κ correspond to the domain qFκ rather than F , and where we define the

N -tuple A :“ p pψκ|BS1
, . . . , pψκ|BSNpiq

, 0, . . . , 0, pψκ|BΩq, where N corresponds to N´1 solids plus Ω (because

there is no boundary BSκ). Then the same argument as in Lemma 3.28 applies to obtain (3.108), using

Propositions 3.9 and 3.10 in the domain with N ´ 1 solids qFκ.
Concerning the estimate (3.109) of the shape derivative, when µ ‰ κ, it suffices to make the slight

correction to the boundary condition (3.103):

Bψr, ­κκ
Bqµ,m

“

$

’

’

&

’

’

%

´δµκ
B pψκ

Bqκ,m
´

´

∇ψr, ­κκ ` ∇ pψκ

¯

¨ ξµ,m ` c1
λ on BSλ for λ P t1, . . . , Nuztκu,

´δµκ
B pψκ

Bqκ,m
on BΩ.

Then the same reasoning as in Lemma 3.31 applies. Importantly enough, BSκ is now in the bulk of the

domain qFκ so that the standalone potentials (see (3.105)) give a bounded contribution to ∇ Bψr, ­κ
κ

Bqµ,m
in the

neighborhood of Sκ.
When µ “ κ, the situation is a bit different, because B

Bqκ
is no longer a shape derivative (the domain

qFκ does not depend on qκ) but a simple derivative with respect to a parameter. The boundary condition

becomes
Bψr, ­κ

κ

Bqκ,m
“ ´

B pψκ

Bqκ,m
on B qFκ, and the boundedness of ε´δm3

κ ∇ Bψr, ­κ
κ

Bqκ,m
(here in the whole qFκ) follows

as before.
Finally, to prove (3.110), we rely again on (3.111) and reason as for (3.100). We approximate ∇H­κpAq

by ∇qgrqAs with the same qg and the same qA :“ p pψκ|BS1
, . . . , pψκ|BSNpiq

, pψκ|BΩq as in the proof of (3.100)

(since κ P Ps). Hence we obtain the same limit.

3.4. Estimates of the Biot-Savart kernel. —

3.4.1. Biot-Savart kernel. — The following will be useful for both the a priori estimates and the passage
to the limit. We consider ω P L8

c pFq and compare the generated velocity Krωs in F (in the domain with

all solids) and the generated velocity qKrωs in qF (in the larger domain with only solids of family (i)) as
defined in (2.21) and (2.22). In particular we prove that these velocity fields are bounded independently
of ε. Precisely we have the following result.

Lemma 3.33. — Let δ ą 0. There exists ε0 ą 0 such that the following holds. For any p P p2,`8s,
there exist C ą 0 such that for any pε,q, ωq P Qε0

δ , one has

(3.112) }Krωs}L8pFεq ď C}ω}LppFεq and ε
k´ 1

2

λ |Krωs|
Ck´1, 1

2 pBSε
λq

ď C}ω}LppFεq, @λ “ 1, . . . , N.

In the same way, there exists ε0 ą 0 and for each p P p1,`8q, there exist C ą 0 such that for any
pε,qq P Qε0

δ , any f P LppFεpqq;R2q such that distpSupppfq, BFεpqqq ě δ,

(3.113) }Krdiv pfqs}LppFεq ď C}f}LppFεq.

Finally, uniformly for pq, ωq such that pε,q, ωq P Qε0
δ when ε is small and ω is bounded in L8,

(3.114)
›

›

›
Krωs ´ qKrωs

›

›

›

LppFpqqq
Ñ 0 for p P p2,`8q

and
›

›

›
Krωs ´ qKrωs

›

›

›

L8ptxP qF{dpx,YνPPsSνqěcuq
Ñ 0 as ε Ñ 0.

Remark 3.34. — Actually, our proof only needs ω or f to be supported away from the small solids.
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Proof of Lemma 3.33. — For δ ą 0, we let ε0 as in Lemma 3.6. Clearly, the difference rRrωs :“ Krωs ´

qKrωs satisfies
$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

div rRrωs “ curl rRrωs “ 0 in Fpqq,

rRrωs ¨ n “ 0 on B qFpqq,

rRrωs ¨ n “ ´ qKrωs ¨ n on BFzB qFpqq,
¿

BSν

rRrωs ¨ τ ds “ 0 for ν “ 1, . . . , N.

In particular one can write rRrωs “ ∇K
rφrωs where

(3.115) rφrωs “ ´
ÿ

κPPs

fκ

”

qΨrωs|BSκ

ı

,

and where qΨrωs is a stream function for qKrωs, that is, qKrωs “ ∇K
qΨrωs.

We first estimate qKrωs. As for Lemma 3.3, we have uniform Calderón-Zygmund estimates (see e.g.

[6, Lemma 9.17]) in qF as long as qpiq P Qpiq,δ. It follows that for each p P p1,`8q, one has a uniform
constant C ą 0 such that

(3.116)
›

›

›

qKrωs

›

›

›

W 1,pp qFq
ď C}ω}LppFεq.

Then we invoke Sobolev embedding for p ą 2 to get the bound

(3.117) } qKrωs}L8p qFq
ď C}ω}8.

This embedding is also uniform in qF as long as qpiq P Qpiq,δ: it suffices to use an extension operator
inside each solid and use the embedding in Ω. We notice that since ω is distant from the solids, by inner
regularity for the Laplace equation, we have

(3.118) } qKrωs}
Ck, 1

2 pVδpBFqq
ď C}ω}8 and }qΨrωs}

Ck, 1
2 pVδpBFqq

ď C}ω}8.

Now we apply Proposition 3.9 and Proposition 3.4 to each term in the right-hand-side of (3.115). This
gives

›

›

›
R̃rωs

›

›

›

L8pFεq
ď C}ω}LppFεq and ε

k´ 1
2

λ

ˇ

ˇ

ˇ
R̃rωs

ˇ

ˇ

ˇ

Ck´1, 1
2 pBSε

λq
ď C}ω}LppFεq, @λ “ 1, . . . , N.

We consequently deduce (3.112) with (3.117).

The convergence (3.114) of rRrωs to 0 as ε Ñ 0 is proven as (3.44): it is a consequence of Lemma 3.11
and (3.118).

Finally (3.113) is proven in the same way, albeit in a weaker context. Denoting by KR2 the Biot-Savart
operator in the full plane, such that

$

’

&

’

%

div KR2rωs “ 0 in R2,

curlKR2rωs “ ω in R2,

KR2rωspxq ÝÑ 0 as x ÝÑ `8,

we recall that KR2 ˝ div “ ∇K∆´1
R2 div is a Calderón-Zygmund operator which sends LppR2q into itself

(for p P p1,`8q). It remains to check that the correction to obtain Krdiv pfqs is also estimated uniformly
in LppFpqqq. Thanks to the constraint on the support of f , it is again a consequence of interior elliptic
estimates and of Propositions 3.9, 3.10 and 3.4.

3.4.2. Shape derivatives of the Biot-Savart kernel. — In this paragraph, for fixed ω, we estimate the

shape derivative
BKrωs

Bqµ,m
.
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Lemma 3.35. — Let δ ą 0, µ P t1, . . . , Nu, m P t1, 2, 3u. There exists C ą 0 and ε0 ą 0 such that for
any pε,q, ωq P Qδ,

›

›

›

›

BKrωs

Bqµ,m

›

›

›

›

L8pFzVδ{2pBSµqq

ď Cεδm3
µ }ω}L8pFpqqq ,

›

›

›

›

BKrωs

Bqµ,m

›

›

›

›

L8pVδpBSµqq

ď Cε´1`δm3
µ }ω}L8pFpqqq ,

and

›

›

›

›

BKrωs

Bqµ,m

›

›

›

›

LppFq

ď Cεδm3
µ }ω}L8pFpqqq for p ă 2.

Proof of Lemma 3.35. — Here we first introduce KΩrωs that satisfies

(3.119)

$

’

&

’

%

div KΩrωs “ 0 in Ω,

curlKΩrωs “ ω in Ω,

KΩrωs ¨ n “ 0 on BΩ.

(Recall that we suppose Ω simply connected to simplify.) Note that KΩrωs (whose shape derivative is
obviously zero) can be put in the form KΩrωs “ ∇KΨΩrωs with ΨΩrωs “ ∆´1

Ω ω, where ∆´1
Ω is the usual

inverse of the Laplacian with homogeneous Dirichlet boundary conditions on BΩ. Now the difference
Rrωs “ Krωs ´KΩrωs satisfies

(3.120)

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

div Rrωs “ curlRrωs “ 0 in Fpqq,

Rrωs ¨ n “ ´KΩrωs ¨ n on BSν for ν “ 1, . . . , N,

Rrωs ¨ n “ 0 on BΩ,
¿

BSν

Rrωs ¨ τ ds “ 0 for ν “ 1, . . . , N.

It follows that Rrωs can be put in the form Rrωs “ ∇Kηrωs with
$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

∆ηrωs “ 0 in Fpqq,

ηrωs “ ´ΨΩrωs ` cν on BSν , for all ν “ 1, . . . , N,

ηrωs “ 0 on BΩ,
ż

BSν

Bnηrωs ds “ 0 for ν “ 1, . . . , N.

Consequently, using Corollary 3.15 we find that for some constants c1
λ, λ P t1, . . . , Nu, one has

Bηrωs

Bqµ,m
“ 0 on BΩ and

Bηrωs

Bqµ,m
“ c1

λ on BSλ for λ ‰ µ,

while on BSµpqq, one has

Bηrωs

Bqµ,m
“ p´BnΨΩrωs ´ Bnηrωsq Kµ,m ` c1

µ

“ pKΩrωs `Rrωsq ¨ τ Kµ,m ` c1
µ “ pKrωs ¨ τqKµ,m ` c1

µ.

Using Lemma 3.33, we can bound this boundary condition as in the proofs of Proposition 3.26 or
Lemma 3.31, so that we obtain for some uniform constant C ą 0

›

›

›

›

Bηrωs

Bqµ,m

›

›

›

›

L8pBSµq

` ε
5
2
µ

ˇ

ˇ

ˇ

ˇ

Bηrωs

Bqµ,m

ˇ

ˇ

ˇ

ˇ

C2, 1
2 pBSµq

ď Cεδm3
µ }ω}L8pFεpqqq .

Then we use that Bηrωs

Bqµ,m
“ fµ

„

´

Bηrωs

Bqµ,m

¯

|BSµ

ȷ

in Fεpqq, Propositions 3.9 and 3.10 to approximate it by the

functions pfλ and qg, and we estimate the latter by Proposition 3.4. The estimate in Lp norm is exactly
the same as (3.102). We omit the details.
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4. First a priori estimates

In this section we establish two a priori estimates on the system. The first one is on the fluid vorticity.

Lemma 4.1. — For a solution to System (1.2)-(1.7) and p P r1,`8s, }ω}p is conserved over time and
given δ ą 0, }Krωs}8 is bounded independently of t and ε as long as pε,q, ωq P Qδ.

Démonstration. — The first statement is due to

(4.1) Btω
ε ` puε ¨ ∇qωε “ 0 in Fε,

and Liouville’s theorem. The second follows then from Lemma 3.33.

Next result is devoted to a renormalized energy estimate, which gives a first bound of ppκ (recall the
definition in (2.1)).

Proposition 4.2. — Let δ ą 0. There exist C ą 0 and ε0 ą 0 such that as long as pε,q, ωq P Qε0
δ , the

solutions puε, hε, ϑεq of the system satisfy

(4.2) @κ P t1, . . . , Nu, |ε
δκPPpiiiq

κ ppκ| ď C.

Let us mention that this estimate will be improved in the sequel, by considering some modulated
energy estimates, for which some intermediate work on the solid accelerations is necessary, for which
these rough bounds are used.

Proof of Proposition 4.2. — We first consider the total energy of the system:

(4.3) Eptq :“
1

2

ÿ

κPt1,...,Nu

pmκ|h1
κ|2 ` Jκ|ϑ1

κ|2q `
1

2

ż

Fptq

|u|2 dx.

For a solution to (1.2)-(1.7), this energy Eptq is conserved over time. This is proven by multiplying (1.2)
by u, the equations in (1.7) by h1

κ and ϑ1
κ, respectively, summing and integrating by parts. Now the

conservation of Eptq is insufficient to reach Proposition 4.2 directly because the energy is not bounded
as ε goes to 0. This is due to of the circulation part of the fluid velocity (see the second term in the
decomposition (2.24)) corresponding to small solids. To circumvent this difficulty we will rather use the
following quantity:

(4.4)
1

2

ÿ

κPt1,...,Nu

pmκ|h1
κ|2 ` Jκ|ϑ1

κ|2q `
1

2

ż

Fptq

|upot|2 dx,

where the potential part of the fluid velocity upot was defined in (2.25). Since, by (2.13),

1

2

ÿ

κPt1,...,Nu

pmκ|h1
κ|2 ` Jκ|ϑ1

κ|2q `
1

2

ż

Fptq

|upot|2 dx “
1

2
Mp ¨ p,

in order to prove Proposition 4.2, it is sufficient to show that the quantity above is bounded independently
of t and ε. Indeed, once this is obtained, one uses Mg ď M to get a bound on ppκ for κ P Ppiq Y Ppiiq,
and one uses Ma ď M together with Corollary 3.23 and Remarks 2.1 and 3.24 to deduce a bound on
εκppκ when κ is in Ppiiiq.

To prove that the quantity in (4.4) is bounded we rely on the decomposition (2.24) of the fluid velocity.
We call uc the circulation part of the fluid velocity, that is second term in the right-hand side of (2.24):

uc :“
ÿ

κPt1,...,Nu

γκ∇Kψκpqptq, ¨q.

Since Krωs is orthogonal to upot in L2pFpqqq (as follows from an integration by parts), we can decompose
the energy (4.3) as

Eptq “
1

2

ÿ

κPt1,...,Nu

pmκ|h1
κ|2 ` Jκ|ϑ1

κ|2q `
1

2

ż

Fptq

|upotpt, ¨q|2 dx

`
1

2

ż

Fptq

|Krωs|2 dx`

ż

Fptq

ucpt, ¨q ¨ pKrωs ` upotqpt, ¨q dx`
1

2

ż

Fptq

|uc|
2 dx.

Proposition 4.2 then follows from the assumptions on the initial data, Lemma 4.1, the conservation of
Eptq and the following lemma.
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Lemma 4.3. — For δ ą 0, there exists ε0 ą 0 such that the following properties hold as long as
pε,q, ωq P Qε0

δ :
ż

Fptq

|ucpt, ¨q|2 dx´

ż

Fp0q

|ucp0, ¨q|2 dx is bounded independently of t and ε,(4.5)

ż

Fptq

ucpt, ¨q ¨ pKrωs ` upotqpt, ¨q dx is bounded independently of t and ε.(4.6)

Proof of Lemma 4.3. — We first notice, recalling (2.17) and using an integration by parts, that for
κ ‰ ν,

ż

Fptq

∇Kψν ¨ ∇Kψκ dx “ ´Cκ,ν .

The estimate (3.93) in Corollary 3.29 states that the coefficients Cκ,ν are bounded independently of t
and ε for ν ‰ κ. Hence to prove (4.5) it suffices to establish that the circulation stream functions ψν
satisfy

ż

Fptq

|∇ψνpqptq, ¨q|2 dx´

ż

Fp0q

|∇ψνpqp0q, ¨q|2 dx is bounded independently of t and ε.

We use Lemma 3.28; consequently it suffices to prove that for all ν, the standalone circulation stream

function pψν satisfies

(4.7)

ż

Fptq

|∇ pψνpqptq, ¨q|2 dx´

ż

Fp0q

|∇ pψνpqp0q, ¨q|2 dx is bounded independently of t and ε.

Now using Lemma 3.27, we see that
ż

Fptq

|∇ pψνpqptq, ¨q|2 dx “

ż

Rp´ϑνqpFptq´hνptqq`hν,0

|∇ pψνpqp0q, ¨q|2 dx.

Then
ˇ

ˇ

ˇ

ˇ

ˇ

ż

Fptq

|∇ pψνpqptq, ¨q|2 dx´

ż

Fp0q

|∇ pψνpqp0q, ¨q|2 dx

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ż

∆ν

|∇ pψνpqp0q, ¨q|2 dx,

where ∆ν is the symmetric difference
`

Rp´ϑνqpFptq ´ hνptqq ` hν,0
˘

△Fp0q. Since pε,q, ωq P Qε0
δ and

Fptq Ă Ω, there is R ą 0 independent of ε such that ∆ν Ă Bphν,0, RqzBphν,0, δq. Hence using (3.83), we
arrive at (4.7) and hence at (4.5).

To get (4.6) we first integrate by parts:
ż

Fptq

∇Kψν ¨ pKrωs ` upotq dx “ ´

ż

Fptq

ψνω dx`

ż

BFptq

ψνpKrωs ` upotq ¨ τ dspxq.

The part of the second integral on BΩ vanishes due to (2.17), and the parts of the second integral on each
BSλ, λ “ 1, . . . , N , vanish as well because ψν is constant on each connected component of the boundary
and Krωs ` upot has zero-circulation on each BSλ. Now the first term is bounded independently of t
and ε, because ψν is bounded on the support of ω: this can be seen by integrating ∇ψν from some
point in BΩ and using Lemmas 3.27 and 3.28 and to the remoteness of Sλ to the support of ω (due to
pε,q, ωq P Qε0

δ ).

Hence the proof of Proposition 4.2 is complete.

5. Collective normal form and rough estimate for the acceleration of the bodies

In this section we establish a first normal form of the solids’ dynamics. This collective normal form
singles out the leading term with respect to the number of time derivatives, through the total inertia of
the system, including the added inertia, see (2.11).

Proposition 5.1. — Let δ ą 0. There exists C ą 0 and ε0 ą 0 such that the solutions puε, hε, ϑεq of
the system satisfy, as long as pε,q, ωq P Qε0

δ , for all κ P t1, . . . , Nu and j P t1, 2, 3u,

(5.1)
`

Mppεq1
˘

κ,j
“ Opεδj3κ p1 ` |ppε|qq.

From Proposition 5.1 we will deduce the following rough estimate of the solid accelerations.
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Corollary 5.2. — Let δ ą 0. There exists C ą 0 and ε0 ą 0 such that the solutions puε, hε, ϑεq of the
system satisfy, as long as pε,q, ωq P Qε0

δ ,

(5.2) @κ P t1, . . . , Nu, |ε
2δκPPpiiiq

κ pp 1
κ| ď Cp1 ` |ppε|q.

Despite their roughness these estimates will help to uncouple the solids’ equations and to obtain some
individual normal forms in Section 7.

The next subsection is devoted to an auxiliary decomposition of the velocity, which is specific to
this section, and different from the standard decomposition (2.24). Then we prove Proposition 5.1 in
Subsection 5.2 and finally Corollary 5.2 in Subsection 5.3.

5.1. A decomposition of the velocity. — To prove Proposition 5.1 we introduce the following
decomposition of the velocity.

Definition 5.3. — We decompose the velocity field uε as follows:

(5.3) uε “ upot `
ÿ

νPt1,...,Nu

γν∇K
pψν ` uext,

where the potential part of the velocity upot was defined in (2.25). We will call uext the exterior part of
the velocity field.

Notice the difference between (5.3) and the standard decomposition (2.24), in that the circulation
potentials considered here are standalone, following the strategy hinted in Section 2.3, and developed
below, see in particular the treatment of the term T4 in (5.26).

Comparing the standard decomposition (2.24) of uε and (5.3), we see with (3.86) that

(5.4) uext “ Krωs `
ÿ

νPt1,...,Nu

γν∇Kψrν .

An important property of the decomposition (5.3) is given by the following lemma, concerning the field
uext associated with a solution to System (1.2)–(1.7).

Lemma 5.4. — Given δ ą 0, there exist some constants ε0 and C ą 0 such that, for a solution to the
system, as long as pε,q, ωq P Qε0

δ , one has for uext considered as a function of pt, xq:

}uext}L8pFpqqq ď C,(5.5)

}Btu
ext}L8pVδpBFqz

Ť

νPPs
Vδ{2pBSνqq ď Cp1 ` |ppε|q,(5.6)

}Btu
ext}L8pVδpBSνqq ď Cε´1

ν p1 ` |ppε|q, @ν P Ps.(5.7)

Proof of Lemma 5.4. — First, (5.5) follows from directly from (5.4) and Lemmas 3.28 and 3.33. For
what concerns (5.6)-(5.7), we start with

(5.8) Btu
ext “ KrBtω

εs `
ÿ

µPt1,...,Nu

mPt1,2,3u

B

Bqµ,m

»

–Krωεs `
ÿ

νPt1,...,Nu

γν∇Kψrν

fi

fl ¨ pµ,m.

The shape derivatives of Krωεs and ∇Kψrν with respect to qµ,m are estimated separately in
L8pVδpBSµpqqqq and in L8pFpqqzVδ{2pBSµpqqqq by using Lemma 3.35 and Lemma 3.31 respectively.

Observing that εδm3
µ |pµ,m| “ |ppµ,m|, it follows that the second term in (5.8) gives a contribution as in

(5.6)-(5.7).
It remains to study

(5.9) KrBtω
εs “ ´Krdiv puεωεqs.

We estimate uεωε using the decomposition (2.24). Using that pε,q, ωq P Qε0
δ , the energy estimates and

(3.62), we deduce that }upot ωε}L8pFpqqq ď C. Using that pε,q, ωq P Qε0
δ and Lemmas 3.27 and 3.28, we

also find that ωε
ř

νPt1,...,Nu γν∇K
pψν is bounded in L8pFpqqq. With (5.5), we finally deduce that

(5.10) }uεωε}L8pFpqqq ď C.

With (3.113) and (5.3), this gives

(5.11) }Krdiv puεωεqs}LppFpqqq ď C, for p P p1,`8q.
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By using the support of vorticity and local elliptic estimates near the boundaries one concludes that
Krdiv puεωεqs is bounded in L8pVδpBFpqqqq, and (5.6)-(5.7) follow.

5.2. Proof of the collective normal form. — We are now in position to prove Proposition 5.1.

Proof of Proposition 5.1. — We cut the proof into two steps.

5.2.1. Step 1. — By (1.2), (2.8) and an integration by parts we write the solid equation (1.7) as

(5.12) pMgppεq1qκ,j “ ´

ż

Fpqq

pBtu
ε ` puε ¨ ∇quεq ¨ ∇φκ,j dx,

where we recall the notation (2.11). Next we inject the decomposition (5.3) of uε. In the right-hand
side, we extract from Btu

ε the part corresponding to

(5.13) Btu
pot “

ÿ

µPt1,...,Nu

mPt1,2,3u

“

p1
µ,m∇φµ,m ` pµ,mp∇φµ,mq1

‰

.

When injected in (5.12), the first term in (5.13) gives the added mass term ´pMappεq1qκ,j (recall the
notation (2.12)) which we put on the left-hand side, while the second one gives shape-derivatives terms,
see the term T1 below. For the term puε ¨ ∇quε in (5.12) we use

(5.14) puε ¨ ∇quε “
∇|uε|2

2
` ωεpuεqK.

When injected in (5.12), the first term in the right-hand side of (5.14) can be integrated by parts to
arrive at

´
1

2

ż

BSκpqq

|uε|2Kκ,j ds.

Then we develop the square

|uε|2 “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

upot `
ÿ

νPt1,...,Nu

γν∇K
pψν ` uext

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

,

by separating between

γκ∇K
pψκ and upot ` uext `

ÿ

νPt1,...,Nuztκu

γν∇K
pψν ,

to arrive at

(5.15)
`

Mgppεq1 ` Mappεq1
˘

κ,j
“ T1 ` . . .` T7,
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where

T1 :“ ´
ÿ

λ,µPt1,...,Nu

ℓ,m“1,2,3

ż

Fpqq

pλ,ℓpµ,m
B∇φλ,ℓ
Bqµ,m

¨ ∇φκ,j dx,

T2 :“ ´
ÿ

νPt1,...,Nu

γν

ż

Fpqq

Bt∇K
pψν ¨ ∇φκ,j dx,

T3 :“ ´

ż

Fpqq

Btu
ext ¨ ∇φκ,j dx,

T4 :“ ´
1

2

ż

BSκpqq

ˇ

ˇ

ˇ
γκ∇K

pψκ

ˇ

ˇ

ˇ

2

Kκ,j ds,

T5 :“ ´
1

2

ż

BSκpqq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

upot ` uext `
ÿ

νPt1,...,Nuztκu

γν∇K
pψν

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

Kκ,j ds,

T6 :“ ´γκ

ż

BSκpqq

¨

˝upot ` uext `
ÿ

νPt1,...,Nuztκu

γν∇K
pψν

˛

‚¨ ∇K
pψκKκ,j ds,

T7 :“ ´

ż

Fpqq

ωεuεK ¨ ∇φκ,j dx.

5.2.2. Step 2. — We now estimate these seven terms. In this proof it will be convenient to take the
convention of Remark 3.21 for the Kirchhoff potentials.

Estimate of T1. We first integrate by parts:

(5.16)

ż

Fptq

pλ,ℓpµ,m
B∇φλ,ℓ
Bqµ,m

¨ ∇φκ,j dx “ pλ,ℓpµ,m

ż

BSκ

Bφλ,ℓ
Bqµ,m

Kκ,j ds.

To estimate the integral in the right-hand-side we rely on the estimates of the shape derivatives in
Proposition 3.26. We distinguish several cases, according to the possible equalities between κ, λ and µ:

– First case: λ “ µ. Then either κ “ λ “ µ and this integral is Opε1`δℓ3
λ εδm3

µ ε
δj3
κ q (the addi-

tional power of ελ comes from the integration on BSκ “ BSλ), or κ ‰ λ “ µ and the integral is

Opε2`δℓ3
λ εδm3

µ ε
1`δj3
κ q.

– Second case: λ ‰ µ. Then either κ ‰ µ and we see the integral is Opε2`δℓ3
λ ε2`δm3

µ ε
1`δj3
κ q, or κ “ µ

and the integral is Opε2`δℓ3
λ εδm3

µ ε
1`δj3
κ q.

We recall that εδm3
µ |pµ,m| “ |ppµ,m|. Using the energy estimates provided by Proposition 4.2 (which give

ε1`δℓ3
λ pλ,ℓ bounded), we see that in all cases, the term in (5.16) is at least estimated by Op|ppµ,m|ε

δj3
κ q

(the worst case being the first one where κ “ λ “ µ).

Estimate of T2. We first deduce from Lemma 3.27 that

(5.17) Bt pψν ` vS,ν ¨ ∇ pψν “ 0, and Bt∇K
pψν ` ∇K

´

vS,ν ¨ ∇ pψν

¯

“ 0,

where we denote by vS,ν the ν-th solid vector field, see (1.6). We recall the formulas:

∇pa ¨ bq “ pa ¨ ∇qb` pb ¨ ∇qa´ aK curlpbq ´ bK curlpaq,(5.18)

curlpxKq “ 2,(5.19)

pa ¨ ∇qxK “ aK.(5.20)

By applying (5.18) we find

∇
´

vS,ν ¨ ∇K
pψν

¯

“ pvS,ν ¨ ∇q∇K
pψν ` p∇K

pψν ¨ ∇qvS,ν ` ∇ pψν curl vS,ν ,

where we used that curl∇K
pψν “ 0, since pψν is harmonic, to discard one term. Moreover, by using (5.20)

and (5.19), we simplify the last two terms of the equality above by ´ϑ1
ν∇ pψν and 2ϑ1

ν∇ pψν , respectively,
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and arrive at

(5.21) ∇
´

vS,ν ¨ ∇K
pψν

¯

“ pvS,ν ¨ ∇q∇K
pψν ` ϑ1

ν∇ pψν .

Similarly, we use (5.18) to obtain

∇
´

vS,ν ¨ ∇ pψν

¯

“ pvS,ν ¨ ∇q∇ pψν ` p∇ pψν ¨ ∇qvS,ν ´ ∇K
pψν curl vS,ν ,

where we used that curl∇ pψν “ 0 to discard one term. Moreover, by using (5.20) and (5.19), we simplify

the last two terms of the equality above by ϑ1
ν∇K

pψν and ´2ϑ1
ν∇K

pψν , respectively, and find that

∇
´

vS,ν ¨ ∇ pψν

¯

“ pvS,ν ¨ ∇q∇ pψν ´ ϑ1
ν∇K

pψν ,

By rotation, we deduce that

(5.22) ∇K
´

vS,ν ¨ ∇ pψν

¯

“ pvS,ν ¨ ∇q∇K
pψν ` ϑ1

ν∇ pψν .

Comparing (5.21) and (5.22), we conclude that

∇
´

vS,ν ¨ ∇K
pψν

¯

“ ∇K
´

vS,ν ¨ ∇ pψν

¯

.

By using this in the second equation of (5.17) we obtain

(5.23) Bt∇K
pψν ` ∇

´

vS,ν ¨ ∇K
pψν

¯

“ 0.

By an integration by parts it follows that
ż

Fpqq

Bt∇K
pψν ¨ ∇φκ,j dx “ ´

ż

BSκpqq

vS,ν ¨ ∇K
pψν Kκ,j ds.

Now when ν “ κ it is straightforward to estimate this term by Opε
δj3
κ q|ppε| since ∇K

pψεκ “ Op1{εκq on
BSκ. When ν ‰ κ, one can use the divergence theorem inside Sκ:

(5.24)

ż

BSκpqq

vS,ν ¨ ∇K
pψν Kκ,j ds “ ´

ż

Sκpqq

div
´

ph1
ν ` ϑ1

νpx´ hνqK ¨ ∇K
pψνqξκ,j

¯

dx.

Now on the one hand using (3.83) and interior regularity estimates for the Laplace equation, we obtain
ż

Sκpqq

div pph1
ν ¨ ∇K

pψνqξκ,jq dx “

ż

Sκpqq

ξκ,j ¨ ∇ph1
ν ¨ ∇K

pψνq dx “ Opε2`δj3
κ q|h1

ν |.

On the other hand, we use (3.84) and see that
ż

Sκpqq

div
´

pϑ1
νpx´ hνqK ¨ ∇K

pψνqξκ,j

¯

ds “ Opε2`δj3
κ qεν |ϑ1

ν |.

Altogether the term T2 can be estimated by

(5.25) T2 “ Opε2`δj3
κ q|ppν |.

Estimate of T3. We first integrate by parts to find
ż

Fpqq

Btu
ext ¨ ∇φκ,j dx “

ż

BFpqq

Btu
ext ¨ nφκ,j ds.

By Lemma 5.4 (using (5.6) on BΩ and (5.7) on the rest of the boundary), we have }Btu
ext}L1pBFpqqq “

Op1 ` |ppε|q. We use (3.64) to estimate the Kirchhoff potential φκ,j on the boundary and infer that

T3 “ Opε1`δj3
κ qp1 ` |ppε|q.

Estimate of T4. We have for any j P t1, 2, 3u

(5.26)

ż

BSκ

|γκ∇K
pψκ|2Kκ,j ds “ 0.

This is a consequence of Blasius’ lemma, see e.g. [7, p. 511]. This also a direct consequence of Lamb’s
lemma (see Lemma 7.12 below).
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Estimate of T5. Using Lemma 5.4, Proposition 3.20 and (3.83) we see that

(5.27)

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

upot ` uext `
ÿ

νPt1,...,Nuztκu

γν∇K
pψν

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď C

˜

1 ` |ppκ| `
ÿ

ν‰κ

ε2ν |ppν |

¸

on BSκ.

Considering that Kκ,j “ Opε
δj3
κ q and that we integrate over BSκ, using the energy estimates, we deduce

that this term can be bounded by Cε
δj3
κ p1 ` |ppκ|q.

Estimate of T6. Using (5.27), the energy estimates, ∇K
pψεκ “ Op1{εκq on BSκ and again that BSκ is of

size Opεκq, we see that this term is also estimated by Cε
δj3
κ p1 ` |ppκ|q.

Estimate of T7. We use the decomposition (5.3) of uε, the compactness of the support of ωε in Fpqq due
to pε,q, ωq P Qε0

δ , the decay of the Kirchhoff potentials (3.62), the energy estimates, (3.83) and (5.5) to

conclude that this term is of order Opε
1`δj3
κ q.

Conclusion. Gathering what precedes, recalling (2.13), we have established Proposition 5.1.

5.3. Proof of the acceleration estimates. — We now prove Corollary 5.2.

Proof of Corollary 5.2. — We define the “homogeneous” inertia matrix M˝ as the total inertia matrix

M where we divide each pκ, jq-th row and each pκ, jq-th column by ε
δj3
κ . Then, by Proposition 5.1, we

obtain that
ˇ

ˇ

ˇ

`

M˝pppεq1
˘

κ,j

ˇ

ˇ

ˇ
ď C p1 ` |ppε|q .

We now introduce the matrix M˚ as the total homogeneous inertia matrix M˝ where each pκ, jq-th

column is divided by ε
minp2,ακqδκPPpiiiq

κ , where we recall that ακ was introduced in (1.12). Calling qp the

vector with pκ, jq-th coordinate ε
minp2,ακqδκPPpiiiq

κ ppκ,j , we hence have

M˝pppεq1 “ M˚
qp1.

Hence to end the proof of Proposition 5.1, it remains to prove that pM˚q´1 is bounded independently
of ε at least for small ε. Now gathering the rows and columns of M˚ according to families (i), (ii) and
(iii), we have a block matrix:

M˚ “

¨

˝

Apiqpiq Apiqpiiq Apiqpiiiq

Apiiqpiq Apiiqpiiq Apiiqpiiiq

Apiiiqpiq Apiiiqpiiq Apiiiqpiiiq

˛

‚.

Using Corollary 3.23 we see that the entries of the added mass matrix Ma that correspond to different
solids satisfy:

(5.28) pMaqλ,ℓ,µ,m “ Opε2`δℓ3
λ ε2`δm3

µ q for λ ‰ µ, ℓ,m “ 1, 2, 3.

Moreover, using Corollary 3.23 and Remark 2.1, we see that for λ P Ppiiiq and ℓ,m P t1, 2, 3u,

Ma,λ,ℓ,λ,m “ ε2`δ3ℓ`δ3m
λ

xM1
a,λ,ℓ,m ` Opε4`δ3ℓ`δ3m

λ q,

where xM1
a,λ is a fixed symmetric positive-definite matrix.

Relying on the genuine mass and (1.10)-(1.11) for the first two families, and either on the genuine
mass (when ακ ď 2) or the added mass (when ακ ą 2) and (1.12) for the third family, we deduce that
the diagonal blocks Apiqpiq, Apiiqpiiq and Apiiiqpiiiq are uniformly invertible. Moreover we also see that the
blocks above the diagonal Apiqpiiq, Apiqpiiiq and Apiiqpiiiq remain bounded. Hence by Cramer’s rule the
upper triangular block matrix

Mu :“

¨

˝

Apiqpiq Apiqpiiq Apiqpiiiq

0 Apiiqpiiq Apiiqpiiiq

0 0 Apiiiqpiiiq

˛

‚,

whose determinant is detpApiqpiqqdetpApiiqpiiqqdetpApiiiqpiiiqq, is uniformly invertible. As can be seen from

Neumann’s series, when }M˚ ´ Mu} ď 1
2}pMuq´1}

for some matrix norm, then M˚ is invertible with
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}pM˚q´1} ď 2}pMuq´1}. Since from (5.28) the blocks under the diagonal Apiiqpiq, Apiiiqpiq and Apiiiqpiiq

converge to zero, we see that M˚ is uniformly invertible for suitably small ε. The result follows.

6. Introduction of the modulations

In this section, we introduce the modulations that will play a central role in the normal forms of
Section 7 and consequently in the modulated energy estimates of Section 8 and in the passage to the
limit of Section 9.

6.1. Decomposition of the fluid velocity focused on a small solid. — In this section, we merely
consider κ in Ps, because only the small solids will actually be concerned with the modulations. To
define the modulation, we first introduce a decomposition of the velocity field in the same spirit as (5.3),
but here more focused on the κ-th solid.

Definition 6.1. — For each κ in Ps, we introduce the following decomposition

(6.1) uε “ upotκ ` γκ∇K
pψκ ` uextκ with upotκ :“

ÿ

iPt1,2,3u

pκ,i∇φκ,i.

We will refer to upotκ as potential part of the decomposition (6.1), γκ∇K
pψκ as its circulation part, and

uextκ as the κ-th exterior field.

When comparing with the decomposition (5.3), we see that

(6.2) uextκ “ uext `
ÿ

ν‰κ

3
ÿ

i“1

pν,i∇φν,i `
ÿ

ν‰κ

γν∇K
pψν .

The κ-th exterior field will play a central role in the definition of the modulation. In (6.1), the first two
vector fields can be thought as “attached” to Sκ (to its velocity and to the constant circulation around
it), while uextκ corresponds to the vector field to which Sκ “is subjected” from the exterior (which includes

the reflections of ∇K
pψκ on BΩ and the other solids).

We first note that, due to (6.1), uextκ satisfies the following div -curl system

(6.3)

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

div uextκ “ 0 in Fpqq,

curluextκ “ ωε in Fpqq,

uextκ ¨ n “ ´γκ∇K
pψκ ¨ n`

ř

ν‰κ

ř3
i“1 pν,i∇φν,i ¨ n on BFpqq,

¿

BSν

uextκ ¨ τ ds “ δν‰κγν for ν “ 1, . . . , N.

Recall that ∇K
pψκ is tangent to BSκ; it follows in particular that uextκ ¨ n “ 0 on BSκ.

We have the following estimate of the κ-th exterior field uextκ .

Lemma 6.2. — Let δ ą 0. There exists ε0 ą 0 and C ą 0 such that for all ε with ε ď ε0, as long as
pε,q, ωq P Qε0

δ :

}uextκ }L8pBSκq ď C.

Proof of Lemma 6.2. — Thanks to Lemma 5.4, we only have to estimate the two sums in the right-hand
side of (6.2). For that purpose, we rely on the fact that that the sums are over ν ‰ κ. Concerning
the Kirchhoff potential parts we can use ∇φν,i “ Opε2`δi3

ν q on BSκ (Proposition 3.20) and the energy
estimates (Proposition 4.2) to deduce that this term is bounded. Concerning the circulation part, due

(3.83) we have ∇K
pψν “ Op1q on BSκ for ν ‰ κ, which also yields a bounded term.
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6.2. Approximation of the κ-th exterior field. — The goal of this paragraph is to show how uextκ

can be approximated on BSκ by a linear combination of four basic vector fields. For this we introduce
the following notations.

We introduce the space K of the 2D affine vector fields with traceless symmetric linear part, and
the subspace Ks of the vector fields of K with zero curl. Recalling (2.7), we observe that for each
κ P t1, . . . , Nu, for any q,

K :“ Span tξκ,1, ξκ,2, ξκ,3, ξκ,4, ξκ,5u and Ks :“ Span tξκ,1, ξκ,2, ξκ,4, ξκ,5u.

Note in particular that the vector field ξκ,3 is excluded from the vector space Ks.
Together with these spaces, we define for each κ P t1, . . . , Nu, the linear operator Kirκ, defined on K,

transforming an affine vector field in the corresponding linear combination of Kirchhoff vector fields; it
is defined by

(6.4) Kirκpξκ,iq “ ∇φκ,i for all i “ 1, 2, 3, 4, 5.

This operator depends implicitly on q and ε. Similarly we introduce

(6.5) yKirκpξκ,iq “ ∇pφκ,i for all i “ 1, 2, 3, 4, 5.

It is a direct consequence of Proposition 3.20 that

(6.6)
ˇ

ˇ

ˇ
Kirκpξκ,iq ´ yKirκpξκ,iq

ˇ

ˇ

ˇ
ď Cε2`δiě3

κ on BSκ.

Let us now describe a vector field Vκ P Ks that generates our approximation of uextκ . Having (6.3) in

mind, we first introduce the solution quk “ qukpq,p, ω, ¨q in qFκpqq (recall that this domain was introduced
in (3.106)) of the following system:

(6.7)

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

div quκ “ 0 in qFκpqq,

curl quκ “ ω in qFκpqq,

quκ ¨ n “ ´γκ∇K
pψκ ¨ n`

ř

ν‰κ

ř3
i“1 pν,i∇φν,i ¨ n on B qFκpqq,

¿

BSνpqq

quκ ¨ τ ds “ γν for ν P t1, . . . , Nuztκu.

We start with the following lemma which estimates quκ regardless of the fact that it comes from a solution
to System (1.2)–(1.7). We recall the notation (2.6) for VδpBSκq.

Lemma 6.3. — Given δ ą 0 there exist constants ε0 and C ą 0 such that as long as pε,q, ωq P Qε0
δ ,

for all κ P Ps, all µ P t1, . . . , Nu and m P t1, 2, 3u, one has:

}quκ}L8pVδpBSκqq ď C

˜

1 ` }ω}8 `
ÿ

ν‰κ

ε2ν |ppν |

¸

and

›

›

›

›

Bquκ
Bqµ,m

›

›

›

›

L8pVδpBSκqq

ď Cεδm3
µ

˜

1 ` }ω}8 `
ÿ

ν‰κ

εν |ppν |

¸

.

Proof of Lemma 6.3. — The proof is roughly the same as for Lemma 5.4 with the exception that we

consider functions of pq, xq rather than pt, xq and that the domain is no longer Fpqq but qFκpqq. This
latter difference actually simplifies the proof because it avoids the singularity in the neighborhood of

Sκ. We call φ­κ
ν,i the various Kirchhoff potentials in qFκpqq, ν P t1, . . . , Nuztκu, i P t1, 2, 3u, K ­κ the

Biot-Savart operator in qFκpqq, and ψ ­κ
ν , for ν P t1, . . . , Nuztκu, the various circulation stream functions

in qFκpqq. We recall that for ν “ κ, ψr, ­κκ was defined in (3.107). Correspondingly we see from (6.7) and
(3.107) that quκ can be decomposed as follows:

(6.8) quκ “
ÿ

ν‰κ

pν∇φ­κ
ν `

ÿ

ν‰κ

γν∇Kψ ­κ
ν `K ­κrωs ` γκ∇Kψr, ­κκ in qFκpqq.

We observe that the statements of Section 3 that were written in a general fluid domain F are valid in

particular in the domain qFκpqq. This has the following consequences:

– The estimates of Propositions 3.20 and 3.26 are valid for the Kirchhoff potentials φ ­κ
ν ,
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– Decomposing the circulation stream functions ψ ­κ
ν , for ν P t1, . . . , Nuztκu, as in (3.86) by introducing

the potential ψ ­κ,r
ν so that

(6.9) ψ ­κ
ν “ pψν ` ψ ­κ,r

ν in qFκpqq,

the function ψ ­κ,r
ν satisfies the estimates of Lemmas 3.28 and 3.31,

– The estimates of Lemmas 3.33 and 3.35 are valid for the Biot-Savart operator K ­κ in qFκpqq.

Finally we recall that the particular term ∇Kψr, ­κκ was studied in Lemma 3.32.
Now we proceed as in Lemma 5.4. Concerning the bound on }quκ}L8pVδpBSκqq, we treat the various

terms in the right-hand side of (6.8) as follows:

– the terms pν∇φ­κ
ν are of order ε2νppν in VδpBSκq by Proposition 3.20,

– the terms ∇Kψ ­κ
ν are bounded thanks to Lemma 3.28 and the fact that VδpBSκq is a distance Op1q

from Sν ,
– the term K ­κrωs is bounded thanks to Lemma 3.33,
– the term ∇Kψr, ­κκ is bounded thanks to Lemma 3.32.

Concerning the bound on the shape derivative Bqµ,m
quκ, we proceed as follows, for µ ‰ κ:

– the terms pν∇Bqµ,m
φ ­κ
ν are estimated in VδpBSκq by (3.76) in Proposition 3.26,

– for the terms ∇KBqµ,m
ψ ­κ
ν , ν ‰ κ, we use the decomposition (6.9). For Bqµ,m

∇K
pψν (which vanishes

unless µ “ ν), we use (3.104), (3.83), (3.84) and the fact that VδpBSκq is a distance Op1q from Sν .
For Bqµ,m

∇Kψ ­κ,r
ν we use Lemma 3.31 (that is valid in qFκ) and again the fact that VδpBSκq is a

distance Op1q from B qFκ,
– the term Bqµ,mK

­κrωs is estimated thanks to Lemma 3.35, using again the fact that VδpBSκq is a

distance Op1q from B qFκ,
– the term Bqµ,m

∇Kψr, ­κκ is bounded by Cεδm3
µ in VδpBSκq thanks to Lemma 3.32.

Finally, when µ “ κ, only the last term in (6.8) actually depends on qκ. This dependence —despite the

fact that quκ is defined in qFκ is due to the boundary conditions in (3.107). The derivative of this term
with respect to qκ,m is again estimated by Cεδm3

µ in VδpBSκq thanks to Lemma 3.32.
This concludes the proof of Lemma 6.3.

We remark that outside of the support of ω, ∇quκ is a traceless 2 ˆ 2 symmetric matrix; hence it is of
the form

ˆ

´a b
b a

˙

.

When pε,q, ωq P Qδ, hκ is outside of the support of ω for each κ P Ps; consequently we can set
pVκ,jqj“1,2,4,5 as follows

(6.10)

ˆ

Vκ,1
Vκ,2

˙

:“ quκphκq and

ˆ

´Vκ,4 Vκ,5
Vκ,5 Vκ,4

˙

:“ ∇xquκphκq,

where to lighten the notation we omitted the dependence on q,p, and ω. Correspondingly we set

Vκ :“
ÿ

iPt1,2,4,5u

Vκ,i ξκ,i “ Vκ “ quκpq, hκq ` px´ hκq ¨ ∇xquκpq, hκq.(6.11)

We are now in position to state our approximation result.

Proposition 6.4. — Let δ ą 0. There exists ε0 ą 0 such that for each κ P Ps and for ε ă ε0, the
following holds. Consider the vector field uextκ introduced in the decomposition (6.1) of the solution uε of
System (1.2)–(1.7) and Vκ defined in (6.11). Then Vκ belongs to C1pr0, T s;Ksq and there exists a family

(parameterized by ε) of functions urκ in C1pr0, T s;C8pFpqεqqq such that, as long as pε,q, ωq P Qδ,

(6.12) uextκ “ pId ´ KirκqVκ ` ε2κu
r
κ in F ,

and the following estimates are satisfied for some C ą 0 independent of ε:

}Vκ}C0pr0,T sq ` }urκ}C0pr0,T s;C0pBSκqq ď C,(6.13)

}V 1
κ}C0pr0,T sq ` εκ}Btu

r
κ}C0pr0,T s;C0pBSκqq ď C p1 ` |ppεptq|q .(6.14)
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Proof of Proposition 6.4. — We proceed in four steps.

Step 1. We start with the estimates on Vκ. We denote

quκpt, xq :“ quκpqεptq,pεptq, ωptq, xq.

An estimate of quκ in L8pVδpBSκqq is obtained directly from Lemma 6.3 and energy estimates. By the
support of ω, this yields the higher-order estimate

(6.15) }quκ}
Ck, 1

2 pV3δ{4pBSκqq
ď C.

Concerning the time-derivative of quκ, from (6.8), we have

Btquκpt, xq “
ÿ

ν‰κ

p1
ν∇φ­κ

ν `K ­κrBtωs `
ÿ

µPt1,...,Nu

mPt1,2,3u

pµ,m
Bquκ

Bqµ,m
.

To estimate the first term, we use the acceleration estimates (5.2): since the contribution of p1
ν is through

p1
ν∇φ­κ

ν , due to (3.62), it is of order Opε2νpp
1
νq in VδpBSκq and consequently bounded. The term K ­κrBtωs

is shown to be bounded in LppFq exactly as in (5.9) and (5.11). Due to the support of ω, it is hence
bounded in L8pV3δ{4pBSκqq. Finally, the last term is of order Opppνq thanks to Lemma 6.3 and energy
estimates (4.2). This proves that Btquκ is bounded in V3δ{4pBSκq, so that by interior elliptic regularity:

(6.16) }Btquκ}
Ck, 1

2 pVδ{2pBSκqq
ď Cp1 ` |pp|q.

The bounds on Vκ in (6.13)-(6.14) follow, using (6.10), (6.15) and (6.16). It remains to prove the bounds
(6.13)-(6.14) on urκ.

Step 2. Let us now relate the function urκ defined by (6.12) to quκ. First, we use (6.3), (6.7) and the
support of ω to infer that uextκ ´ quκ satisfies

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

div puextκ ´ quκq “ 0 in Fpqq,

curlpuextκ ´ quκq “ 0 in Fpqq,

puextκ ´ quκq ¨ n “ 0 on BFpqqzBSκ,
puextκ ´ quκq ¨ n “ ´quκ ¨ n on BSκ,
¿

BSν

puextκ ´ quκq ¨ τ ds “ 0 for ν “ 1, . . . , N.

Recalling the notation (3.56), this gives that

(6.17) uextκ ´ quκ “ ´∇fNκ rquκ|BSκ
¨ ns,

Then we use a Taylor expansion of quκ in the neighborhood of Sκ. Using local elliptic regularity estimates
on quκ (which is harmonic in the δ-neighborhood of Sκ), we may estimate the second derivatives of quκ in
L8 in some neighborhood of Sκ by its L8 norm in a larger neighborhood and hence by C}quκ}8. Set

Rκpq, xq :“ quκpq, xq ´ Vκ,

where we omit temporarily the dependence of quκ on p and ω to lighten the notations. Then, recalling
(6.11), we observe that, in the δ{2-neighborhood of Sκ,
(6.18) |Rκpq, xq| ď C}quκ}8|x´ hκ|2,

Recalling (3.56) and (6.4) we observe that

(6.19) KirκVκ “ ∇fNκ rVκ ¨ ns.

Hence by (6.17), (6.18) and (6.19) we arrive at (6.12) with

(6.20) urκpt, xq :“ ε´2
κ

␣

Rκpqptq, xq ´ ∇fNκ
“

Rκpqptq, xq|BSκ
¨ n

‰(

.

Step 3. We now turn to the bound of urκ in (6.13). We first notice that, due to (6.18), in the εκ-
neighborhood of Sκ,
(6.21) }Rκpq, ¨q}L8pVεκ pBSκqq ď Cε2κ.
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Since Rκpq, xq is harmonic in x in a neighborhood of Sκ, using a scaling argument and local elliptic
estimates, we also see that

(6.22) ε
k` 1

2
κ

ˇ

ˇRκpq, ¨q
ˇ

ˇ

Ck, 1
2 pBSκq

ď Cε2κ.

Then we apply Lemma 3.17 and Propositions 3.4 and 3.9, taking into account that the normal n satisfies

ε
k` 1

2
κ |n|

Ck, 1
2 pBSκq

ď C. We obtain

(6.23)
›

›∇fNκ
“

Rκpq, ¨q|BSκ
¨ n

‰
›

›

L8pBSκq
` ε

k` 1
2

κ

ˇ

ˇ∇fNκ
“

Rκpq, ¨q|BSκ
¨ n

‰
ˇ

ˇ

Ck, 1
2 pBSκq

ď Cε2κ.

In particular we see that urκ is bounded on BSκ and satisfies (6.13).

Step 4. We finally estimate Btu
r
κ. To that purpose we introduce the stream function qηκ of quκ, so that

quκ “ ∇K
qηκ and we define

αRκ “ αRκ pq, xq :“ qηκ ´
ÿ

iPt1,2,4,5u

Vκ,iJκ,i,

with Jκ,i defined in (3.72). By (3.73), Lemma 3.17, (6.11) and (6.18) we have

∇fNκ
“

Rκpq, ¨q|BSκ
¨ n

‰

“ ∇Kfκ
“

αRκ
‰

.

Hence (6.20) translates into:

urκ “ ε´2
κ

␣

Rκpqptq, ¨q ´ ∇Kfκ
“

αRκ
‰(

.

Thus

(6.24) Btu
r
κpt, xq :“ ε´2

κ

#

BtRκpt, xq ´ ∇Kfκ
“

Btaκpt, xqs ´
ÿ

µPt1,...,Nu

mPt1,2,3u

pµ,m
B∇Kfκ

“

aκpt, ¨q|BSκ

‰

Bqµ,m

+

,

where

Rκpt, xq :“ Rκpqεptq,pεptq, ωptq, xq and aκpt, xq :“ αRκ pqεptq,pεptq, ωptq, xq.

Relying on (6.11) and (6.18), a computation gives

BtRκpt, xq “
Bquκ
Bt

pt, xq ´
Bquκ
Bt

pt, hκq ´ px´ hκq ¨ ∇Bquκ
Bt

pt, hκq ´ ∇2
xquκpt, hκq ¨ h1

κ b px´ hκq.

With (6.15) and (6.16) we deduce

(6.25) }BtRκ}L8pVεκ pBSκqq ď Cεκp1 ` |pp|q.

Since Rκpq, ¨q “ ∇KαRκ , it follows, using again interior elliptic regularity, that we may estimate the
second term in (6.24) as follows:

(6.26) }Btaκpt, ¨q ´ Btaκpt, hκq}L8pSκq ` εk` 1
2 |Btaκpt, ¨q|

Ck, 1
2 pSκq

ď Cε2κp1 ` |pp|q.

With Propositions 3.9 and 3.4, this gives
›

›∇fκ
“

Btaκpt, ¨q
‰
›

›

L8pBSκq
ď Cεκp1 ` |pp|q.

Concerning the third term in (6.24), we use Corollary 3.15, where here the function aκpt, ¨q is fixed. We
find

Bfκ
“

aκpt, ¨q
‰

Bqµ,m
“
`

∇aRκ ´ ∇fκ
“

aRκ
‰˘

¨ nKµ,m ` c1
λ on BSλ and

Bfκ
“

aκpt, ¨q
‰

Bqµ,m
“ 0 on BΩ.

With (6.21)-(6.22)-(6.23) and Propositions 3.4 and 3.9, we conclude that
›

›

›

›

›

∇
Bfκ

“

aκpt, ¨q
‰

Bqµ,m

›

›

›

›

›

L8pBSκq

ď Cεκε
δm3
µ .

Injecting in (6.24) we find the last estimate of (6.14), which concludes the proof of Proposition 6.4.
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6.3. Definition of the modulations. — We conclude this section by introducing the first-order mod-
ulations ακ,i and the second-order modulations βκ,i, for κ P Ps and i “ 1, 2. We set

(6.27) for κ P Ps, ακ,i :“ Vκ,i for i “ 1, 2, and

ˆ

βκ,1
βκ,2

˙

:“

ˆ

´Vκ,4 Vκ,5
Vκ,5 Vκ,4

˙

ζεκpqκq.

We recall that ζεκpqκq is defined in (2.19). We notice in passing that due to Proposition 6.4 and the scale
relation in (2.19), the modulations can be estimated as follows:

(6.28) |ακ,i| ď C and |βκ,i| ď Cεκ.

The first-order modulations will play a central role in the normal forms of Section 7 and hence in the
modulated energy estimates of Section 8, but also in the passage to the limit in Section 9. The second-
order modulations βκ,1 and βκ,2 disappear in the limit, but play an important role in the normal forms,
in Subsection 7.5 (see Lemma 7.14).

7. Individual normal forms

In this section, we present normal forms for the dynamics of small solids. It will be useful for both the
modulated energy estimates (for solids of family piiiq) and the passage to the limit (for solids of family
piiq and piiiq).

7.1. Statement of the normal form. — The following statement is crucial in our analysis. To
lighten its formulation, we make use of several concepts which are defined just after.

Proposition 7.1. — Let δ ą 0. There exists ε0 ą 0 such that for ε ď ε0, the following holds. Consider
the corresponding solutions puε, hε, ϑεq of the system, for each κ P Ps the exterior field uextκ defined by
(6.1), and Vκ defined by (6.10) together with its coordinates pVκ,iqiPt1,2,4,5u in the decomposition (6.11).
Introduce the modulated variable p “ pp1, . . . , pN q as follows: for i P t1, 2, 3u

(7.1) pκ,i “ pκ,i for κ P Ppiq, pκ,i “ pκ,i ´ δiPt1,2upακ,i ` βκ,iq for κ P Ps,

with ακ,i and βκ,i given by (6.27), and the time-dependent vector field Bκ “ pBκ,jqj“1,2,3 given by

(7.2) Bκ,j :“ ´γκ

3
ÿ

k“1

pκ,k

ż

BSκ

Bn pψκ ξ
K
κ,k ¨ ξκ,j ds.

Then as long as pε,q, ωq P Qε0
δ , for each κ P Ps, one has

(7.3) Mg,κp
1
κ ` Ma,κp

1
κ `

1

2
M1

a,κpκ “ Aκptq `Bκptq ` Cκptq `Dκptq,

where the term Aκ is weakly nonlinear with respect to κ P Ps in the sense of Definition 7.4, the term
Cκ is gyroscopic of lower order with respect to κ P Ps, in the sense of Definition 7.2 and the term Dκ is
weakly gyroscopic with respect to κ P Ps in the sense of Definition 7.3.

Several clarifications are in order to complete the formulation of Proposition 7.1. First, we recall the
notations (2.11) and (2.12) for the matrices Mg,κ and Ma,κ. Let us also highlight that the vector field
Bκ defined by (7.2) and the modulated variable pκ defined by (7.1) satisfy the orthogonality condition:

(7.4) Bκ ¨ pκ “ 0,

since

Bκ,j ¨ pκ :“ ´γκ
ÿ

1ďk,jď3

pκ,kpκ,j

ż

BSκ

Bn pψκ ξ
K
κ,k ¨ ξκ,j ds,

and, for 1 ď k, j ď 3, ξK
κ,k ¨ ξκ,j “ ´ξK

κ,j ¨ ξκ,k. Because of this property, and of the respective sizes with

respect to εκ, we refer to the term Bκ as the main gyroscopic term in the right-hand side of (7.3). In
the statement above we also refer to two associated notions which are respectively used for the term Cκ
and Dκ, and defined in the two following definitions below.
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Definition 7.2. — Under the same assumptions as Proposition 7.1, we say that a time-dependent three
components vector field C is gyroscopic of lower order with respect to κ P Ps, if it satisfies for all times
t,

(7.5) Cptq ¨ pκptq “ 0,

and moreover if there exists K ą 0 independent of ε, such that, for any j P t1, 2, 3u, its component Cj
satisfies for all times t,

(7.6) |Cjptq| ď Kε1`δj3
κ

`

1 ` |ppptq|2
˘

.

Definition 7.3. — Under the same assumptions as Proposition 7.1, we say that a time-dependent
three components vector field D is weakly gyroscopic with respect to κ P Ps if it satisfies for some K ą 0
independent of ε, for all times t,

(7.7)

ˇ

ˇ

ˇ

ˇ

ż t

0

Dpτq ¨ pκpτq dτ

ˇ

ˇ

ˇ

ˇ

ď Kε2κ

ˆ

1 ` t`

ż t

0

|ppκpτq|2 dτ

˙

,

and moreover for some K ą 0 independent of ε, for any j P t1, 2, 3u, its component Dj satisfies for all
times t,

(7.8) |Djptq| ď Kε1`δj3
κ .

Let us stress the distinction between the modulated variable pκ (for which pκ,3 “ ϑ1
κ) on the left-hand

side of (7.7) and the scaled variable ppκ (with ppκ,3 “ εκϑ
1
κ) on the right-hand side.

Finally we give the definition of a weakly nonlinear vector field to which we refer regarding the term
Aκ in Proposition 7.1.

Definition 7.4. — Under the same assumptions as Proposition 7.1, we say that a time-dependent three
components vector field A is weakly nonlinear with respect to κ P Ps, in the sense that for some K ą 0
independent of ε, for j P t1, 2, 3u, its component Aj satisfies for all times t,

(7.9) |Ajptq| ď Kε2`δj3
κ p1 ` |ppptq|q .

The terminology above regarding the terms Aκ, Bκ, Cκ and Dκ was already used in the series of
papers [7, 8, 9]; in particular the gyroscopic term Bκ is thought as a generalization of the classical Kutta-
Joukowski force in the lift theory in aeronautics, while the notion of weakly nonlinear term originated
from BKW theory in geometric optics.

The rest of this section is devoted to the proof of Proposition 7.1.

7.2. Starting point of the proof: rewriting the solid equation with various terms. — Given
δ ą 0, we first let ε0 ą 0 small enough so that all the statements of Sections 3 to 6 apply. To prove the
normal form (7.3), we will use a variant of the decomposition (6.1), which is better adapted to modulated
variables.

Definition 7.5. — For each κ P Ps, we introduce the following decomposition

(7.10) uε “ upotκ ` γκ∇K
pψκ ` uextκ with upotκ :“

ÿ

jPt1,2,3u

pκ,j∇φκ,j .

In particular, comparing the decompositions (6.1) and (7.10) we see that

(7.11) uextκ “ uextκ `

2
ÿ

j“1

pακ,j ` βκ,jq∇φκ,j .

Proof of Proposition 7.1. — We first observe that, by the first equation of (1.2) and by (5.14), the fluid
pressure πε satisfies:

(7.12) ∇πε “ ´Btu
ε ´ ∇

ˆ

|uε|2

2

˙

´ ωεuεK.

Then by (1.7), (2.11), (2.8) and an integration by parts we obtain that, for κ P Ps and j P t1, 2, 3u,

(7.13) pMgp
1qκ,j “ ´Iκ,j ´ Jκ,j ´ Lκ,j ,
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where

(7.14) Iκ,j :“

ż

Fpqq

Btu
ε ¨ ∇φκ,j dx, Jκ,j :“

ż

Fpqq

∇
ˆ

|uε|2

2

˙

¨ ∇φκ,j dx,

and Lκ,j :“

ż

Fpqq

ωεuεK ¨ ∇φκ,j dx.

By (7.10)

Iκ,j “ I1κ,j ` I2κ,j ` I3κ,j ,(7.15)

where

I1κ,j :“ γκ

ż

Fpqq

Bt∇K
pψκ ¨ ∇φκ,j dx,(7.16)

I2κ,j :“

ż

Fpqq

Btu
pot
κ ¨ ∇φκ,j dx and(7.17)

I3κ,j :“

ż

Fpqq

Btu
ext
κ ¨ ∇φκ,j dx.(7.18)

Concerning Jκ,j , we integrate by parts to obtain

(7.19) Jκ,j “

ż

BSκpqq

|uε|2

2
Kκ,j ds.

Given two vector fields a and b on BSκ we define

Qκ,jpa, bq :“

ż

BSκpqq

a ¨ bKκ,j dx and Qκ,jpaq :“ Qκ,jpa, aq.(7.20)

By (7.10), we obtain, for κ P Ps and j P t1, 2, 3u,

(7.21) Jκ,j “ J1
κ,j ` J2

κ,j ` J3
κ,j ` J4

κ,j ` J5
κ,j ` J6

κ,j ,

where

J1
κ,j :“

1

2
Qκ,jpγκ∇K

pψκq,(7.22)

J2
κ,j :“ γκQκ,jp∇K

pψκ, u
pot
κ ` uextκ ´ vS,κq,(7.23)

J3
κ,j :“ γκQκ,jp∇K

pψκ, vS,κq,(7.24)

J4
κ,j :“

1

2
Qκ,jpu

pot
κ q,(7.25)

J5
κ,j :“

1

2
Qκ,jpu

ext
κ q,(7.26)

J6
κ,j :“ Qκ,jpu

pot
κ , uextκ q,(7.27)

where we recall that vS,κ is the κ-th solid vector field, see (1.6). In order to reach (7.3), the rest of
the proof consists in combining (7.13), (7.15) and (7.21), and regrouping and treating the various terms
above, for κ P Ps and j P t1, 2, 3u, in the following way:
(7.28)
´pMgp

1qκ,j “ Lκ,j
loomoon

Lemma 7.6

` J1
κ,j

loomoon

Lemma 7.7

` I1κ,j ` J3
κ,j

looooomooooon

Lemma 7.8

` J5
κ,j

loomoon

Lemma 7.9

` I3κ,j
loomoon

Lemma 7.10

` J2
κ,j

loomoon

Lemma 7.11

` I2κ,j ` J4
κ,j ` J6

κ,j
looooooooomooooooooon

Lemma 7.15

.

For the rest of this section we fix κ P Ps and j P t1, 2, 3u.

7.3. Treatment of the simplest terms. — We start with the term Lκ,j defined in (7.14).

Lemma 7.6. — The term Lκ,j is weakly nonlinear with respect to κ P Ps in the sense of Definition
7.4.

Proof of Lemma 7.6. — This is an immediate consequence of (5.10) and Proposition 3.20, since, due to
pε,q, ωq P Qε0

δ , the support of the vorticity is at distance more than δ from BSκ.

For the term J1
κ,j defined in (7.22), (5.26) has established the following result.
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Lemma 7.7. — One has J1
κ,j “ 0.

Next we combine the I1κ,j defined in (7.16) and the term J3
κ,j defined in (7.24).

Lemma 7.8. — One has I1κ,j ` J3
κ,j “ 0.

Proof of Lemma 7.8. — We have

I1κ,j ` J3
κ,j “ γκ

ż

Fpqq

Bt∇K
pψκ ¨ ∇φκ,j dx` γκ

ż

Sκpqq

vS,κ ¨ ∇K
pψκKκ,j dx

“ γκ

ż

Fpqq

”

Bt∇K
pψκ ` ∇

´

vS,κ ¨ ∇K
pψκ

¯ ı

¨ ∇φκ,j dx.

We conclude with (5.23).

For the term J5
κ,j defined in (7.26), we have the following result.

Lemma 7.9. — The expression J5
κ,j is weakly nonlinear with respect to κ P Ps in the sense of Definition

7.4.

Proof of Lemma 7.9. — By Proposition 6.4 and (7.11),

uextκ “ pId ´ KirκqVκ ` ε2κu
r
κ `

2
ÿ

k“1

pακ,k ` βκ,kq∇φκ,k in F .

Using (6.27), we obtain

(7.29) uextκ “ Vκ `

2
ÿ

k“1

βκ,k∇φκ,k ´

5
ÿ

k“4

Vκ,k∇φκ,k ` ε2κu
r
κ in F .

Using (6.28), (7.20), }ξκ,k}L8pBSκq “ Opεκq for k “ 4, 5, |BSκ| “ Opεκq and (3.62) we see that

J5
κ,j “ Qκ,jpVκq ` Opε2`δj3

κ q.

Now integrating by parts inside Sκ, we obtain

Qκ,jpVκq “

ż

Sκ

div p|Vκ|2ξκ,jq dx “ Opε2`δj3
κ q,

which concludes the proof of Lemma 7.9.

7.4. Exterior acceleration term. — Here we deal with the exterior acceleration term I3κ,j defined
in (7.18).

Lemma 7.10. — The term I3κ,j is weakly nonlinear with respect to κ P Ps in the sense of Definition
7.4.

Proof of Lemma 7.10. — In this proof, by convenience, we will again take the convention of Remark 3.21
for the Kirchhoff potentials. We start by integrating by parts and subdivide the boundary integral:

(7.30) I3κ,j “

ż

BΩ

Btu
ext
κ ¨ nφκ,j ds`

ż

BSκ

Btu
ext
κ ¨ nφκ,j ds.`

ÿ

ν‰κ

ż

BSν

Btu
ext
κ ¨ nφκ,j ds.

7.4.0.1. Step 1. — We first consider the second term in the right-hand side of (7.30). From (7.29), we
see that

(7.31) Btu
ext
κ “ V 1

κ `

2
ÿ

k“1

β1
κ,k∇φκ,k ´

5
ÿ

k“4

V 1
κ,k∇φκ,k `

2
ÿ

k“1

ÿ

µPt1,...,Nu

mPt1,2,3u

βκ,kpµ,m
B∇φκ,k
Bqµ,m

´

5
ÿ

k“4

ÿ

µPt1,...,Nu

mPt1,2,3u

Vκ,kpµ,m
B∇φκ,k
Bqµ,m

` ε2κBtu
r
κ on BSκ.
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From Proposition 6.4 and Proposition 3.20, we immediately see that the first and third terms in the
right-hand side of (7.31) are of order Op1 ` |pp|q. Moreover, from (2.19) and (6.27), we see that

(7.32)

ˆ

βκ,1
βκ,2

˙1

“

ˆ

´V 1
κ,4 V 1

κ,5

V 1
κ,5 V 1

κ,4

˙

ζεκpqκq ` ϑ1
κ

ˆ

´Vκ,4 Vκ,5
Vκ,5 Vκ,4

˙

pζεκpqκqqK.

Using Proposition 6.4 and (2.19) again, we see that this term is also of order Op1 ` |pp|q. Concerning
the last two terms in (7.31), we use Proposition 3.26, (6.13) and (6.28) to deduce that they are of order
Op1 ` |pp|q as well. We conclude that

}Btu
ext
κ }L8pBSκq ď Cp1 ` |pp|q.

Using (3.64) and that |BSκ| “ Opεκq we deduce that

(7.33)

ˇ

ˇ

ˇ

ˇ

ż

BSκ

Btu
ext
κ ¨ nφκ,j ds

ˇ

ˇ

ˇ

ˇ

ď Cε2`δj3
κ p1 ` |pp|q.

7.4.0.2. Step 2. — We now consider the integral over BΩ that is the first term in the right-hand side of

(7.30). Recalling (6.3) and (7.11) we observe that uextκ ¨ n “ ´γκ∇K
pψκ ¨ n on BΩ. Thus, on BΩ,

Btu
ext
κ ¨ n “ ´γκpBt∇K

pψκq ¨ n “ γκ∇
´

vS,κ ¨ ∇K
pψκ

¯

¨ n,

thanks to (5.23). Therefore with (3.84), we deduce Btu
ext
κ ¨ n “ Op|pp|q. On the other hand, by (3.64),

φκ,j “ Opε
2`δj3
κ q on BΩ and therefore

(7.34)

ˇ

ˇ

ˇ

ˇ

ż

BΩ

Btu
ext
κ ¨ nφκ,j ds

ˇ

ˇ

ˇ

ˇ

ď Cε2`δj3
κ p1 ` |pp|q.

7.4.0.3. Step 3. — Finally we address the integrals in the right-hand side of (7.30) which are over BSν
for ν ‰ κ. By (6.2) and (7.11),

uextκ “ uext `
ÿ

λ‰κ

3
ÿ

i“1

pλ,i∇φλ,i `
ÿ

λ‰κ

γλ∇K
pψλ `

2
ÿ

i“1

pακ,i ` βκ,iq∇φκ,i,

so that

(7.35)

ż

BSν

Btu
ext
κ ¨ nφκ,j ds “ Eν,1κ,j ` . . .` Eν,6κ,j ,

where

Eν,1κ,j :“

ż

BSν

Btu
ext ¨ nφκ,j ds,

Eν,2κ,j :“
ÿ

λ‰κ

3
ÿ

i“1

p1
λ,i

ż

BSν

Bnφλ,i φκ,j ds,

Eν,3κ,j :“
ÿ

µPt1,...,Nu

mPt1,2,3u

ÿ

λ‰κ

3
ÿ

i“1

pλ,ipµ,m

ż

BSν

B∇φλ,i
Bqµ,m

¨ nφκ,j ds,

Eν,4κ,j :“
ÿ

λ‰κ

γλ

ż

BSν

Bt∇K
pψλ ¨ nφκ,j ds,

Eν,5κ,j :“
ÿ

µPt1,...,Nu

mPt1,2,3u

2
ÿ

i“1

pακ,i ` βκ,iqpµ,m

ż

BSν

B∇φκ,i
Bqµ,m

¨ nφκ,j ds,

Eν,6κ,j :“
2
ÿ

i“1

pακ,i ` βκ,iq
1

ż

BSν

∇φκ,i ¨ nφκ,j ds.

Estimate of Eν,1κ,j . By (5.6) and (5.7), }Btu
ext}L8pBSνq “ Opε´1

ν p1 ` |ppε|qq and by (3.64), with ν ‰ κ,

}φκ,j}L8pBSνq “ Opε
2`δj3
κ q so that, by integration on BSν ,

(7.36) Eν,1κ,j “ Opε2`δj3
κ p1 ` |ppε|qq.
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Estimate of Eν,2κ,j . First by definition of the Kirchhoff potentials, see (2.7) and (2.8),

(7.37) Eν,2κ,j “

3
ÿ

i“1

p1
ν,i

ż

BSν

φκ,jKν,i ds.

By Corollary 5.2, |pp 1
ν | “ Opε

´2δνPPpiiiq

ν p1` |ppε|qq, and by (3.67) and (3.69), the integral in the right-hand

side of (7.37) is Opε
2`δ3j
κ ε2`δ3i

ν q, so that, since εδi3ν pν,i “ ppν,i,

(7.38) Eν,2κ,j “ Opε2`δ3j
κ p1 ` |ppε|qq.

Estimate of Eν,3κ,j . By Lemma 3.25,

Eν,3κ,j “

3
ÿ

m“1

ÿ

λ‰κ

3
ÿ

i“1

pλ,ipν,m

ż

BSν

B

Bτ

„ˆ

Bφλ,i
Bτ

´ pξλ,i ¨ τq

˙

pξν,m ¨ nq

ȷ

φκ,j ds

`

2
ÿ

m“1

pν,3pν,m

ż

BSν

φκ,jKν,m ds.(7.39)

By an integration by parts
ż

BSν

B

Bτ

„ˆ

Bφλ,i
Bτ

´ pξλ,i ¨ τq

˙

pξν,m ¨ nq

ȷ

φκ,j ds “ ´

ż

BSν

ˆ

Bφλ,i
Bτ

´ pξλ,i ¨ τq

˙

pξν,m ¨ nq
Bφκ,j

Bτ
ds.

By (3.62),
›

›

›

›

Bφλ,i
Bτ

›

›

›

›

L8pBSνqq

“ Opεδi3λ q and

›

›

›

›

Bφκ,j
Bτ

›

›

›

›

L8pBSνqq

“ Opε2`δj3
κ q.

By integration on BSν , using that εδi3λ pλ,i “ ppλ,i and (4.2), we obtain that the first term of the right-hand

side of (7.39) is Opε
2`δ3j
κ |ppε|q. On the other hand, by (3.67), (3.69) and Remark 3.24, the second integral

in the right-hand side of (7.39) is of order Opε
2`δ3j
κ ε2νq so that by (4.2), we arrive at

(7.40) Eν,3κ,j “ Opε2`δ3j
κ |ppε|q.

Estimate of Eν,4κ,j . We deal with the term Eν,4κ,j by distinguishing two cases:

– First case: λ ‰ ν. By (5.23),
ż

BSν

Bt∇K
pψλ ¨ nφκ,j ds “ ´

ż

BSν

∇
´

vS,λ ¨ ∇K
pψλ

¯

¨ nφκ,j ds.

By (3.84) and the remark below (3.84), we find

(7.41) }∇
´

vS,λ ¨ ∇K
pψλ

¯

¨ n}L8pBFzBSλq “ Op|ppλ|q.

Hence since ν ‰ λ we deduce with (3.64)
ż

BSν

Bt∇K
pψλ ¨ nφκ,j ds “ Opε2`δj3

κ |ppν |q.

– Second case: λ “ ν. Using an integration by parts and (5.23) we find

(7.42)

ż

BSν

Bt∇K
pψλ ¨ nφκ,j ds “

ż

F
Bt∇K

pψλ ¨ ∇φκ,j dx´

ż

BFzBSν

Bt∇K
pψλ ¨ nφκ,j ds

“ ´

ż

F
∇
´

vS,ν ¨ ∇K
pψν

¯

¨ ∇φκ,j dx`

ż

BFzBSν

∇
´

vS,ν ¨ ∇K
pψν

¯

¨ nφκ,j ds.

With another integration by parts, the first term in the right-hand side of (7.42) is transformed
into

´

ż

BSκ

vS,ν ¨ ∇K
pψν Kκ,j ds.
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Proceeding as for (5.25), we see that this term can be estimated by Opε
2`δj3
κ |ppν |q. We decompose

the second term in the right-hand side of (7.42) into
ż

BFzBSν

∇
´

vS,ν ¨ ∇K
pψν

¯

¨ nφκ,j ds “

ż

BFzpBSνYBSκq

∇
´

vS,ν ¨ ∇K
pψν

¯

¨ nφκ,j ds

`

ż

BSκ

∇
´

vS,ν ¨ ∇K
pψν

¯

¨ nφκ,j ds.

We use (7.41) and (3.64) to deduce that the terms in the right-hand side of (7.42) are of order

Opε
2`δj3
κ |ppν |q (using |BSκ| “ Opεκq for the last one).

Gathering the two cases we finally arrive at

(7.43) Eν,4κ,j “ Opε2`δj3
κ |ppν |q.

Estimate of Eν,5κ,j . By Lemma 3.25,

Eν,5κ,j “

3
ÿ

m“1

2
ÿ

i“1

pακ,i ` βκ,iqpν,m

ż

BSν

Bn

ˆ

Bφκ,i
Bqν,m

˙

φκ,j ds.

For such indices, by (3.75),
›

›

›
∇ Bφκ,i

Bqν,m

›

›

›

L8pBSνq
“ Opε2κε

´1`δm3
ν q (recall that ν ‰ κ). Combining with (6.28),

(3.64) and |BSν | “ Opενq, we arrive at

(7.44) Eν,5κ,j “ Opε4`δj3
κ |ppν |q.

Estimate of Eν,6κ,j . Since ν ‰ κ, by definition of the Kirchhoff potentials, see (2.7) and (2.8),

(7.45) Eν,6κ,j “ 0.

7.4.0.4. Step 4. — Gathering (7.35), (7.36), (7.38), (7.40), (7.43), (7.44) and (7.45) we deduce that for
ν ‰ κ,

(7.46)

ˇ

ˇ

ˇ

ˇ

ż

BSν

Btu
ext
κ ¨ nφκ,j ds

ˇ

ˇ

ˇ

ˇ

ď Cε2`δj3
κ p1 ` |pp|q.

Finally combining (7.30), (7.33), (7.34) and (7.46) we conclude the proof of Lemma 7.10.

7.5. Main gyroscopic term. — In this section we study the term J2
κ,j defined in (7.23). We recall

that κ P Ps.

Lemma 7.11. — The term J2
κ,j can be put in the form

J2
κ,j “ Bκ `Aκ `Dκ,

where Bκ “ pBκ,jqj“1,2,3 is the main gyroscopic term given by (7.2), the term Aκ is weakly nonlinear
with respect to κ P Ps in the sense of Definition 7.4 and the term Dκ is weakly gyroscopic with respect
to κ P Ps in the sense of 7.3.

Proof of Lemma 7.11. — We first notice that from (6.1) and (7.10) we have upotκ ` uextκ “ upotκ ` uextκ .
Using (6.12) and upotκ “ KirκpvS,κq, we deduce that on BSκ

upotκ ` uextκ ´ vS,κ “ pId ´ KirκqpVκ ´ vS,κq ` ε2κu
r
κ “ pId ´ yKirκqpVκ ´ vS,κq ` ε2κru

r
κ,

where we recall that yKirκ is defined in (6.5) and where we have set

rurκ :“ urκ ` ε´2
κ

´

yKirκpVκ ´ vS,κq ´ KirκpVκ ´ vS,κq

¯

.

Thus for j P t1, 2, 3u (recalling the notation (7.20)), we have

(7.47) J2
κ,j “ J̃2

κ,j ` ε2κγκQκ,jp∇K
pψκ, ru

r
κq,

where

(7.48) J̃2
κ,j :“ γκQκ,j

´

∇K
pψκ, pId ´ yKirκqpVκ ´ vS,κq

¯

.

Using (6.6), (6.13), }∇K
pψκ}L8pBSκq “ Op1{εκq and |BSκ| “ Opεκq, we see that the last term in (7.47) is

weakly nonlinear with respect to κ P Ps in the sense of Definition 7.4.
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To deal with the term J̃2
κ,j , we first observe that, by (2.2), (6.11), (6.27) and (7.1),

(7.49) Vκ ´ vS,κ “ ´

3
ÿ

k“1

pκ,kξκ,k ´

2
ÿ

k“1

βκ,kξκ,k `

5
ÿ

k“4

Vκ,kξκ,k.

We are therefore led to estimate Qκ,j

´

∇K
pψκ, pId ´ yKirκqξκ,k

¯

, for κ P Ps, j P t1, 2, 3u and k P t1, 2, 4, 5u.

We will rely on the following classical result.

Lemma 7.12. — Let S0 a smooth compact simply connected domain of R2. For any pair of vector fields
u, v in C8pR2zS0;R2q satisfying div u “ div v “ curlu “ curl v “ 0 in R2zS0 and upxq “ Op1{|x|q and
vpxq “ Op1{|x|q as |x| Ñ `8, one has, for any j “ 1, 2, 3,

ż

BS0

pu ¨ vqKjp0, ¨q ds “

ż

BS0

ξjp0, ¨q ¨

´

pu ¨ nqv ` pv ¨ nqu
¯

ds.

We refer to [19, Article 134a. (3) and (7)] for a proof of Lemma 7.12; see also [9, Lemma 4.6]).
Lemma 7.12 has the following consequence.

Lemma 7.13. — For all j “ 1, 2, 3 and k “ 1, 2, 3, 4, 5, we have

(7.50) Qκ,jp∇K
pψκ, ξκ,k ´ ∇pφκ,kq “

ż

BSκ

Bn pψκ ξ
K
κ,k ¨ ξκ,j ds.

Proof of Lemma 7.13. — First, using that the vector field ∇K
pψκ is tangent to BSκ, we split the integral

into two parts

Qκ,jp∇K
pψκ, ξκ,k ´ ∇pφκ,kq “

ż

BSκ

Bn pψκpξκ,k ¨ τqKκ,j ds´

ż

BSκ

∇K
pψκ ¨ ∇pφκ,kKκ,j ds.

Then thanks to Lemma 7.12, we transform the second integral as

´

ż

BSκ

ξκ,j ¨

´

p∇pφκ,k ¨ nq∇K
pψκ

¯

ds.

Finally, since ∇pφκ,k ¨n “ Kκ,k “ ´ξK
κ,k ¨ τ , recalling that τ is the unit clockwise tangent vector field and

that n is the unit normal directed outside Fptq, we observe that

´

ż

BSκ

ξκ,j ¨

´

p∇pφκ,k ¨ nq∇K
pψκ

¯

ds “

ż

BSκ

Bn pψκ pξK
κ,k ¨ τqpξκ,j ¨ τq ds,

and we arrive at (7.50).

Now with (7.49) and Lemma 7.13, we consequently transform (7.48) into

J̃2
κ,j “ Bκ,j ` pJ2

κ,j ,

where we recall that Bκ “ pBκ,jqj“1,2,3 is the main gyroscopic term given by (7.2) and where

pJ2
κ,j :“ ´ γκ

2
ÿ

k“1

βκ,k

ż

BSκ

Bn pψκ ξ
K
κ,k ¨ ξκ,j ds ` γκ

5
ÿ

k“4

Vκ,k

ż

BSκ

Bn pψκ ξ
K
κ,k ¨ ξκ,j ds.

We have the following lemma, which is the main reason for the choice of βκ,1 and βκ,2 in (6.27).

Lemma 7.14. — Define βκ,1 and βκ,2 by (6.27). Then one has the following relation for j “ 1, 2,

(7.51)
2
ÿ

k“1

βκ,k

ż

BSκ

Bn pψκ ξ
K
κ,k ¨ ξκ,j ds “

5
ÿ

k“4

Vκ,k

ż

BSκ

Bn pψκ ξ
K
κ,k ¨ ξκ,j ds.

Proof of Lemma 7.14. — This is a direct consequence of (2.7), (2.18d) and (2.19): for j “ 1, 2 and
k “ 1, 2 one finds

ż

BSκ

Bn pψκ ξ
K
κ,k ¨ ξκ,j ds “

ˆ

0 ´1
1 0

˙

k,j“1,2

,

while for j “ 1, 2 and k “ 4, 5 one has
ż

BSκ

Bn pψκ ξ
K
κ,k ¨ ξκ,j ds “

ˆ

ζκ,2 ζκ,1
ζκ,1 ´ζκ,2

˙

k“4,5
j“1,2

.
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Hence (7.51) is equivalent to βκ,2 “ ζκ,2Vκ,4 ` ζκ,1Vκ,5 and ´βκ,1 “ ζκ,1Vκ,4 ´ ζκ,2Vκ,5, that is, exactly
the second relation of (6.27).

From Lemma 7.14 we readily deduce that pJ2
κ,1 “ pJ2

κ,2 “ 0. Hence it remains only to study

pJ2
κ,3 “ ´γκ

2
ÿ

k“1

βκ,k

ż

BSκ

Bn pψκ ξ
K
κ,k ¨ ξκ,3 ds` γκ

5
ÿ

k“4

Vκ,k

ż

BSκ

Bn pψκ ξ
K
κ,k ¨ ξκ,3 ds “: D1

3 `D2
3.

Let us show that the term pJ2
κ “ p0, 0, D1

3 ` D2
3qT is weakly gyroscopic. First, with (3.81), (6.13) and

(6.28) and }ξκ,k}L8pBSκq “ Opεκq for k “ 4, 5, it is easy to check that it satisfies (7.8). Let us now prove

(7.7) by treating the two terms p0, 0, D1
3qT and p0, 0, D2

3qT separately.

We start with the term p0, 0, D1
3qT . Here (2.19) gives for k “ 1, 2
ż

BSκ

Bn pψκ ξ
K
κ,k ¨ ξκ,3 ds “ ζεκpqκq ¨ ek.

Moreover, due to (6.27) we have

2
ÿ

k“1

βκ,kζ
ε
κpqκq ¨ ek “ ζεκpqκq ¨ ApVκqζεκpqκq where ApVκq :“

ˆ

´Vκ,4 Vκ,5
Vκ,5 Vκ,4

˙

.

Since the matrix ApVκq is a traceless symmetric 2 ˆ 2 matrix, we have Rpϑq˚ApVκq “ ApVκqRpϑq so
that, using again (2.19),

2
ÿ

k“1

βκ,kζ
ε
κpqκq ¨ ek “ ε2κζ

1
κ,0 ¨ ApVκqRp2ϑκqζ1κ,0.

It follows that
ż t

0

pκ,3pτqD1
3pτq dτ “ ´γκε

2
κζ

1
κ,0 ¨

ż t

0

ϑ1
κpτqApVκpτqqRp2ϑκpτqqζ1κ,0 dτ.

By integration by parts we infer
ż t

0

ϑ1
κpτqApVκpτqqRp2ϑκpτqqζ1κ,0 dτ “ ´

1

2

ż t

0

ApV 1
κpτqqRp2ϑκpτq ´

π

2
qζ1κ,0 dτ

`
1

2

”

ApVκpτqqRp2ϑκpτq ´
π

2
qqζ1κ,0

ıt

0
.

Since we can bound the right-hand side by Cp1 ` }Vκ}8 ` t}V 1
κ}8q, the estimate (7.7) for the term

p0, 0, D1
3qT follows from Proposition 6.4.

We now consider the term p0, 0, D2
3qT . In that case, the integrals are given by

ż

BSκ

Bn pψκ ξ
K
κ,4 ¨ ξκ,3 ds “

ż

BSκ

Bn pψκ
“

px2 ´ hκ,2q2 ´ px1 ´ hκ,1q2
‰

ds

and

ż

BSκ

Bn pψκ ξ
K
κ,5 ¨ ξκ,3 ds “ 2

ż

BSκ

Bn pψκ px1 ´ hκ,1qpx2 ´ hκ,2q ds.

We notice that

px´hκqK b px´hκq ` px´hκq b px´hκqK “

ˆ

´2px1 ´ hκ,1qpx2 ´ hκ,2q px1 ´ hκ,1q2 ´ px2 ´ hκ,2q2

px1 ´ hκ,1q2 ´ px2 ´ hκ,2q2 2px1 ´ hκ,1qpx2 ´ hκ,2q,

˙

and consequently

5
ÿ

k“4

Vκ,k

ż

BSκ

Bn pψκ ξ
K
κ,k ¨ ξκ,3 ds

“ e1 ¨

ˆ
ż

BSκ

Bn pψκ
“

px´ hκqK b px´ hκq ` px´ hκq b px´ hκqK
‰

ds

˙ˆ

´Vκ,5
´Vκ,4

˙

.
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Now the matrix between parentheses can be rewritten as

ż

BSκ

Bn pψκ
`

px´ hκqK b px´ hκq ` px´ hκq b px´ hκqK
˘

ds

“ ε2κRpϑκq

«

ż

BSκ,0

Bn pψκ,0
`

xK b x` xb xK
˘

ds

ff

Rpϑκq˚.

Call Z the time-independent matrix between brackets. Since Z is a traceless symmetric 2ˆ 2 matrix, we
have RpϑκqZRpϑκq˚ “ ZRp´2ϑκq, so that

5
ÿ

k“4

Vκ,k

ż

BSκ

Bn pψκ ξ
K
κ,k ¨ ξκ,3 ds “ ´e1 ¨ ZRp´2ϑκq

ˆ

Vκ,5
Vκ,4

˙

.

Now we deduce
ż t

0

pκ,3pτqD2
3pτq dτ “ ´γκε

2
κe1 ¨ Z

ż t

0

ϑ1
κpτqRp´2ϑκq

ˆ

Vκ,5
Vκ,4

˙

dτ,

and we conclude as for the term p0, 0, D1
3qT by using an integration by parts in time and the estimates

of Proposition 6.4.

7.6. Added mass term. — In this section we combine the term I2κ,j defined in (7.17), the term J4
κ,j

defined in (7.25) and the term J6
κ,j defined in (7.27). We recall the notation (2.12) for the added mass

matrix Ma,κ which is time-dependent.

Lemma 7.15. — The term I2κ,j ` J4
κ,j ` J6

κ,j can be put in the form

I2κ,j ` J4
κ,j ` J6

κ,j “ Ma,κp
1
κ `

1

2
M1

a,κpκ `Aκ ` Cκ,

where the term Aκ is weakly nonlinear with respect to κ P Ps in the sense of Definition 7.4 and where
the term Cκ is gyroscopic of lower order with respect to κ P Ps, in the sense of Definition 7.2.

Proof of Lemma 7.15. — We proceed in three steps.

Step 1. Using the definition of upotκ in (7.10), we find, for j P t1, 2, 3u,

I2κ,j “ pMa,κp
1
κqκ,j `

3
ÿ

i“1

ÿ

νPt1,...,Nu

kPt1,2,3u

ż

Fptq

pκ,i pν,k
B∇φκ,i
Bqν,k

¨ ∇φκ,j dx.

On the other hand, by Reynolds’ transport theorem,

pM1
a,κqij “

ÿ

νPt1,...,Nu

kPt1,2,3u

ż

Fptq

pν,k
B∇φκ,i
Bqν,k

¨ ∇φκ,j dx`
ÿ

νPt1,...,Nu

kPt1,2,3u

ż

Fptq

∇φκ,i ¨ pν,k
B∇φκ,j

Bqν,k
dx

`

ż

BFptq

∇φκ,i ¨ ∇φκ,jpupot ¨ nq ds,

so that

ˆ

Ma,κp
1
κ `

1

2
M1

a,κpκ

˙

j

“ I2κ,j`
1

2

3
ÿ

i“1

ÿ

νPt1,...,Nu

kPt1,2,3u

ż

Fptq

pκ,i pν,k

ˆ

∇φκ,i ¨
B∇φκ,j

Bqν,k
´

B∇φκ,i
Bqν,k

¨ ∇φκ,j
˙

dx

`
1

2

3
ÿ

i“1

ż

BFptq

pκ,i∇φκ,i ¨ ∇φκ,jpupot ¨ nq ds.
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We focus on the last term in the right-hand side. The idea is to replace upot ¨ n with upotκ ¨ n, up to an
error term. Adding and subtracting (7.25) in the right-hand side, and using (7.10) we find

ˆ

Ma,κp
1
κ `

1

2
M1

a,κpκ

˙

j

“ I2κ,j ` J4
κ,j

`
1

2

3
ÿ

i“1

ÿ

νPt1,...,Nu

kPt1,2,3u

ż

Fptq

pκ,i pν,k

ˆ

∇φκ,i ¨
B∇φκ,j

Bqν,k
´

B∇φκ,i
Bqν,k

¨ ∇φκ,j
˙

dx

`
1

2

ż

BFptq

upotκ ¨
`

pupotκ ¨ nq∇φκ,j ´ p∇φκ,j ¨ nqupotκ

˘

ds

`
1

2

ż

BFptq

upotκ ¨ ∇φκ,j pupot ´ upotκ q ¨ nds.(7.52)

Call C1
κ,j the expression in the second line of (7.52) and C2

κ,j the expression in the third line of (7.52). It is

clear that C1
κ “ pC1

κ,1, C
1
κ,2, C

1
κ,3qT and C2

κ “ pC2
κ,1, C

2
κ,2, C

2
κ,3qT satisfy the property pκ ¨C1

κ “ pκ ¨C2
κ “ 0.

Using (3.74) and an integration by parts we see that C1
κ satisfies (7.6). Using (7.1), (7.10), (3.62) and

(6.28) we see that independently of ε, we have

(7.53) }upotκ }L8pBSκq ď Cp1 ` |ppκ|q and }upotκ }L8pBSνq ď Cε2κp1 ` |ppκ|q for ν ‰ κ.

With |BSκ| “ Opεκq, we deduce that C2
κ satisfies (7.6). Consequently the terms C1

κ and C2
κ are gyroscopic

of lower order with respect to κ P Ps, in the sense of Definition 7.2.

Step 2. Hence we now focus on the last term in the right-hand side of (7.52). We first consider the
integral away from BSκ:

ż

BFptqzBSκ

upotκ ¨ ∇φκ,j pupot ´ upotκ q ¨ nds “
ÿ

ν‰κ

ż

BSν

upotκ ¨ ∇φκ,j upot ¨ nds,

since upotκ ¨ n “ 0 on BFptqzBSκ and since moreover upot ¨ n vanishes on BΩ. From (5.3) we have

upot ¨ n “

3
ÿ

i“1

pν,iKν,i on BSν .

Using the decay (3.62) of ∇φκ,j , the energy estimates of Proposition 4.2 and |BSν | “ Opενq we deduce
that

(7.54)

ˇ

ˇ

ˇ

ˇ

ˇ

ż

BFptqzBSκ

upotκ ¨ ∇φκ,j pupot ´ upotκ q ¨ nds

ˇ

ˇ

ˇ

ˇ

ˇ

ď Cε4`δj3
κ p1 ` |ppκ|q,

so this term is weakly nonlinear with respect to κ in the sense of Definition 7.4.
Now we consider the integral over BSκ. By (7.1) and (7.10) we have for κ P t1, . . . , Nu,

(7.55) pupot ´ upotκ q ¨ n “

2
ÿ

ℓ“1

pακ,ℓ ` βκ,ℓqKκ,ℓ on BSκ.

Hence with (6.28) we see that this factor is bounded. We want now to replace in this integral the factor
upotκ ¨ ∇φκ,j by pupotκ ¨ ∇pφκ,j , where we set

pupotκ :“
3
ÿ

i“1

pκ,i∇pφκ,i.

Similarly to (7.53), we have

(7.56) }pupotκ }L8pBSκq ď Cp1 ` |ppκ|q.
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Using (3.60) in Proposition 3.20, (7.53), the boundedness of (7.55) and (7.56), we find

(7.57)
1

2

ż

BSκ

upotκ ¨ ∇φκ,jppupot ´ upotκ q ¨ nq ds “ Nκ,j ` Opε2`δj3
κ p1 ` |ppκ|qq

where Nκ,j :“
1

2

ż

BSκ

pupotκ ¨ ∇pφκ,jppupot ´ upotκ q ¨ nq ds.

Of course the last term in the right-hand side of (7.57) is weakly nonlinear.

Step 3. Hence it remains to consider the term Nκ,j . Using (7.55) and applying Lemma 7.12 to Nκ,j we
deduce that

(7.58) Nκ,j “
1

2

2
ÿ

ℓ“1

ż

BSκ

pακ,ℓ ` βκ,ℓq ξℓ ¨
`

ppupotκ ¨ nq∇pφκ,j ` p∇pφκ,j ¨ nqpupotκ

˘

ds “ pNκ,j ` C3
κ,j ,

where pNκ,j :“
2
ÿ

ℓ“1

ż

BSκ

pακ,ℓ ` βκ,ℓq ξℓ ¨ pupotκ Kκ,j ds

and C3
κ,j :“

1

2

2
ÿ

ℓ“1

ż

BSκ

pακ,ℓ ` βκ,ℓq ξℓ ¨
`

ppupotκ ¨ nq∇pφκ,j ´ p∇pφκ,j ¨ nqpupotκ

˘

ds,

As before, we see that C3
κ “ pC3

κ,1, C
3
κ,2, C

3
κ,3qT is gyroscopic of lower order with respect to κ P Ps in the

sense of Definition 7.2, and we are left with the term pNκ,j . We recombine pNκ,j with J
6
κ,j “ Qκ,jpu

pot
κ , uextκ q

as follows:

(7.59) pNκ,j ´ J6
κ,j “

ż

BSκ

˜

pupotκ ¨

«

´uextκ `

2
ÿ

ℓ“1

pακ,ℓ ` βκ,ℓqξℓ

ff¸

Kκ,j ds`Qκ,jpu
ext
κ , pupotκ ´ upotκ q.

By (7.11), (6.28) and Lemma 6.2, }uextκ }8 ď C. Hence as before, with (3.60) we can estimate the last

term in (7.59) by Opε
2`δj3
κ p1` |ppκ|qq. Concerning the first term in (7.59), using (7.29), (6.11) and (6.27)

we find
«

´uextκ `

2
ÿ

ℓ“1

pακ,ℓ ` βκ,ℓqξℓ

ff

“

2
ÿ

ℓ“1

βκ,ℓpξκ,ℓ ´ ∇φκ,ℓq ´

5
ÿ

ℓ“4

Vκ,ℓpξκ,ℓ ´ ∇φκ,ℓq ´ ε2κu
r
κ on BSκ.

Since βκ,ℓ “ Opεκq for ℓ “ 1, 2 and }ξκ,ℓ}L8pBSκq “ Opεκq for ℓ “ 4, 5, using (3.62) and (6.13) we see
that these terms are all (at least) of order Opεκq in L8 norm on BSκ. Using |BSκ| “ Opεκq and (7.56),
this gives the estimate

pNκ,j ´ J6
κ,j “ Opε2`δj3

κ p1 ` |pp|qq.

Going back to (7.54) and (7.57) and taking into account the above treatment of (7.58), we deduce that

(7.60)
1

2

ż

BFptq

upotκ ¨ ∇φκ,jppupot ´ upotκ q ¨ nq ds “ J6
κ,j ` C3

κ,j ` Opε2`δj3
κ p1 ` |pp|qq.

Of course the last term in (7.60) is weakly nonlinear. Then injecting (7.60) in (7.52) we obtain the
desired result.

7.7. Conclusion of the proof of the normal form. — Gathering (7.28), Lemmas 7.6, 7.7, 7.8, 7.9,
7.10, 7.13 and 7.15 we conclude the proof of Proposition 7.1.

8. Modulated energy estimates

This section is devoted to the following crucial a priori estimate.

Proposition 8.1. — Let δ ą 0. There exists ε0 ą 0 such that for all κ, ppκ is bounded as long as
pε,q, ωq stays in Qε0

δ .
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Proof of Proposition 8.1. — We only consider κ P Ppiiiq, since the boundedness of ppκ was already ob-
tained for κ P Ppiq YPpiiq, see Proposition 4.2. Now we consider (7.3) and multiply it by pκ: using (7.1),
we find, as long as pε, q, ωq P Qε0

δ :

ˆ

Mκp
1
κ `

1

2
M1

κpκ

˙

¨ pκ “ Aκ ¨ pκ `Bκ ¨ pκ ` Cκ ¨ pκ `Dκ ¨ pκ ´ Mg,κV
1
κ ¨ pκ,

where Vκ :“ pακ,1 ` βκ,1, ακ,2 ` βκ,2, 0qT . We observe that the left-hand side equals 1
2 pMκpκ ¨ pκq

1
and

that the second and third terms in the right-hand side vanish, see (7.5) and (7.4). Concerning the last
term, we use (7.1), (6.13)-(6.14) (recalling that ακ,i and βκ,i are given by (6.27)) and (1.12); we find

ˇ

ˇMg,κV
1
κ ¨ pκ

ˇ

ˇ ď C
2
ÿ

j“1

εακ
κ |pκ,j |p1 ` |pp|q

Integrating over time and using (7.9) and (7.7) we deduce

(8.1)
ˇ

ˇMκpκ ¨ pκptq ´ Mκpκ ¨ pκp0q
ˇ

ˇ ď C

ż t

0

3
ÿ

j“1

εminp2,ακq`δj3
κ |pκ,j |p1 ` |pp|q `Kε2κ

ˆ

1 ` t`

ż t

0

|ppκ|2
˙

.

Now we introduce the slight variant rpκ of the modulated variable:

rpκ,i “ ppκ,i ´ δiPt1,2upακ,i ` βκ,iq.

The only difference between rpκ and pκ lies in the third coordinate i “ 3: rpκ,i “ εκϑ
1
k while pκ,i “ ϑ1

k. In
particular

3
ÿ

j“1

εδj3κ |pκ,j | “

3
ÿ

j“1

|rpκ,j |.

Next we introduce the 3 ˆ 3 matrix M˚
κ whose entries are given by M˚

κ,ij “ ε
´ minp2,ακq´δi3´δj3
κ Mκ,ij

for i, j “ 1, 2, 3. We have

Mκpκ ¨ pκ “ εminp2,ακq
κ M˚

κrpκ ¨ rpκ.

Hence using rpκ and M˚
κ, (8.1) allows to write, with ε2κ ď ε

minp2,ακq
κ :

|M˚
κrpκ ¨ rpκptq ´ M˚

κrpκ ¨ rpκp0q| ď C

„
ż t

0

p1 ` |pp|q|rpκ| `

ˆ

1 ` t`

ż t

0

|ppκ|2
˙ȷ

.

Now there are two cases:

– If ακ ą 2, then relying on the added mass one has, using Corollary 3.23 and Remark 2.1, that
|pM˚

κq´1| ď C independently of ε and t.
– If ακ ď 2, then we rely on the genuine mass matrix and conclude as well that |pM˚

κq´1| ď C
independently of ε and t.

Consequently in both cases we can invert by M˚
κ and reach for all κ P Ppiiiq:

|rpκ|2ptq ď C

ż t

0

p1 ` |pp|q|rpκ| `K

ˆ

1 ` t`

ż t

0

|ppκ|2
˙

` C|rpκ|2p0q.

From (6.28), we see that |ppκ| ď Cp1 ` |rpκ|q and |rpκ| ď Cp1 ` |ppκ|q. We sum over κ P Ppiiiq and use that
we already have a bound on ppκ for κ P Ppiq YPpiiq. We deduce that for some constant K depending only
on the geometry, δ and the initial condition, one has:

|pp|2ptq ď K

ˆ

1 ` t`

ż t

0

|pp|2
˙

.

We conclude by Gronwall’s lemma (which we can apply on any time-interval for which pε,q, ωq P Qε0
δ ).
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9. Passage to the limit

9.1. A change of variable. — A difficulty to prove the convergences is the dependence of the domain
on ε. This dependence is twofold: first it depends directly on ε because the small solids occupy a zone
depending on this parameter; and then it depends on ε because the solution does, and all solids whether
small or of fixed size are located according to the variable qε. We can temper the difficulty associated
with the second dependence by using an adequate family of diffeomorphisms which we now describe. It
will not solve the first difficulty but will help with the second one; in particular it will allow to be more
precise on the convergences in the neighborhoods of large solids.

First, we define the following partial set of coordinates for the solids:

(9.1) qε :“ pq1, . . . , qNpiq
, hNpiq`1, . . . , hN q.

This corresponds to the coordinates in which we will actually pass to the limit. Given δ ą 0, we introduce
the following configuration space Q

δ
:

Qδ :“ tq P R3Npiq`2Ns : @κ, λ P Ppiq, κ ‰ λ, @µ, ν P Ps, µ ‰ ν,

dpSκpqq,Sλpqqq ą 2δ, |hµ ´ hν | ą δ, dpSκpqq, hνq ą 2δ, dpSκpqq, BΩq ą 2δ and dphν , BΩq ą 2δu,

with the obvious abuse of notation for BSκpqq. We denote q
0
the initial value of qε (which does not

depend on ε). We have the following statement.

Lemma 9.1. — There exist a neighborhood Uq
0
of q

0
in Qδ and a smooth mapping T : q ÞÑ Tq

from Uq
0
into the group DiffpΩq of the diffeomorphims of Ω, independent of ε (provided that ε is small

enough), and such that Tq
0

“ IdΩ, such that for all q P Uq
0
, Tq is an orientation and area-preserving

diffeomorphism of Ω, which sends Sκpq0q to Sκpqq for κ P Ppiq, hκ,0 to hκ for κ P Ps and such that for
all q P Uq

0
, Tq is rigid in a neighborhood of each Sκpq

0
q for κ P Ppiq, is a translation in a neighborhood

of hκ,0 for κ P Ps and is equal to identity in a neighborhood of BΩ.

Proof of Lemma 9.1. — The construction of such a mapping is easy and classical. We first introduce Wκ

as the δ-neighborhood of Sκ for κ P Ppiq and of hκ for κ P Ps. Given q close to q
0
, we define Tq in Wκ as

the unique rigid movement sending q0κ to q
κ
for κ P Ppiq, as the unique translation sending h0κ to hκ for

κ P Ps and as the identity in a neighborhood of BΩ. Then we extend Tq as a global diffeomorphim on Ω:

it suffices to write Tq in Wκ as the flow of a vector field as in Paragraph 3.1.5 and to use extensions of

vector fields. To make sure to conserve the zero-divergence of these vector fields, we extend their stream
functions.

9.2. First step and compactness. —

9.2.1. Fixing ε0 and T . — Given an initial data pγ,q0,p0, ω0q we first set (having (1.15) in mind):

(9.2) D :“ min
␣

Dε, ε P p0, 1sNs
(

,

where Dε :“ min
!

mintdistpSελ,0,Sεµ,0q, λ ‰ µu, mintdistpSελ,0, BΩq, λ “ 1, . . . , Nu,

mintdistpSελ,0,Supppω0qq, λ “ 1, . . . , Nu

)

,

and we observe that D ą 0. Next we set

δ :“
D

2
,

and apply Proposition 8.1 with this δ. We deduce some ε0 ą 0 and some C1 ą 0 such that, as long as
pε,q, ωq stays in Qε0

δ , one has

@κ P t1, . . . , Nu, |ppκ| ď C1.

We reduce if necessary ε0 ą 0 so that all intermediate results from Sections 3 to 8 and Subsection 9.1
hold as well.
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We deduce from the existence of C1 the existence of C2 ą 0 such that as long as pε,q, ωq stays in Qε0
δ ,

one has

@κ P t1, . . . , Nu, |vS,κ| ď C2 in Sκ,(9.3)

|uεpt, xq| ď C2 on Fδpqptqq :“

#

x P Fpqq

M

d

˜

x,
ď

κPPs

Sκ

¸

ą δ

+

.(9.4)

To get (9.4), we used the decomposition (5.3) and Proposition 3.20, Lemma 3.27 and Lemma 5.4 to
estimate the three terms in this decomposition. We let

(9.5) C :“ maxpC1, C2q and T :“
D

8C
.

Then using a continuous induction argument, we see as a consequence of (4.1) and the fact that the solids
move with velocity vS,κ that, provided that ε ď ε0, one has pε,q, ωq belongs to Qε0

δ for all t P r0, T s, and

in particular all the above a priori estimates are true on r0, T s.
In the sequel, reducing T if necessary, we may ask that for all t P r0, T s, qεptq P Uq

0
, where the

neighborhood Uq
0
was defined in Lemma 9.1.

9.2.2. Using compactness. — As a consequence of the a priori estimates given in Lemma 4.1 and
Propositions 4.2 and 8.1, we have that ppεκ is bounded inW 2,8p0, T q for κ P Ppiq YPpiiq and inW 1,8p0, T q

for κ P Ppiiiq, and that ωε is bounded in L8pp0, T q ˆ Ωq. Hence we may extract a subsequence (that we
abusively still denote by an exponent ε) such that

qεκ Ýá q‹
κ in W 2,8p0, T q weak ´ ‹ for κ P Ppiq,(9.6)

hεκ Ýá h‹
κ in W 2,8p0, T q weak ´ ‹ for κ P Ppiiq,(9.7)

hεκ Ýá h‹
κ in W 1,8p0, T q weak ´ ‹ for κ P Ppiiiq,(9.8)

ωε Ýá ω‹ in L8pp0, T q ˆ Ωq weak ´ ‹.(9.9)

The fact that we can improve the convergence (9.9) to the convergence

(9.10) ωε ÝÑ ω‹ in C0pr0, T s;L8pΩq ´ w‹q,

is obtained as in [21, Appendix C]: this comes from the fact that, thanks to (5.10), we have an a priori
bound on Btω

ε “ ´div puεωεq in L8p0, T ;W´1,ppΩqq.
Note in particular that the convergences (1.18), (1.19) and (1.20) are contained in the above conver-

gences. Moreover convergences (9.6) and (9.7) have naturally the following consequence:

(9.11) pεκ Ýá p‹
κ “ pq‹

κq1 in W 1,8p0, T q weak ´ ‹ for κ P Ppiq,

phεκq1 Ýá ph‹
κq1 in W 1,8p0, T q weak ´ ‹ for κ P Ppiiq and in L8p0, T q weak ´ ‹ for κ P Ppiiiq.

9.3. Limit dynamics of the fluid. — Let us now see how the convergences above involve the con-
vergence (1.17) of the velocity field uε to u‹ satisfying (1.21). We recall that we take the convention to
extend all the vector fields by 0 inside the solids. The family of diffeomorphisms in Subsection 9.1 will
be helpful here. We denote

q‹ :“ pq‹
1 , . . . , q

‹
Npiq

, h‹
Npiq`1, . . . , h

‹
N q.

To obtain the convergence of uε we rely on the decomposition (2.24) and show that each term converges
towards its final counterpart (2.26). This is done in three separate lemmas.

Lemma 9.2. — As ε Ñ 0 for p P r1, 2q :

Kε
qεrωεs ˝ Tqε ÝÑ qKq‹

piq
rω‹s ˝ Tq‹ in C0pr0, T s;Lpp qFpq0qqq,

where q‹
piq :“ pq‹

1 , . . . , q
‹
Npiq

q.

Lemma 9.3. — Let p ă `8. As ε Ñ 0:

pν,i∇φεν,ipqε, Tqεp¨qq ÝÑ p‹
ν,i∇qφν,ipq

‹
ν , Tq‹ p¨qq in L8p0, T ;Lpp qFpq0qqq for ν P Ppiq,

pν,i∇φεν,ipqε, Tqεp¨qq ÝÑ 0 in L8p0, T ;Lpp qFpq0qqq for ν P Ppiiq and in L8
w‹p0, T ;Lpp qFpq0qqq for ν P Ppiiiq.
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Lemma 9.4. — As ε Ñ 0: for ν P Ppiq:

∇Kψενpqε, Tqεp¨qq ÝÑ ∇K
qψνpq‹

ν , Tq‹ p¨qq in L8p0, T ;Lpp qFpq0qqq for p ă `8,

and for ν P Ps:
∇Kψενpqε, Tqεp¨qq ÝÑ qKq‹

piq
rδh‹

ν
s ˝ Tq‹ in L8p0, T ;Lpp qFpq0qqq for p ă 2.

Proof of Lemma 9.2. — For all t P p0, T q we write, using the triangle inequality and recalling that all
vector fields are filled with 0 inside the solids,

}Kε
qεrωεs ˝ Tqε ´ qKq‹

piq
rω‹s ˝ Tq‹ }LppΩq ď }Kε

qεrωεs ˝ Tqε ´ qKqε
piq

rωεs ˝ Tqε}Lpp qFpq0qq

` } qKqε
piq

rωεs ˝ Tqε ´ qKq‹
piq

rωεs ˝ Tq‹ }LppΩq ` } qKq‹
piq

rωε ´ ω‹s ˝ Tq‹ }Lpp qFpq0qq
.

For what concerns the first term, since Tqε is measure-preserving, we have

}Kε
qεrωεs ˝ Tqε ´ qKqε

piq
rωεs ˝ Tqε}Lpp qFpq0qq

“ }Kε
qεrωεs ´ qKqε

piq
rωεs}Lpp qFpqεqq

,

which converges to zero uniformly in time thanks to Lemma 3.33. The convergence of the third term
(uniformly in time) comes from (9.10): it involves the convergence of KΩrωεs to KΩrω‹s (recall (3.119))
in C0pr0, T s;LppΩqq for p ă `8 due to the classical compactness of the operator KΩ : LppΩq Ñ LppΩq

(due to the Calderon-Zygmund estimate }KΩrωs}W 1,ppΩq ď C}ω}LppΩq and the Rellich-Kondrachov the-

orem.) Note that using the support of vorticity and interior regularity, this involves the convergence in
C0pr0, T s;CkpVδpBSλqqq for each λ “ 1, . . . , N . It remains to check that the correction Rrω´ω‹s defined
in (3.120) converges to 0 in C0pr0, T s;LppΩqq. This is again a consequence of Propositions 3.9 and 3.10.

Finally, concerning the second term, we consider the function

r0, 1s ÝÑ Lpp qFpq0qq, s ÞÝÑ qKq‹
piq

`spqε
piq

´q‹
piq

qrωεs ˝ Tq‹`spqε´q‹q.

It is well-defined for small enough ε (due to the convergences (9.6)-(9.8), so that q‹ ` spqε ´q‹q belongs
to the neighborhood Uq

0
of Lemma 9.1), and its derivative with respect to s is bounded by

(9.12) C|qε ´ q‹|

¨

˝

›

›

›

›

›

B qK

Bq

›

›

›

›

›

Lpp qFq

`

›

›

›

›

›

B qK

Bx

›

›

›

›

›

Lpp qFq

˛

‚.

Together with Lemma 3.35 and (3.116), this establishes Lemma 9.2.

Proof of Lemma 9.3. — Here we write for ν P Ppiq:

(9.13)

}∇φεν,ipqε, Tqεp¨qq´∇qφν,ipq
‹
ν , Tq‹ p¨qq}L8p0,T ;LppΩqq ď }∇φεν,ipqε, Tqεp¨qq´∇qφν,ipq

ε, Tqεp¨qq}L8p0,T ;Lpp qF0qq

` }∇qφν,ipq
ε, Tqεp¨qq ´ ∇qφν,ipq

‹
ν , Tq‹ p¨qq}L8p0,T ;Lpp qF0qq

.

The first term in the right-hand side converges to zero as shown by Proposition 3.22. For the second we
reason as in the proof of Lemma 9.3: we consider the function

s ÞÝÑ ∇qφν,ipq
ε
ν ` spqεν ´ q‹

νq, Tqε`spqεν´q‹
νqp¨qq,

where the abusive notation qε ` spqεν ´ q‹
νq means that we add spqεν ´ q‹

νq only on the coordinate of qε

corresponding to qν . Now we estimate the s-derivative as in (9.12). The x-derivative is bounded thanks

to the uniform Schauder estimates in qF , the q derivative by following the proof of Proposition 3.26 by

elliptic regularity in qF . With (9.6), this proves the convergence of the left-hand side of (9.13) to zero.
The conclusion follows then from (9.11) for solids of family piq.

Concerning small solids, the convergence to 0 of the Kirchhoff potentials (uniform with respect to q)
comes from Proposition 3.20, and one concludes in the same way with (9.11).

Proof of Lemma 9.4. — Here we write for ν P Ppiq and all t P r0, T s:

}∇Kψενpqε, Tqεp¨qq ´ ∇K
qψνpq‹

ν , Tq‹ p¨qq}Lpp qFpq0qq
ď }∇Kψενpqε, Tqεp¨qq ´ ∇K

qψνpqε, Tqεp¨qq}Lpp qFpq0qq

` }∇K
qψνpqε, Tqεp¨qq ´ ∇K

qψνpq‹
ν , Tq‹ p¨qq}Lpp qFpq0qq

.
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The convergence to zero of the first term in the right-hand side, uniformly in q is a consequence of

Proposition 3.30. The convergence of the second term is due to (9.6) and the regularity of ∇K
qψν with

respect to q (using for instance Lemma 3.31 and (5.23)).
For ν P Ps, for p P r1, 2q and all t P r0, T s we have:

}∇Kψενpqε, Tqεp¨qq ´ qKq‹
piq

rδhε
ν
s ˝ Tq‹ }Lpp qFpq0qqq

ď }∇Kψενpqε, Tqεp¨qq ´ qKq‹
piq

rδhε
ν
s ˝ Tq‹ }Lpp qFpq0qqq

` } qKq‹
piq

rδhε
ν
s ˝ Tq‹ ´ qKq‹

piq
rδh‹

ν
s ˝ Tq‹ }Lpp qFpq0qqq

.

The convergence to zero of the first term in the right-hand side is due to Proposition 3.30, (3.94) and
(3.97). Concerning the second one, by (3.97)

} qKq‹
piq

rδhε
ν
s ˝ Tq‹ ´ qKq‹

piq
rδh‹

ν
s ˝ Tq‹ }Lpp qFpq0qqq

ď }∇K
qψκphενq ˝ Tq‹ ´ ∇K

qψκph‹
νq ˝ Tq‹ }Lpp qFpq0qqq

` }Hp¨ ´ hενq ˝ Tq‹ ´Hp˝ ´ h‹
νq ¨ Tq‹ }Lpp qFpq0qqq

.

Due to the uniform convergence of hεκ to h‹
κ both terms converge to zero, the first one by regularity with

respect to h of ∇K
qψκ, the second-one by continuity of the translations in Lp.

Now the convergence (1.17) to u‹ satisfying (1.21) is a direct consequence of Lemmas 9.2, 9.3, 9.4,
and of the decompositions (2.24) and (2.26). Moreover one obtains (1.22) by passing to the limit in (4.1)
thanks to (9.9) and (1.17).

9.4. Limit dynamics of the solids of fixed size. — To pass to the limit in the equation of the
solids of family piq, we must pass to the limit in the pressure. To that purpose, we observe that the
convergences described in Subsection 9.3 are actually stronger when one restricts the space domain to
the δ-neighborhood of BSκ for κ P Ppiq, and, for κ P Ps, to an annulus Bphκ, δqzBphκ, δ{2q. This is given
in the following statement.

Lemma 9.5. — For κ P t1, . . . , Nu we let Uδκ the δ{2-neighborhood of BSκpq0q whenever κ P Ppiq and

we let Uδκ “ Bph0κ, δqzBph0κ, 3δ{4q whenever κ P Ps. Then one has

uε ˝ Tqε|Uδ
κ

ÝÑ u‹ ˝ Tq‹|Uδ
κ

in W 1,8p0, T ;CkpUδκqq ´ w‹, for all k P N.

Proof of Lemma 9.5. — This is due to the support of ω and the remoteness of small solids from it (since
pε,q, ωq P Qε0

δ ), which allow to improve the convergences of Lemmas 9.2, 9.3 and 9.4 to the weak-‹ one

in W 1,8p0, T ;CkpUδκqq. Since we already have the convergence in a weaker space, it suffices to prove the
boundedness of uε ˝ Tqε in W 1,8p0, T ;CkpUδκqq. That uε ˝ Tqε remains bounded in L8p0, T ;CkpUδκqq is
a direct consequence of the support of ωε and interior elliptic regularity, since it is already bounded in
L8p0, T ;LppF0qq.

For what concerns Btpu
ε ˝ Tqεq we have

Btpu
ε ˝ Tqεq “

#

rBtu
ε ` pvεS,κ ¨ ∇quεs ˝ Tqε , in Uδκ for κ P Ppiq,

rBtu
ε ` pphεκq1 ¨ ∇quεs ˝ Tqε in Uδκ for κ P Ps,

so that we only have to estimate pBtu
εq ˝ Tqε . Again, by interior elliptic estimates, it suffices to bound

it in L8 in a slightly larger set. We rely on decomposition (5.3):

– Btu
ext is bounded in C0pr0, T s ˆ Uδκq thanks to Lemma 5.4,

– the terms Bt∇K
pψν for ν ‰ κ are bounded in C0pr0, T s ˆUδκq thanks to (5.23), (3.83)-(3.84) and the

remoteness of Uδκ from BSν ,
– all the same the term Bt∇K

pψκ is bounded in C0pr0, T s ˆ Uδκq thanks to (5.23), (3.83)-(3.84) and to
the choice of Uδκ (that is at positive distance from BSκ when κ P Ps),

– the boundedness of Btu
pot follows from Proposition 3.26, acceleration estimates (Corollary 5.2) and

Proposition 3.20 (again thanks to the choice of Uδκ).

A first consequence of Lemma 9.5 is (1.23). Indeed, due to (1.21) and (1.22), we have

curlpBtu
‹ ` pu‹ ¨ ∇qu‹q “ 0 in qFpq‹

piqptqq.
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For each κ P t1, . . . , Nu, we introduce a smooth simple closed loop γκ in Uδκ. Then (1.2) involve that for
all t P r0, T s and all ε, one has

¿

γκ

pBtu
ε ` puε ¨ ∇quεqpt, ¨q ¨ τ ds “ 0.

Passing to the limit with Lemma 9.5 we infer that for all κ P t1, . . . , Nu,
¿

γκ

pBtu
‹ ` pu‹ ¨ ∇qu‹q ¨ τ ds “ 0.

This establishes (1.23).
Next we deduce (1.24). It follows from Lemma 9.5 that in a vicinity of BSκ for κ P Ppiq, the convergence

of the pressure is improved: recalling that

∇πε “ ´Btu
ε ´ puε ¨ ∇quε and ∇π‹ “ ´Btu

‹ ´ pu‹ ¨ ∇qu‹,

Lemma 9.5 involves that

(9.14) ∇πε ˝ Tqε ÝÑ ∇π‹ ˝ Tq‹ in L8p0, T ;CkpVδ{2pBSκqqqweak- ‹ .

From (1.7) we deduce, for all κ P Ppiq:
$

’

’

&

’

’

%

mκphεκq2ptq “ Rpϑεκq

ż

BSκpq0q

πεpt, Tqεpxqqnpt, Tqεpxqq dspxq,

Jκpϑεκq2ptq “

ż

BSκpq0q

πεpt, Tqεpxqqpx´ hκ,0qK ¨ npt, Tqεpxqq dspxq.

This involves the passage to the limit in (1.7) for the first family, from which we deduce (1.24).

9.5. Limit dynamics of the small solids and end of the proof of Theorem 2. — To get the
convergence on small solids we go back to the normal form (7.3). Let κ P Ps. Since we now know that
ppε is bounded, using (7.9), (7.6) and (7.8), we infer that the terms Aκ, Cκ and Dκ converge to zero
strongly in L8p0, T q.

Now we use two lemmas, where we recall that pκ is the modulated variable (before the passage to the
limit) given by (7.1).

Lemma 9.6. — When κ P Ps, the term Ma,κp
1
κ ` 1

2M
1
a,κpκ converges to 0 in W´1,8p0, T q as ε goes

to 0.

Proof of Lemma 9.6. — We proceed in three steps.

Step 1. First Ma,κ converges strongly to 0 in L8p0, T q due to Corollary 3.23. Since pκ is bounded, it

follows that pMa,κpκq1 converges to 0 in W´1,8p0, T q.

Step 2. By Reynold’s transport theorem:

M1
a,κ,i,j “

N
ÿ

ν“1

ż

Fpqq

ˆ

pν ¨
B∇φκ,i

Bqν

˙

¨ ∇φκ,j dx`

N
ÿ

ν“1

ż

Fpqq

∇φκ,i ¨

ˆ

pν ¨
B∇φκ,j

Bqν

˙

dx

`

ż

BFpqq

puε ¨ nq∇φκ,i ¨ ∇φκ,j ds.

By an integration by parts the first two terms are transformed into integrals over BSκ with some in-
tegrands which are bounded according to Proposition 3.26. Therefore these two terms converge to 0
uniformly in time. For the third one, we first notice that uε ¨ n “ upot ¨ n is bounded (thanks to Propo-
sitions 3.20 and 8.1). Now using again Proposition 3.20 we see that on BFpqqzBSκ the integrand is of

order Opε
4`δi3`δj3
κ q and that on BSκ it is bounded. Since |BSκ| “ Opεκq, we obtain the convergence of

this term to 0 as well. Thus M1
a,κpκ converges to 0 in L8p0, T q as ε goes to 0.

Step 3. Since

Ma,κp
1
κ `

1

2
M1

a,κpκ “ pMa,κpκq1 ´
1

2
M1

a,κpκ,
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the result follows.

Lemma 9.7. — When κ P Ps, one has the uniform convergence in r0, T s as ε goes to 0:
ˆ

Bκ,1
Bκ,2

˙

ÝÑ γκpph‹
κq1 ´ u‹

κph‹
κqqK.

Proof of Lemma 9.7. — We consider the writing of Bκ in (7.2). Using (7.1) and (2.17d), and then (6.27),
(6.28) and (6.10), we see that

ˆ

Bκ,1
Bκ,2

˙

“ γκ

ˆ

phεκq1 ´

ˆ

α1 ` β1
α2 ` β2

˙˙K

“ γκ
`

phεκq1 ´ quεκphεκq
˘K

` op1q.

It remains to prove that

(9.15) quεκphεκq ÝÑ u‹
κph‹

κq uniformly in time as ε Ñ 0.

To prove (9.15), we first establish the convergence for p P r1, 2q

(9.16) quεκ ˝ Tqε ÝÑ u‹
κ ˝ Tq‹ in L8p0, T ;Lpp qF0qq.

This derives from (6.8) and the equivalents of Lemmas 9.2, 9.3 and 9.4 in the domain qFκ where there is
no Sκ:

∇φε, ­κν ˝ Tqε ÝÑ ∇qφν ˝ Tq‹ for ν P Ppiq,

∇φε, ­κν ˝ Tqε ÝÑ 0 for ν P Psztκu,

∇Kψε, ­κν ˝ Tqε ÝÑ ∇K
qψν ˝ Tq‹ for ν P Ppiq,

∇Kψε, ­κν ˝ Tqε ÝÑ qKrδh‹
ν
s ˝ Tq‹ for ν P Psztκu,

Kε, ­κrωεs ˝ Tqε ÝÑ qKrω‹s ˝ Tq‹ .

Moreover using (3.110) and reasoning as in Lemma 9.4

∇Kψε,r, ­κκ ˝ Tqε ÝÑ ∇K
qψrκ ˝ Tq‹ “

␣

qKrδh‹
κ

s ´Hκ

(

˝ Tq‹ ,

where we recall that qψrκ was defined in (3.96) and qψr, ­κκ in (3.107). This allows to deduce (9.16) using
the decomposition (6.8) of quκ. Then using inner regularity for the Laplace equation, we see that the
convergence (9.16) actually holds in L8p0, T ;CkpVδpSκqqq since there is no vorticity near Sεκ. With the
uniform convergence of hεκ toward h‹

κ, this gives (9.15).

Hence we obtain (1.25) and (1.26) by passing to the limit in (7.3) using the assumption that γκ ‰ 0
when κ P Ppiiiq (see the last paragraph of Section 1.2) for the latter. This concludes the proof of
Theorem 2. l

9.6. Proof of Theorem 3. — In this subsection, we briefly sketch the proof of Theorem 3. Hence we
consider the particular case where the data ensures the uniqueness of the solution to the limit system,
together with the separation of point vortices, of solids of fixed size and of the vorticity support in the
limit. Since the limit system enjoys uniqueness in this situation, the convergence without restriction to a
subsequence is commonplace; let us explain why the maximal existence times T ε satisfy lim infεÑ0 T

ε ě

T ‹ and the convergences (1.17)-(1.20) hold on any time interval r0, T s Ă r0, T ‹q.
Consider T ą 0; denoting S‹

κptq :“ Sκpq‹
κptqq for κ P Ppiq and S‹

κptq :“ th‹
κptqu for κ P Ps, due to the

assumption on the limit system, we can find dT ą 0 such that

@t P r0, T s, @κ P t1, . . . , Nu, dpS‹
κptq,Supppω‹ptqqq ě dT , dpS‹

κptq, BΩq ě dT

and @λ P t1, . . . , Nuztκu, dpS‹
κptq,S‹

λptqq ě dT .

Reducing dT if necessary, we assume that dT ď D where D was defined in (9.2). We now introduce

Tmax :“ sup
!

τ P r0, T s

M

Dε0 ą 0, @t P r0, τ s, @ε ă ε0, @κ P t1, . . . , Nu, dpSεκptq,Supppωεptqqq ě dT {2,

dpSεκptq, BΩq ě dT {2 and @λ P t1, . . . , Nuztκu, dpSεκptq,Sελptqq ě dT {2
)

.
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Due to the analysis of Subsections 9.2–9.5, we have Tmax ě T where T was defined in (9.5). Moreover,
the convergence analysis of Subsections 9.2–9.5 can be carried out in any r0, τ s Ă r0, Tmaxq since we
merely use a minimal distance between the solids and between the solids and the vorticity support to
obtain the estimates. Hence to conclude, it suffices to prove that Tmax “ T .

Arguing by contradiction, we suppose that Tmax ă T . Using the convergences (1.19), it is easy to see
that for τ ă Tmax, for suitably small ε, we do have dpSεκptq,Sελptqq ě 3dT {4 and dpSεκptq, BΩq ě 3dT {4
on r0, τ s so that the limitation Tmax ă T can only come from the vorticity. But using the definition of
Tmax, (1.19), the decomposition (2.24) and the estimates of Section 3, we see that for τ ă Tmax, for
suitably small ε, one has the uniform log-Lipschitz estimate on the support of ω:

}uεpt, ¨q}LLpFz
Ť

κPPs
pVdT {4ph‹

κptqqqq ď C uniformly for t P r0, τ s.

Moreover, reasoning as in Lemma 9.5, we see that for p P p1,`8q,

}Btu
εpt, ¨q}LppFz

Ť

κPPs
pVdT {4ph‹

κptqqqq ď C uniformly for t P r0, τ s.

This implies that the convergence (1.17) can be supplemented by

uεpt, ¨q ÝÑ u‹pt, ¨q in C0pr0, τ s;C0pFz
ď

κPPs

pVdT {4ph‹
κptqqqqq.

This involves the convergence of the corresponding flows on Supppω0q. In particular, Supppωεptqq

converges to Supppω‹ptqq uniformly in time for the Hausdorff distance. Since the convergence analysis
of Subsections 9.2–9.5 is valid on any r0, τ s Ă r0, Tmaxq, we deduce that one can find for any such τ an
ε0 ą 0 such that for ε ă ε0, for all κ P t1, . . . , Nu, dpSεκptq,Supppωεptqqq ě 3dT {4 on r0, τ s. This puts
Tmax ă T and the boundedness of the velocity of the vorticity support and of the solids in contradiction.
This ends the proof of Theorem 3. l
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Cedex 16, France
p3qInstitut de Mathématiques de Bordeaux, UMR CNRS 5251, Université de Bordeaux, 351 cours de la Libération, F33405
Talence Cedex, France & Institut Universitaire de France

71


	1. Introduction and statement of the main result
	1.1. The fluid-solid system
	1.2. The problem of small solids
	1.3. Main result

	2. Preliminaries
	2.1. Solid variables and configuration spaces
	2.2. Potentials and decomposition of the fluid velocity
	2.3. Brief description of the proof and organization of the paper

	3. Estimates on the potentials
	3.1. An auxiliary Dirichlet problem
	3.1.1. Existence of solutions for problem (3.2)
	3.1.2. A potential for a standalone solid
	3.1.3. A construction of the potential in the presence of small solids
	3.1.4. Asymptotic behavior for problem (3.2)
	3.1.5. Shape derivatives of potentials solving Dirichlet problems
	3.1.6. Transposing to the Neumann problem

	3.2. Estimates of the Kirchhoff potentials
	3.2.1. The Kirchhoff potentials
	3.2.2. Shape derivatives of the Kirchhoff potentials

	3.3. Estimates on the circulation stream function
	3.3.1. Estimates on the reflected circulation stream function
	3.3.2. Shape derivatives of the reflected circulation stream function
	3.3.3. Reflected circulation stream function of a phantom solid

	3.4. Estimates of the Biot-Savart kernel
	3.4.1. Biot-Savart kernel
	3.4.2. Shape derivatives of the Biot-Savart kernel


	4. First a priori estimates
	5. Collective normal form and rough estimate for the acceleration of the bodies
	5.1. A decomposition of the velocity
	5.2. Proof of the collective normal form
	5.2.1. Step 1.
	5.2.2. Step 2.

	5.3. Proof of the acceleration estimates

	6. Introduction of the modulations
	6.1. Decomposition of the fluid velocity focused on a small solid
	6.2. Approximation of the -th exterior field
	6.3. Definition of the modulations

	7. Individual normal forms
	7.1. Statement of the normal form
	7.2. Starting point of the proof: rewriting the solid equation with various terms
	7.3. Treatment of the simplest terms
	7.4. Exterior acceleration term
	7.5. Main gyroscopic term
	7.6. Added mass term
	7.7. Conclusion of the proof of the normal form

	8. Modulated energy estimates
	9. Passage to the limit
	9.1. A change of variable
	9.2. First step and compactness
	9.2.1. Fixing 0 and T.
	9.2.2. Using compactness

	9.3. Limit dynamics of the fluid
	9.4. Limit dynamics of the solids of fixed size
	9.5. Limit dynamics of the small solids and end of the proof of Theorem 2
	9.6. Proof of Theorem 3

	Références

