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Résumé. — We consider the motion of several solids in a bounded cavity filled with a perfect incompressible
fluid, in two dimensions. The solids move according to Newton’s law, under the influence of the fluid’s
pressure. On the other hand the fluid dynamics is driven by the 2D incompressible Euler equations, which
are set on the time-dependent domain corresponding to the cavity deprived of the sets occupied by the
solids. We assume that the fluid vorticity is initially bounded and that the circulations around the solids
may be non-zero. The existence of a unique corresponding solution, d la Yudovich, to this system, up to a
possible collision, follows from the arguments in [11].

The main result of this paper is to identify the limit dynamics of the system when the radius of some of
the solids converge to zero, in different regimes, depending on how, for each body, the inertia is scaled with
the radius. We obtain in the limit some point vortex systems for the solids converging to particles and a
form of Newton’s law for the solids that have a fixed radius; for the fluid we obtain an Euler-type system.
This extends the earlier works [7], which deals with the case of a single small heavy body immersed in an
incompressible perfect fluid occupying the rest of the plane, [8], which deals with the case of a single small
light body immersed in an incompressible perfect fluid occupying the rest of the plane, and [9] which deals
with the case of a single small, heavy or light, body immersed in a irrotational incompressible perfect fluid
occupying a bounded plane domain.

In particular we consider for the first time the case of several small rigid bodies, for which the strategy
of the previous papers cannot be adapted straightforwardly, despite the partial results recently obtained in
[10]. The main difficulty is to understand the interaction, through the fluid, between several moving solids.
A crucial point of our strategy is the use of normal forms of the ODEs driving the motion of the solids in
a two-steps process. First we use a normal form for the system coupling the time-evolution of all the solids
to obtain a rough estimate of the acceleration of the bodies. Then we turn to some normal forms that are
specific to each small solid, with an appropriate modulation related to the influence of the other solids and
of the fluid vorticity. Thanks to these individual normal forms we obtain some precise uniform a priori
estimates of the velocities of the bodies, and then pass to the limit. In the course of this process we make
use of another new main ingredient of this paper, which is an estimate of the fluid velocity with respect to
the solids, uniformly with respect to their positions and radii, and which can be seen as an refinement of
the reflection method for a div/curl system with prescribed circulations.

Keywords: fluid-solid interactions, incompressible perfect fluid, vortex-wave system.
MSC: 35Q31, 35Q70, 76D27.

Nous considérons le mouvement de plusieurs corps rigides dans une cavité remplie d’un fluide parfait
incompressible en deux dimensions. Les corps rigides se déplacent selon les lois de Newton, sous I'influence
de la pression du fluide. La dynamique du fluide est régie par les équations d’Euler incompressible 2D, qui
sont posées sur le domaine, qui dépend du temps, correspondant & la cavité privée des domaines occupés
par les solides. Nous supposons que la vorticité du fluide est initialement bornée et les circulations autour
des solides peuvent étre non nulles. L’existence d’une unique solution a la Yudovich, tant qu’il n’y a pas
de collision, découle des arguments donnés dans [11].

Le résultat principal du papier est d’identifier les dynamiques limites du systéme quand le rayon de
certains des solides converge vers zéro, avec différents régimes, selon, pour chaque solide, le ratio de son
inertie avec son rayon. Nous obtenons a la limite des systémes de point vortex pour les solides convergeant
vers des particules ponctuelles, une loi de type Newton pour les solides qui gardent leur rayon fixé et un
systéme du type Euler incompressible pour le fluide. Ceci étend les travaux précédents: [7], qui traite le
cas d’un seul corps solide, de rayon tendant vers zéro avec une masse positive fixée, immergé dans un fluide
parfait incompressible occupant le reste du plan, [8], qui traite le cas d’un seul corps solide, dont le rayon
et la masse tendent vers zéro avec une corrélation naturelle, immergé dans un fluide parfait incompressible
occupant le reste du plan, et [9] qui traite du cas d’un seul corps solide, dans les deux régimes d’inertie
précédents, immergé dans un fluide parfait incompressible occupant un domaine plan borné.

En particulier nous considérons pour la premiére fois le cas de plusieurs petits corps solides, pour lequel
la stratégie des papiers précédents ne semble pas s’adapter facilement, malgré les résultats obtenus dans
[10] dans le cas de solides de taille fixe. La difficulté principale est de comprendre l'interaction, par le
biais du fluide, entre les différents solides. Un point crucial de notre stratégie est 1'utilisation de formes
normales pour les EDOs donnant la dynamique des solides dans une approche en deux temps. En premier
lieu nous utilisons une forme normale pour le systéme couplant I’évolution en temps de tous les solides pour
obtenir une estimation grossiére de ’accélération des solides. Ensuite nous établissons des formes normales
spécifiques a chaque solide, avec une modulation appropriée reliée a l'influence des autres solides et de la
vorticité du fluide. Grace a ces formes normales individuelles nous obtenons des estimées uniformes précises
des vitesses des solides, et passons & la limite. Au cours de ce processus, nous établissons une estimée de
la vitesse du fluide due aux solides, uniformément par rapport & leurs positions et rayons, qui peut étre
considérée comme un raffinement de la méthode des réflexions pour un systéme div/curl avec circulations
prescrites.

Mots clés: interactions fluide-solide, fluide parfait incompressible, systéme “Euler+point vortex”.
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1. Introduction and statement of the main result

1.1. The fluid-solid system. — The general situation that we describe is that of N solids immersed
in a bounded domain of the plane. The total domain (containing the fluid and the solids) is denoted
by €, that is a nonempty bounded open connected set in R?, with smooth boundary. In the domain
are embedded N solids S, ..., Sy, which are nonempty, simply connected and closed sets with smooth
boundaries. To simplify, we assume that 2 is simply connected and that the solids Sy, ..., Sy are not
discs (though the general case could be treated similarly). We will systematically suppose them to be at
positive distance one from another and from the outer boundary 02 during the whole time interval:

(1.1) ¥, Vee{l,...,N}, So(t)cQ, dist(Sc(t),0Q) >0 and VA # r, dist(S.(t),Sx(t)) > 0.

Their positions depend on time, so we will denote them S;(¢), ..., Sy(t). Since they are rigid bodies,
each solid S(t) is obtained through a rigid movement from S, (0). The rest of the domain, occupied by
the fluid, will be denoted by F(t) so that

]‘—(t) = Q\(Sl(t) U v SN(t))
Let us now describe the dynamics of the fluid and of the solids.

1.1.0.1. Dynamics of the fluid. — The fluid is supposed to be inviscid and incompressible, and con-
sequently driven by the incompressible Euler equation. We denote u = u(t, z) the velocity field (with
values in R?) and 7 = 7(¢,x) the (scalar) pressure field, both defined for ¢ in some time interval [0, 7]
and z € F(t). The incompressible Euler equation reads
oru+ (u-V)u+ Vr =0,
div u = 0,
This equation is supplemented by boundary conditions which correspond to the non-penetration condi-
tion, precisely

(1.3) u-n=0 on 00, and u-n=wvs,-n on 0§, for ke {l,...,N},

(1.2) for te[0,T], x € F(t).

where n denotes the unit normal on 0F(t) directed outside F(t) and vs . denotes the velocity field of
the solid S..

Hence there is no difference with the classical situation, except the fact that the space-time domain
is not cylindrical.

1.1.0.2. Dynamics of the solids. — To describe the position of the x-th solid S, we denote h, and 9
the position of its center of mass and its angle with respect to its initial position. Correspondingly, the
solid’s position at time ¢ is obtained by the following rigid movement with respect to its initial position:

(1.4) S(t) = hu(t) + R(0,(8))(Sk(0) = hs(0)),
where R(¥) is the linear rotation of angle ¢, that is

(1.5) R(9) = (Z?I?((g)) 02151(11(91)9)) '

Note also that the velocity field of the solid S, mentioned in (1.3) is given by
(1.6) Vs, (t, @) 1= R (t) + O (t)(x — ha(t)h,

where (z71, 952)L := (—x2,21). Now we denote the mass and momentum of inertia of the solid S,; by m,
and J,, respectively. The assumption is that the solids evolve according to Newton’s law, under the
influence of the fluid’s pressure on its boundary. Hence the equations of h, and 9, read

myhl(t) = J:?Sm(t) 7(t,x)n(t, z) ds(z),

JO0(t) = st 7(t, x)(z — he(t) T - n(t, z) ds(z),

(1.7) in [0,77].



Remark 1.1. — It could be possible to add some external forces such as gravity in the right hand side
of (1.7) with only minor modifications in the reasonings below.

1.1.0.3. Initial conditions. — The system is supplemented with initial conditions:

— At initial time the solids &y, ..., Sy occupy the positions Si g, ..., Sy such that
(1.8) Vee{l,...,N}, SkocQ, dist(Sk0,00) >0 and VA # &, dist(Sk,0,Sx0) > 0.

We introduce the initial values of the centers of masses h1 g, ..., hn o, and the angles 19 = --- =
Yn,0 = 0 (by convention), which characterize these positions. We denote Fy the corresponding
initial fluid domain.

— The solids have initial velocities (A, 9})(0) = (h] 4,9} ) € R® for k € {1,..., N},

— The circulations of velocity around the solids Sy, ..., Sy, gathered as v = (y1,...,vn), are given,

— We consider an initial vorticity wg € L*(Fp).

Note that this data is sufficient to reconstruct the initial velocity field uy € C°(Fp; R?) in a unique way,
see (2.23). In particular curlug = wp and §(75 ug - 7ds = v, for v = 1,..., N, where 7 is the unit
clockwise tangent vector field.

1.1.0.4. Cauchy theory a la Yudovich. — The system (1.2)-(1.7) admits a suitable Cauchy theory in the
spirit of Yudovich [30]. Precisely, by a straightforward adaptation of the arguments of [11], we obtain
the following result where initial conditions are given, as described above.

Theorem 1. — Given the initial conditions above, there is a unique mazimal solution (hy,01,...,hAn,UN,u)
in the space C%([0,T*))3N x [LP.([0,T%); LL(F(t);R?)) n CO([0,T*); WHa(F(t);R?))] (for all q in

loc

[1,+)) of System (1.2)—(1.7) for some T* > 0. Moreover, as t —> T*,

mm{min (dist(S.(t), 0Q), k € {1,..., N}),min (dist(Ss (), Sx(t)), 5, A € {1,..., N}, A # /{)} —0.
Finally the velocity circulations around the solids v = (y1,...,7n) are constant in time.

Above, LL(F(t); R?) stands for the space of log-Lipschitz vector fields on F(t); we recall that LL£(X)
that is the space of functions f € L*(X) such that

.f . |f(z) — f(y)]
Iflecey = 1flr=x) + 21;2 TR R y—— < +o0.

Also we used the slightly abusive notation L®(0,T; LL(F(t); R?)): it describes the space of functions
defined for almost all ¢, with values for such ¢ in LL(F(t)), with a uniform log-Lipschitz norm. We will
quite systematically use such notations from the cylindrical case to describe our situation. There should
be no ambiguity coming from this abuse of notation.

Let us also mention that the pressure m associated with the solution in Theorem 1 belongs to
L ([0, T%); H*(F(t); R)), see [11, Corollary 2], so that its trace on the solids boundaries is well-defined,
giving a sense to the integrals in the right hand side of (1.7). The pressure is defined up to constant,
but this has no influence on these integrals. Theorem 1 indicates in particular that the lifespan of the
solutions is only limited by a possible collision between solids or between a solid and the boundary.
Regarding the issue of collisions we refer to [14], [15] and the recent paper [3].

1.2. The problem of small solids. — The main question raised by this paper is to determine a limit
system when some of the solids Sy, ..., Sy shrink to a point. To describe this problem, we will denote
the scale of the k-th solid by €, and suppose that the k-th solid S, is obtained initially by applying a
homothety of ratio ¢, and center h, ¢ on the solid of fixed size S;’O:

(1.9) Sgo = hro+ex (5,170 — o).



1.2.0.1. The three sets of solids. — Now let us be more specific about the indices k. The set of indices
{1,..., N} is split in three:

Py =11, Nwy}s Pasy :={Nu +1,..., Ny + Nuay}s Pasey := {Ney + Negy + 15, N},
corresponding respectively to the solids:

— (i) of fixed size and inertia:

(1.10) for k € Py, ex =1, mg = mk, JS =T

K K

— (ii) of size going to zero but with fixed mass:
(1.11) for k € Py, ex — 07, mi=my, Jo=crJ.,

— (iii) of size and mass converging to zero:

(1.12) for k € Puisy, €x — 07, mj = e ml, JS=e%*2J1 for some a, > 0.

Remark 1.2. — Case (iii) encompasses the case of fized density, for which o, = 2. This is actually
the main motivation for the difference in the scaling of mt and Jg.

It will be useful to consider the indices corresponding to small solids (here s stands for small):
(1.13) Ps =Py Y Praisy = {Nw) +1,..., N}, Ng:= Nygy + N
We collect the various ¢,, as follows:

e=(e1,...,en), and € = (SN('L')""I""’EN)'

The total size of small solids will be denoted as follows

(1.14) =) en

KEP;

For g9 > 0, we will write € < ¢p or € < g( to express that the inequality is valid for each coordinate.
We assume, for any « in Ps, that h, o is in € so that S ; < (2 for &, small enough. Up to a redefinition

of S} ; we may assume that

(1.15) SpocQ foralle, <1.

1.2.0.2. Description of the position of the solids. — Grouping the positions of the center of mass and

angles together, we denote the position variable as follows:

G = (hn,ﬁn)T and q = (q1,...,q9n).

It follows that the k-th solid is determined by ¢, and e,; we will denote it by Sk (es, ¢.), or in a simpler
manner SZ(g,;). Moreover when it does not play an important role in the discussion or when it is clear,
we will drop the exponent € and/or the dependence on ¢, to lighten the notations.

When one considers only the non-shrinking solids, it is useful to introduce

qi) = (qlv R qN(z‘))‘

1.2.0.3. Fluid domains. — Corresponding to the above notations, the fluid domain is
Foq) = N(Si(q1) v v Sk(an))-

When the small solids have disappeared, it remains merely the final domain

~

(1.16) Flag) = A\(Si(qr) v+ U Sy, (an,)-



1.2.0.4. Initial conditions. — We consider the initial vorticity wg, the circulations around the solids
~ = (7,...,7n), the initial solid positions ¢° = (g1,0,...,qn0) = (h3,0,...,h%,0) and the initial
solid velocities p° = (p1,0,...,pn0) = () 0,1 05> Py 0,V o) fixed independently of e. Moreover we
assume that v, # 0 when £ € P(;)-

To be more precise on the vorticity, we set for § > 0 the space Lf(; (F) of essentially bounded functions
f satisfying that for almost all 2 € F(g) such that d(x,S,) < § for some k € P, one has f(z) = 0. Now
we suppose that

wo € LCC)O (ﬁ\[SLO Ut U SN<i),O ) {]’Lg), j € 'Pé}])

Hence for some ¢ > 0 and for suitably small £, one has wo € LZs(F0).

We are now in position to state our main result.

1.3. Main result. — We first introduce a convention. To express convergences in domains that actu-
ally depend on the solutions themselves, we will take the convention to extend the vorticity w and the
velocity w (defined in F(t)) by 0 inside S1,...,Sn. In the same way, the limit vorticity and velocity
(defined in F(t)) are extended by 0 inside Sy, ... , SN, as well.

Our main result is as follows.

Theorem 2. — Under the above assumptions there exists eg > 0 and some T > 0 such that the following
holds. To each family € of scale factors with € < €y we associate the corresponding mazimal solution
(¢°,u®) on [0,T¢) given by Theorem 1. Then the maximal existence times T satisfy T > T and, as
€ — 07, up to a subsequence, one has

(1.17) u® — u* in C°([0,T]; LYRQ)) for g€ [1,2),
(1.18) W€ — w* in CO[0,T]; L® () — wx),

R . W22(0,T) weak —  for k€ Py U Py,
(1.19) h, — h in { WLOO(O,T) weak — * for K € Plaiis

(1.20) Vs — U5 in W2(0,T) weak — » for k € Py,
and at the limit the following system holds in the final domain:
([ divu* =0 in ]t"(qfi)),

curlu* = w* + 2 YeOnr N f(qzi)),

KEPs
(1.21) w on=[(hy) + (05) (x —hp)]-n on 38.(qh) for ke Py,

u-n=0 on 01,

u*-Tds =7, for ke Py,

0S8 (qr)

where ¢ = (hy,9)T and qQ = (g, .. 7q}*\,(i)),
(1.22) dw* + div (w'w*) =0 in [0,T] x Fla; (1)),

(1.23)  forallte[0,t], —(dw” + (u* - V)u*) is a gradient in f(q(*i) EN\{hL(t), k€ Ps},

N
reqular in the neighborhood of U 08 (qr), which we denote Vr*,
k=1
ma)'@) = [ w(ton(a)dsto),
(1.24) 05w (a7) in [0,T] for ke P,
Je(97)"(t) = J T (t, @) (z = B (1) " - nlt, ) ds(z),
05k (qx)
1.25) my(hy)" = 'yn[(h;)’ —ui(t, h;)]l in [0,T] for ke Puy,
1.26) (ht) =ur(t,hr) in [0,T] for ke Plaii)



where u’, is the “desingularized version” of u* at h defined by

Ve (= hi ()"

(1.27) ur(t, ) = u*(t,z) - 2 |o — ()2

te[0,T], zeF(aj,(t)).

1.3.0.1. On the limit system. — Theorem 2 identifies the limit dynamics of a family of solutions of the
system (1.2)-(1.7), when some of the solids shrink to points, as a system compound of the Euler-type
system (1.21)-(1.22) for the fluid, the Newton’s laws (1.24) for the solids that have a fixed radius and
the point vortex systems (1.25)-(1.26) for the limit point particles. The interest of (1.23) is to give a
meaning for the trace of the limit fluid pressure 7* on the boundary of the solids that have a fixed radius;
this gives a sense to the right hand sides in (1.24). Regarding the solids with a vanishing radius the limit
equation is not the same in case (ii) and in case (iii), as we can see in (1.25)-(1.26). A common feature
is that the limit equation is independent of the shape of the rigid body which has shrunk.(!)

In case (ii) the rigid body reduces at the limit in a point-mass particle which satisfies the second
order differential equation (1.25). This type of systems has already been discussed by Friedrichs in [4,
Chapter 3], see also [12]. The force in the right hand side of (1.25) extends the classical Kutta-Joukowski
force, as it is a gyroscopic force orthogonally proportional to its relative velocity and proportional to the
circulation around the body. The Kutta-Joukowski-type lift force was originally studied in the case of a
single body in a irrotational unbounded flow at the beginning of the 20th century in the course of the
first mathematical investigations of aeronautics; see for example [19].

In case (iii) the rigid body reduces at the limit in a massless point particle which satisfies the first
order differential equation (1.26), which can be seen as a classical point vortex equation, its vortex
strength being given by the circulation around the rigid body. Historically the point vortex system,
which dates back to Helmholtz, Kirchhoff, Kelvin and Poincaré, has been seen as a simplification of the
the 2D incompressible Euler equations when the vorticity of the fluid is concentrated in a finite number
of points, see for instance [25]. The key feature of the derivation of the point vortex equations from the
2D incompressible Euler equations is that the self-interaction has to be discarded. Theorem 2 proves
that such equations can also be obtained as the limit of the dynamics of rigid bodies of type (iii). The
desingularization of the background fluid velocity u* mentioned in (1.27) precisely corresponds to the
cancellation of the self-interaction.

On the other hand the genuine fluid vorticity w* is convected by the background fluid velocity u*,
according to (1.22). A precise decomposition of the velocity field u* obtained in the limit will be given
below, see (2.26). Systems mixing an evolution equation for absolutely continuous vorticity such as (1.22)
and some evolution equations for point vortices such as (1.26) have been coined as vortex-wave systems
by Marchioro and Pulvirenti in the early 90s, see [25].

1.3.0.2. On the lifespan, on the convergences, and on the uniqueness. — Observe that the existence of
a common lifetime for a subsequence € — 07 is a part of the result, as Theorem 1 does not provide any
quantitative information on the existence times T before collisions.

Let us also stress that the convergences in (1.19) are different depending on whether the rigid body
has a positive mass in the limit or not. Indeed the weaker convergence obtained in Case (iii) is associated
with the degeneracy of the solid dynamics into a first order equation. Except for some well-prepared
initial data the convergence is indeed limited to the weak-* topology of W1:*(0,T). We refer here to
[1] for partial results regarding multi-scale features of the time-evolution of some toy models of the limit
system above which attempts to give more insight on this issue. The issue of the uniqueness of the
solution to the limit system and the associated issue of the convergence of the whole sequence, not only
a subsequence, is a delicate matter. We refer to [24, 25, 17] for some positive results concerning the
vortex-wave system with massless point vortices (the system occupying the whole plane). In the case
of several massive point vortices, we refer to the recent work [18] which gives results when the initial
vorticity is bounded, compactly supported and locally constant in a neighborhood of the point vortices.
A key ingredient in all these uniqueness results is that the point vortices stay away one from another

(1)However let us recall that we assume that the solids S1, ..., Sy are not discs. The case of a disk is peculiar as several
degeneracies appear in this case. We refer to [9] for a complete treatment of this case for a single small body of type
(ii) or (iii) immersed in a irrotational incompressible perfect fluid occupying the full plane or a bounded plane domain; in
particular it is shown that the case of a homogeneous disk is rather simple whereas the case of a non-homogeneous disk
requires appropriate modifications.



and remain distant from the support of the vorticity (or at least, that the vorticity remains constant in
their neighborhood.)

In the particular cases where uniqueness holds and the point vortices and the vorticity remain distant,
we can improve a bit the statement of Theorem 2 into the following one.

Theorem 3. — Suppose the assumptions of Theorem 2 to be satisfied, and suppose moreover that
for this data the limit system (1.21)-(1.27) admits a unique solution in [0,T*) (of class W2 ([0, T*))
for the solids and the massive point vortices, W'lifo([O,T*)) for the massless point vortices, and
CO([0,T*); L®(2) — wx) for the vorticity) for which for all t € [0,T*), the point vortices and the large
solids do mot meet one another and do not meet the support of vorticity nor the outer boundary. Then
the mazimal existence times T¢ satisfy liminfz_,o T > T*, and the convergences (1.17)-(1.20) hold on

any time interval [0,T] < [0,T*) and are valid without restriction to a subsequence.

1.3.0.3. On the relationships with earlier results. — Theorem 2 extends results obtained in the earlier
works [7], which deals with the case of a single small body of type (ii) immersed in an incompressible
perfect fluid occupying the rest of the plane, [8], which deals with the case of a single small body of type
(iii) immersed in an incompressible perfect fluid occupying the rest of the plane, and [9], which deals
with the case of a single small body of type (ii) or (iii) immersed in an irrotational incompressible perfect
fluid occupying a bounded plane domain. In particular we consider for the first time the case of several
small rigid bodies, for which the strategies of the previous papers cannot be adapted straightforwardly,
despite the results recently obtained in [10] in the case of several rigid bodies of type (i). We refer to
Section 2.3 for a more detailed exposition of the strategy.

1.3.0.4. On the relationships with the case of the Navier-Stokes equations. — Let us mention that the
Euler system is a rough modeling for a fluid in a neighborhood of rigid boundaries as even a slight
amount of viscosity may drastically change the behavior of the fluid close to the boundary, due to
boundary layers, and sometimes even in the bulk of the fluid when the boundary layers detach from the
boundary. While the Navier-Stokes equations certainly represent a better choice in terms of modeling,
it is certainly useful to first understand the case of the Euler equations. In this direction let us mention
that Gallay has proven in [5] that the point vortex system can also be obtained as vanishing viscosity
limits of concentrated smooth vortices driven by the incompressible Navier-Stokes equations, see also the
recent extension to vortex-wave systems in [26].

2. Preliminaries
In this section, we introduce some notations and basic tools that are needed in the sequel. Then we

describe briefly the proof and the organization of the rest of the paper.

2.1. Solid variables and configuration spaces. — Below we introduce notations for the solid ve-
locities and for the admissible configurations of the location of the solids and of the support of the
vorticity.

2.1.0.1. Solid velocities. — The solid velocities will be denoted as follows:
(21) Pk = (h;aﬁk)T7 I/)\K = (h;75519;)T7 P = (p17 e apN) and ﬁ = (ﬁla e 7ﬁN)

For i € {1,2,3}, px,; denotes the i-th coordinate of p.. In terms of these coordinates, (1.6) reads as
follows

3
(22> US,H(t7$) = mei&n,iy
=1

with &,; = e; for i = 1,2 and &, 3 = (# — h,)* on 08, (this anticipates the notation (2.7)). Above e;
and ey are the unit vectors of the canonical basis.

2.1.0.2. Admissible configurations. — We introduce notations for the spaces of configuration of the
solids which can also possibly incorporate the configuration for the vorticity. Given § > 0, we let

(2.3) Qs :={(E,q) € (0,1)N: x R3N .
Vv,pe{l,...,N} st. v #p, d(S,(q),S;(q)) > 20 and d(S;(q),082) > 24}.



(2.4) Qs:={(E q,w)e (0,1 xRN x L®(Q) :(,q) € Qs and
Vue{l,...,N}, d(S;(q), Supp(w)) > 26}.

Given ¢p > 0, we refine the above sets by limiting the size of small solids as follows
(2.5) Q5" :={(,q) € Qs / € <o} and Q5° :={(¢,q,w) € Qs / € < eo},

where as before € < ¢y expresses that ¢; < ¢q for all i € Ps.

2.1.0.3. v-neighborhoods in 2. — In many situations, it will be helpful to consider some neighborhoods
of the solids or of their boundaries; we therefore denote for A  Q and v > 0:

(2.6) Vo(A) :={zeQ/dx,A) <v}.

For instance the above conditions for Qs can be rephrased in the form V;(S;(q)) n Vs(S;(q)) = & and
o on.

2.2. Potentials and decomposition of the fluid velocity. — Below we first recall the definition
of the so-called Kirchhoff potentials and the associated notion of added inertia. Then we introduce
the stream functions for the circulation terms, the hydrodynamic Biot-Savart operator and we finally
conclude by recalling the standard decomposition of the velocity field in terms of vorticity, solid velocities
and circulations.

2.2.0.1. The Kirchhoff potentials. — First, for k € {1,...,N} and j € {1,...,5} we introduce the
function &, ;(q,-) : 0F(q) — R? as follows:

on 0F(q)\0Sx, &x.i(q,-) =0,
&r,j(a,x) == ¢; for j = 1,2,
(2.7)  on Sk, { &esla @)= (z— h)t,
§ra(Q @) i= (=21 + hi1, 02 — hep) and & 5(q, @) i= (T2 — b2, 21 — i)
We denote by
Ky j(@,) :==n-&5(a,-)

the normal trace of §. ; on 0F(q), where n denotes the unit normal vector pointing outside F(q). We
introduce the Kirchhoff potentials ¢, j(q, -), as the unique (up to an additive constant) solutions in F(q)
of the following Neumann problems:

(2.8a) Ape ;=0 in F(q),

(2.8) (g, = Kysla)  on oF(a),

We fix the additive constant by requiring (for instance) that

J Pr,jds = 0.
05, (a)

In the same spirit, we define the standalone Kirchhoff potentials as the solutions in R?\S,(q) of the
following Neumann problem:

(2.9a) Ap ;=0 in R\S,(q),
0P ;

(2.9b) ri(q,) = Kiyla,)  on 0Su(a),

(2.9¢) V@i (@) — 0 as |z| — +oo,

(2.9d) J Pr,j(x)ds(z) = 0.

K

We underline that this potential is defined as if S,; were alone in the plane, and consequently merely
depends on the position g.
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We also define the final Kirchhoff potentials corresponding to the domain F (q(iy) where small solids
have disappeared as to satisfy

0Pr ~
28 (q,) = Kiy(a)  on 0F(qp).

2.2.0.2. Inertia matrices. — We first define the (diagonal) 3N x 3N matrix of genuine inertia by M, =
(Mg kinit)1<i,ir<3 With

(2.11) My wint it = On o Oiir (Oiegr,2y M + 0i,3J ).
The 3N x 3N matrix of added inertia is defined by M, = (Mg i i) With

(2.10Db)

(2.12) Mo i ir(d) = J Vr,i(d, ") Vor (g, ) d.
F(a)

This allows to define the total mass matriz M(q) by
(2.13) M(q) = My + Ma(q).

We also define the k-th added inertia matriz as the 3 x 3 matrix defined by
(214) Moo = [ Vonila ) Vons(a )
q

and the k-th standalone added inertia matriz as the 3 x 3 matrix defined by

—~

(2.15) (Man)is (95) = J Vi Vo, dur.
R2\Sk(q)

Finally, when the small solids have disappeared, we also consider the 3N(;) x 3N(;) final added mass
matriz Ma(q(iy) = (Ma,k,i i) (q()) defined by

(2.16) Ma i () = Jv Vri(Aa), o) - Vorr i (dg, ) d.

F(ag)y)

Remark 2.1. — All those added mass matrices are Gram matrices, and consequently symmetric and
positive semi-definite. Moreover, an elementary consequence of our assumption that the solids S1,...,Sn
are not balls is that they are symmetric positive definite matrices, as Gram matrices of independent fami-
lies of vectors. This will be of particular interest for the standalone added mass matrices M\a,1, e ./(/l\a’N.
In the case of balls, these matrices are singular. In that case, mass-vanishing small solids require a dif-
ferent treatment (see [9]).

2.2.0.3. Stream functions for the circulation terms. — To take into account the circulations of velocity
around the solids, we introduce for each x € {1,..., N} the stream function ¢, = 1.(q,-) defined on
F(q) of the harmonic vector field which has circulation d,, around dS,(q) for v = 1,...,N. More
precisely, for every q, there exist unique constants Cy,(q) € R such that the unique solution ,(q,-) of
the Dirichlet problem:

(2.17a) Av(a,) =0 in F(q)

(2.17b) Yu(a,’) = Cup(q) ondS,(q), v=1,...,N,

(2.17¢) Ye(q,) =0 on Y,

satisfies

(2.17d) J O (q,-)ds = =0, v=1,...,N.
o5, (a) 0N

These functions 9, have their standalone counterparts, the stream functions 12,1 = zzn(q, -) defined on
R?\S,(q) of the harmonic vector field which has circulation 1 around 0S,,(q). They are defined as follows:
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for every q, there exists a solution 12,{ (q, ), unique up to an additive constant, of the Dirichlet problem:

(2.18a) Aty(q,") = 0 in R?\S,(q)
(2.18b) @K(q, -) is constant on 0S,(q),
(2.18c¢) Vibe(q,2) — 0 as |z| — +o0,

with the constraint

on

s
(2.18d) J :p (q,-)ds = —1.
0Sx(a)
This allows to introduce the following vector depending merely on S, that is on €, and ¢,:

219)  Glad = [ @=h)ZE ) dsle) = RO m0) = RO an0)

To simplify the notations, we denote ¢} 0= = (}(qs.0). This is referred to as the conformal center of solid.

Fmadly7 as for the Kirchhoff potentlals we can mtroduce the final stream functions for the circulation
1%(01(1)) , N(;), defined in f( i) Here . (q(,)) is the stream function of the harmonic vector
field which has mrculatlon 0y around aS ( ) forv =1,..., Ny. It can be obtained as follows: for every

q(i), there exist unique constants Cv’,w(q(i)) € R such that the unique solution Jn(q(i), -) of the Dirichlet
problem:

(2.20&) A{ﬁ/ﬁ (q(i), ) =0 n ]'\i(q(i)),
(220b) Jﬁ(q(i)ﬂ ) = éﬂu(q(z)) on aSu(qv)7 v=1,..., N(z)7
(2.20¢) Jﬁ(q(i), =0 on 0,
satisfies
0t
(220(31) f 67((1(1'),-) ds = _5um Vv = 17'”7N(i)'
oSy (ae))

2.2.0.4. Biot-Savart kernel. — Following [22, 23] we introduce two hydrodynamic Biot-Savart opera-
tors as follows. Given w € L®(F), we define the velocities K[w] and K[w] as the solutions of

div K[w] =0 in F(q),
curl K[w] =w in F(q),

(2.21) K[w]-n=0 on 0F(q),
3@ Klw]-rds—0 for v—1,...,N,
S,
and
div K[w] =0 in F(q),
curl K[w] =w in F(q),
(2.22) Klw]-n=0 on 0F(q),

ng[w]~Tds=O for v=1,...,Ng.
S,

These are the standard and the final Biot-Savart operators, respectively.
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2.2.0.5. Standard decomposition of the velocity field. — These potentials allow to decompose the veloc-
ity field u in several terms. Since it is the unique solution to the following div /curl system:

divu=0 in F(q),
curlu =w in F(q),
u-n=(h,+9(x—h,)")-n on dS, for v=1,...,N,

(2.23) u-n=0 on 09,

3€u-7'ds:7,, for v=1,...,N,

oS,

we have the standard decomposition of the velocity field w:

(224) u = Z Pu,iku,i + Z %Vl% + K[w] in ]:(q)
ve{l,....N} ve{l,....,N}
1€{1,2,3}

We introduce the following notation for the first term in the decomposition: we let u”°t be the potential
part of the fluid velocity

(2.25) u = 3 pi Ve
ve{l,...,N}
i€{1,2,3}
Note that the velocity field u* obtained in the limit (see (1.21)) can be decomposed as in (2.24) with the
“final” quantities:

(2.26) = > p Vet Y, WVt K lw* + > Yun ] in F(af;),
ve{l,...,Ng} ve{l,...,Ng)} VEP
i€{1,2,3}

where p}, := (h},9;) for v =1,..., Ng.

2.3. Brief description of the proof and organization of the paper. — Let us now give a rough
idea of the proof. One of the main difficulties to pass to the limit is to obtain uniform estimates as the
sizes of the small solids go to zero. A standard energy estimate proves insufficient since the energy is
not bounded as the size of small solids diminish (notice that the energy of a point vortex is infinite).
The hardest case is the one of small and massless solids, for which the kinetic energy gives the weakest
information. We first recall the main ideas to obtain uniform estimates in the case of a single solid,
which was already treated in [8, 9], and then we explain our strategy to overcome the extra difficulties
which appear in the case of several solids, due to the multiplicity of their couplings.

Case of a single solid. The starting point consists in decomposing the velocity field using the potentials
described above. In particular, one extracts the singularity due to the fixed velocity circulation along
the solid by decomposing u* in the form

(2.27) ut(t,x) = lelqzl(m(t)»x) +u"(t, x),

where u"®9 is the “regular part” of the velocity. Then we inject this decomposition in (1.7), which we
can rewrite

(2.28) Mgp s = —f (Gru+ (u-V)u) - VOq ; dx.
o0F

The fact that we use the standalone circulation stream function in (2.27) allows to get rid of the most
singular terms arising in the right-hand side of (2.28) when using the decomposition (2.27). This is due
to the following properties
(}tleL\l + V(USJ . Vﬂzl) =0 and J |V’lj/}\1|2K1’Z' ds = 0,
EX

which will be proved in a more general setting in (5.26), and which allow to treat the terms containing
0;V+i1 and |V+4p1|2. Then the most singular remaining term is linear in V+¢;. Studying this term,
we see that, in order to have a chance to perform an energy estimate in which this term does not give a
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too strong contribution (we will say that this term is gyroscopic or more precisely weakly gyroscopic), it
is necessary to consider a modulated variable

p = p — modulation(e, q, p, u®).

This modulation is imposed by the system, and one must incorporate it in the other terms of the
equation and show that they do not contribute too strongly to the time evolution of the modulated
energy associated with p. This will give a normal form of the equation. To obtain this normal form, it is
needed to decompose u"% in (2.27) in a potential part u?°* (only due to the movement of the solid) and
an “exterior” part u®*!, this exterior part being actually the source of the modulation. The terms that
arise when taking uP°t, u®** and the modulation into account will either be proven to contribute mildly
to the modulated energy or be incorporated in the estimate as added inertia terms.

Case of several solids. When several solids are present, their dynamics are coupled by a variety of
interactions between themselves, including one due to their acceleration. Should we write right away a
normal form for each small solid such as described above then the equations would be coupled by some
bad terms associated with the acceleration of the other solids. Because of this difficulty the strategy
used in our previous papers [7, 8, 9] seems to fail. To overcome this difficulty, we follow a two-steps
process: first we use a collective normal form for the system coupling the time-evolution of all the solids
to make appear all the second-order time derivatives with a good structure, associated with the collective
added mass effect. This allows to obtain a rough estimate of the acceleration of the bodies. However,
this single, common, collective normal form is not sufficient to deal with other interactions between the
solids, which require an individual treatment, taking into account the scale of each solid. Therefore, we
turn to individual normal forms that are specific to each small solid, with an appropriate modulation
related to the influence of the other solids and of the fluid vorticity. Actually, these two types of normal
forms, collective and individual, correspond to different hierarchies: one based on the number of time
derivatives, for which the added inertia is the cornerstone, and another one based on the powers of the
solid radii, for which some nonlinear effects, in particular gyroscopic ones, are the most singular. The
rough estimate of the acceleration, obtained by the collective normal form, is in particular used to obtain
the individual ones, to prove that the coupling due to the acceleration of the other solids is weaker than
expected in the limit.

An important and delicate matter to tackle the different couplings, and to obtain these normal forms,
is the use of various splittings of the fluid velocity-field based on fine studies of Laplace problems in the
fluid domain with ad hoc boundary conditions, to quantify the interactions between the moving bodies
through the fluid with a precision adapted to the scale of each solid. This process is made more difficult
by the fact that each solid possesses its own scale. This leads us to revisit the reflection method.

Then, thanks to these individual normal forms, we obtain precise uniform a priori estimates of the
velocities of the bodies. After that uniform estimates are obtained, we use compactness arguments to
pass to the limit. The normal forms obtained above play a central role to describe the dynamics in the
limit of the small solids. For what concerns the large solids, we must study in particular the convergence
of the pressure near their boundary, we refer here in particular to (9.14) in the case where x € P(;).

Organization of the sequel of the paper. A central tool to develop the arguments above is a
careful description of the potentials used in the decomposition (2.24) of the velocity field. Indeed we
analyze their behavior as the size of some of the solids go to zero, and of their derivative with respect to
position. We use an extension of the reflection method for a div/curl system with prescribed circulations,
see Section 3. In Section 4 we prove the first a priori estimates on the system. This encompasses in
particular vorticity estimates and (not yet modulated) energy estimates. In Section 5 we establish a first
normal form, which is tailored for extracting the coupling due to the solids’ accelerations, and which
allows to obtain the above-mentioned rough acceleration estimates. Then in Section 6 we describe the
modulations, and explain in particular how they are determined and estimated. Then in Section 7 we
establish some individual normal forms, specific to each solid. This allows to obtain the modulated
energy estimates in Section 8. Finally, in Section 9 we pass to the limit.
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3. Estimates on the potentials

In this section, we show how the various potentials appearing in the decomposition (2.24) of the
velocity (including the Kirchhoff potentials ¢, ;, the circulation stream functions v, and the stream
function associated with the Biot-Savart kernel K[w]) can be approximated and estimated by using in
particular their standalone counterparts in R?\S, or their final counterparts in F.

Convention on the higher-order Hélder spaces. Throughout this section, we will take the following
convention for the C*¥®-seminorms, k > 1, a € (0, 1), when considered on a curve. The 0-th order Holder
seminorms |- |, are the standard ones, and for an open set O in R?, we also consider the same seminorms
| |ok.e (o) as usual. For a smooth curve v on the plane and k > 1, we set for f € C**(v):

(3.1) | flck.a(qyy 1= inf {|U|Ck,a(o), u is an extension of f to some neighborhood O of ’y}

Ifleraiyy == [ fllLipey) + [flemacy)-

For a fixed curve +, this is equivalent to the usual norm | | +|0% f|, (due to the existence of continuous
extension operators), but the constants in this equivalence of norms are not uniform as a curve shrinks
(due to curvature terms in 0¥ f).

To study the above-mentioned potentials we begin the section by considering an auxiliary general
problem.

3.1. An auxiliary Dirichlet problem. — In this subsection we consider a general problem of Dirich-
let type that will be helpful to study all the functions used in the decomposition (2.24) and their behavior
as € goes to 0. The general idea is that the Dirichlet boundary conditions will be merely satisfied up to
an additive constant on each component of the boundary, but in return we impose a zero-flux condition
on these components.

To be more specific, we consider the general situation of a domain €2 in which are embedded N solids
81, ..., Sn, such as described before. The fluid domain is then F := Q\(S; U -+ U Sy). Note that the
results of this subsection will be applied not only to F¢ such as described in the introduction, but also
in other domains (such as F or a domain in which one of the small solids has been removed).

We consider N functions «,; € C*(08.;R), £ =1,..., N, and a function ag € C*(0Q;R), and study
the following problem

Af[aq,...,an;aq]l =0 in F,
Hlay,...,an;a0] = ag on 09,

(3:2) Hag,...,an;aq] = ax + ¢ on S, for ke {l,...,N},
Sos, OnHlan, ... an;ag](z)ds(z) = 0 for ke {1,...,N}.
where the unknowns are the function $[aq, ..., an; aq] defined in F and the constants ¢1,...,cn.

3.1.1. Euxistence of solutions for problem (3.2). —

3.1.1.1. A general existence result. — The existence of solutions to problem (3.2) is granted by the
following statement. For the moment, all solids are considered of fixed size.

Lemma 3.1. — Given N functions a, € C*(0S.;R), k = 1,...,N, and a function ag € C*(0;R),
there exist a unique function H[aq, ..., an;aq] and unique constants c1,. .. ,cn solution to System (3.2).

Proof of Lemma 8.1. — We first introduce the solution fj[al, ..., apn; ag] of the standard Dirichlet prob-
lem

A?)[al,...,aN;aQ]zo in F,
Hlay,...,an;a0] = ag on 09,
Hlag,...,an;a0] =a, on S, for ke {l,...,N}.
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Then we correct this solution by means of the following ones: for x € {1,..., N} one defines bh,; as the
unique solution to

Ab,. =0 in F,
he =0 on 09,
b =1 on 08,

hbe =0 on 0S, for v # k.

Obviously, this family is linearly independent (it is connected to the first De Rham cohomology space of
F). Then it remains to prove that the linear mapping from Span{bi,...,hx} to R, defined by

(3.3) N: b US 2,b(2) ds(g;),...,LSN onb(2) ds(x),)

is an isomorphism. This is easy, since when h belongs to its kernel, one has

J |Vh|? da :J honb ds(z) = 0.
F oF
Hence, since h = 0 on 012, we deduce h = 0 in F. O

3.1.1.2. Uniform estimates for fixed sizes. — In the sequel, a case of particular interest is the case of
the “final” fluid domain where all small solids have been removed (hence the fluid domain is larger).
Therefore we consider a domain {2 in which are embedded N;) solids &y, ..., Sy, of fixed size, each
of them being obtained by a rigid movement from a fixed shape, such as described before (in particular
we still use the notation S;(g;)). The fluid domain is then F := Q\(S; U -+ U SN, ). We obtain a sort
of maximum principle for H[aq,...,« N(i);ag] as long as the solids remain a distance at least § > 0 one
from another and from the outer boundary.

Lemma 3.2. — Let § > 0. There exists a constant C > 0 depending merely on 6§, 2, and the shapes of
S1, ..., SN, such that for any

di) = (a1, an,y) € Qiys i= {(th, < qNGy) € R3N@ / Vie{l,...,Nu}, dist(Si(q:),00) > 26
and Vi e {1,..., Ny} with i # j, dist(Si(¢:),S;(q;)) > 25},
for any functions ay € C*(0S\;R), A =1,..., N and any function ag € C*(0Q;R), one has
(3.4) |9[aq, ... ,CKN(i);CKQ]HLOO(]_V—) < Cl(aqy ..., OZN(i);aQ>||LOO(a]j—).

In particular, H{aq, . .. 7ozN(i);on] can be defined for any functions ay € CY(0S\;R), A =1,... ; Ny and
any function ag € CO(0%;R).

Before getting to the proof of Lemma 3.2 we state the following uniform Schauder estimates, see e.g.
[6, p. 98].

Lemma 3.3. — Let 6 > 0. There exists a uniform constant C' > 0 such that for all q;y € Q)5 the
following Schauder estimate holds for u e C*2 (f(q(i))):

o < 1, 1, - .
ol 2y < € (18000 (20q) * It o70qy

Proof of Lemma 3.3. — First one establishes the result locally by using smooth diffeomorphisms close
to the identity from F(q;)) to F(d(;)) when qg;) is close to q;). Using elliptic regularity for smooth
operators with coefficients close to those of the Laplacian, this yields the result in the neighborhood of
q(i)- One concludes by compactness of Q;) s. We omit the details. O

We now prove Lemma 3.2.

Proof of Lemma 3.2. — We consider ay € C*(dSx;R), A = 1,..., N(;) and ag € C*(0;R) and prove
(3.4); the conclusion that $) can be extended to continuous functions follows then immediately by density.

We examine the proof of Lemma 3.1: we see that 5[&1, ..., aN; aq] satisfies the maximum principle,
and hence (3.4). It remains to prove that the correction in Span{h,...,Hn} can be estimated in the
same way.
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It follows from Lemma 3.3 that the functions by are uniformly bounded in C%2 (.}Z' ). This involves in
particular that the integrals

J 6n5~§[a1,...,a1\/;ag] ds(x) = v.%[al,...,aN;aQ]é’nh,\ ds(x), A=1,...,N,
oS oOF

can be bounded uniformly in terms of |(a,... ,OéN(i);OéQ)HLOO(a]f-). It remains to prove that the iso-
morphism 91 defined in (3.3) is uniformly invertible for q(;) € Q5. Let b in Span{bhi,...,bhn, }, say

h= Z A p,\b ». We observe that for some positive constant C':

(3.5) Z oAl < CHhHHm(af),
AEP (i)
since the functions in Span{hi,...,hn} are constant on 0F. Now we have

< CHh”HUZ(aj—) Z

AEP (i)

Jf_|Vb|2dx: _boubds() < 3 [

AEP (i)

j Onb ds(z) J Onbds(z)|,
OSA (—?SA

where we have used that h = px on 0Sx. Moreover, by the trace inequality (which is uniform in Q) s
by straightforward localization arguments),

18011720 < Clbl s -

and, since for b in Span{hi,...,Hx} we have h = 0 on 02, by Poincaré’s inequality (which is also uniform
in q(;), since it merely depends on the diameter of the domain),

b2, - <cj V]2 da.
H1(F) 2 |

Gathering the inequalities above we deduce that

N
HfJHHl/z a]:) Z anhds )
A—1 1Y0SA
The conclusion follows by using again (3.5). O
3.1.2. A potential for a standalone solid. — Now we consider the situation where the single solid S,

rather than being embedded in ) together with other solids S,, v # k, is alone in the plane. This will
play a central role in the description of the asymptotic behavior of the general potentials as some solids
shrink to points.

To be more specific, we consider the solid S, obtained by a rigid movement and a homothety of scale
€, with respect to its counterpart of size 1 at initial position:

8 = S (he, V) = he + € R(9:)(Sk o — P o),
and we study the above outer Dirichlet problem on R?\S¢. Precisely we show the following.

Proposition 8.4. — Let e, > 0, and let « € C*(0SE;R). Then there exist a unique constant ¢,[a]
and a unique function §5[a] € C*(R?\SZ) solution to the system
Afa [a] =0 in R%\S,
(3.6) fola](z) = a + é:[a] on OSE,
I(

Fla](@) — 0 as |z| — +o0.

Moreover one has the following estimates, where the constant C' merely depends on S,i’o and k € N\{0, 1}
(hence is independent of € ):

(3.7) Ifz [l ra\sey < 2[alLe@assy and [exla]] < HO‘HLT(&SE)»
~ k+3 (2
(3.8) exllVizlallloe @2\se) +ex 2 |fi[a]|ck,%(R2\Si) <C (H&HLOO(as;) +en’ |0¢| " 7(955))
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and
A~ EH]
(3.9) Vz st |z —hgl = Ceg, |f.la](z)| < C———alr=(s:)
|x — hyl
~ Ex
and |V [a](x)| < Omuaum(asi)'
Remark 3.5. — Notice that Estimate (3.9) and the divergence theorem involve that
(3.10) Onfi[a] ds = 0.
o8¢e

Proof of Proposition 3.4. — We proceed in two steps.

Step 1. We first consider the case when €, = 1. Since the above estimates are invariant by translation
and rotation, without loss of generality, we can suppose that 9,, = 0 and that 0 is in the interior of S}.
Identifying R? and C, we use the inversion z — 1/z with respect to 0. Denoting the Riemann sphere by

C, we set

Q = {l/z, z € @\Sé},
which is a regular simply connected bounded domain since 0 is in the interior of S}, and consider the
Dirichlet problem:
(3.11) A =0inQ and 6(z) = a(1/z) for z € 0.
Notice that 0 € ' because it is the image of the point at infinity by the inversion z — 1/z. Then we can
set for z € S}:

(3.12) Fal(z) = 6(1/2) — 6(0) and &[a] = —6(0).

By conformality of the inversion z — 1/z, this function satisfies (3.6).
Conversely, starting from a solution f*[a] to (3.6), we set

(3.13) 0(z) := F'[a](1/2).
Moreover, the harmonic function ?1 [a] admits a Laurent series of the form:

(3.14) Pl =y 20

k
k>0 ~

Thus the function 6 is defined and vanishes at z = 0. Moreover, using again the conformality of the
inversion z — 1/z, t the function @ is harmonic in Q" with Dirichlet data o + ¢,[a] on 0, Let 6, the
unique solution of this Dirichlet problem with data a on 0, then 6 = 6y + ¢,.[a]. But, since (0) = 0,
it follows that ¢;[a] = —600(0) and that 0 = 6y — 65(0), which completely determines ?1 [a] by inverting
back (3.13) and therefore proves the uniqueness of the solution [ [a] to (3.6).

Now (3.7) is a direct consequence of (3.12) and of the maximum principle. Estimate (3.8) is also a
consequence of (3.12): we make use of Schauder’s estimates in ', then we invert using that d(R*\S}, 0) >
0. Let us now focus on (3.9). The function

(3.15) n(z) := 0.0(z) = 0,0(2) — 19,0(2)
is holomorphic in €. We call ax(n), k in N, the coefficients of its power series expansion at 0, so that
(3.16) n(z) = 3 ap(n).

k=0
We introduce r > 0 such that the circle S(0, ) lies inside Q' at positive distance from 0. Using interior
elliptic estimates (see e.g. [6, Theorem 2.10, p. 23]), we see that ||n]co(s(or)) < Clalp=(as1) for some
constant C' > 0 merely depending on S!. Then, by using the Cauchy integral formula on S(0,r), we

deduce that there exists Cs > 0 depending only on S} such that |ax(n)| < C&|a|p»(as1) for all k € N.
Now, by (3.14),

21 1 ar(n)
2. [a](z) = — 2
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for some new coefficients ay (1), for k = 0. Thus |V§![o](z)| < Cslz|7?|a| L= (asy) for |2| large enough, for
instance |z —h,| = 2Cs. But for |z—h,| large enough (depending on S} only) we have that |z —h,| < 2|z|.
Hence we deduce the second inequality in (3.9), and then the first one by integration from infinity.

Step 2. Obtaining the estimates for arbitrary e, > 0 is just a matter of rescaling. We call E the

potential obtained above in the exterior domain R?\S! and /f\i the corresponding potential in R?\S<.
Given a in C®(0S%;R) we set a®(z) = a(e,x) defined on S}, Then clearly

Vo e RASS, filal@) = Ralal(w/en), Viilal@) = - Viklal(a/).

The estimates (3.7)—(3.9) follow; Estimate (3.8) in particular is just the rescaled Schauder estimate (note
that the seminorms defined in (3.1) scale in the same way as Holder seminorms on open sets). O

3.1.3. A construction of the potential in the presence of small solids. — Now we consider again the
situation of a domain 2 in which are embedded N solids, among which N(; stay of fixed size and N; are
shrinking. The only constraints that we will use is dist(0Sx,0S,) = ¢ for k # v and dist(0S,, 0Q) = §
for all kK where d > 0 is fixed. The constants that follow will merely depend on §,  and on the shape of
the unscaled solids S! at size 1. In particular they are independent of & Ney+1:77° HEN (as long as they
are small enough) and of the exact positions of the solids (as long as the above constraints are satisfied).

In this context we give a particular construction of $[as,...,an;aq], inspired by the method of
successive reflections (see e.g. [20] and references therein). The solution $[aq,...,an;aq] will be
obtained by means of the inversion of an operator on

(M-, Nn-MQ) € Ear i= C%(0S1) x --- x C*(0SN) x C°(092),

which will be a perturbation of the identity by a contractive map.

Let us describe this contractive map. We first recall that F refers to the larger fluid domain where
the small solids have been removed, see (1.16). Correspondingly, 0F = 081 U -+ U SN, U IQ. Now

given (n1,...,nn,n0) € Eor we first introduce § = g[n1, ..., nn,;1e] and éx = Ex[m, ..., n,, ;3 m0] as
the solution in F of the Dirichlet problem

—~A§=0in F,

g=mnq on 09,
(3.17) g=1nx+CondSxy, YA=1,...,Ng,

S(’)SA é’nﬁds(x) = 0, YA = 1, .. .,N(Z).

This problem has a solution as described in Lemma 3.2. Note in particular that Lemma 3.2 brings the
following estimate:

(3.18) Hﬁ“po(j:) <Clm, ..., 77N<i)aﬂsz)\\L%(aslx---xasN<i) x0Q)-
Next we introduce the function m = m[ny,...,nx;nq] in F by
(3.19) m:i=g+ Z falmn — Bjasy ] with = g[n1,....nn, 510,
AEPs

where, as in (1.13), we have denoted P, = {N(;) +1,..., N} the set of indices for shrinking solids. Note
that m is the unique solution to the following Dirichlet problem of type (3.2) (for some constants c1, ...,
CN)Z

—Am=0in F,
m=nq + Z)\E'PS fA[77/\ - \g/|é’S>\] on 697
(3.20) m =1 + Yyep, N — Blos,] + ¢, on 38, for ve P,

m=rnn, + Z,\Eps\{y} f)\[n)\ — §|55A] +c, on 6SV for v e 'Ps,
Sos, Onmds(z) =0, Vv =1,...,N,

where for the last equation we have used (3.6), (3.10), (3.17) and the divergence theorem.
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Our goal is to prove that one can put the solution $[ai,...,an;aq] of (3.2) in the form
m[n,...,N;ne] with n1,...,95,nq determined from a,...,an,aq. For that we define the op-
erator 7 : E;r — Esr by

Saep, Al — Blas, ] on 0F = 081 U -+ U Sy, U 0L,
(321) 7-[7]17,T]N77]Q] = { er =N :\ (i)
2oepa (v} ALy — Gjas,] on 0S,, for ve Py,

where again § = g[n1,...,7n,; 7). Then

. . (Id+7-)[7]1,...,771\[;7]g2] on 0f),
(3.22) mm, i e] = { (Id+ T)[m,...,nn;na] + ¢, on 8S,, v=1,...,N.
Now we have the following lemma, where we recall that € = (5N<i)+1: .., EN)-
Lemma 3.6. — There exists g > 0 depending only on &, Q and on the shape of the unscaled solids S

such that if € < €g, then T is a %—contmction.

Proof of Lemma 8.6. — The main argument is that the value of T [n1,...,n~;nq] on a connected com-
ponent of the boundary, say 0S,, is actually given by a sum of restrictions on 0S,, of potentials generated
on other connected components of the boundary (and the same holds for d2). We first see that by

Lemma 3.2, § satisfies (3.18). Then we use (3.9): for v # A, this allows to estimate T [7x — §jos, ] on the
d-neighborhood Vs(0S,) of S, (see (2.6)) by

(3:23)  [falm — Gjasa Il vs(es.)) < Cenlll(m, - - VNG M0) [ oo (281 - x 28, xa0) T Il L= (asy))
and the same holds for Vs(092).
By the definition (3.21) of T, we deduce that on 0F = 081 U --- U 0SN(1) v 092,

[T vimell ez < € Z ex(mllzeasy) + H(nh-~~>nN(i)7779)HL°°(651><~-><E)SN(”x&Q))
AEP;

< C ( Z 5k> 1y me) | Lo (08, x - x a8y x09)5
AEP

while on 08, for v € Py, we get

1T, v melllie@es,) < C Z 5)\(H77>\HL°°(68>\)+”(7717'-~anN(i)a779)HL00(681><~~><65N“)x&Q))

AePs\{v}
< C Z EX H(ﬁlw-’77N7779)|\Lw(aslx~-xasNxaQ)-
AeP\{r}
Hence the operator T is a %-contraction if € is small enough. O

Now we consider such an €. From Lemma 3.6 we infer that Id + 7 is invertible. We deduce the following
lemma.

Lemma 3.7. — Given (aq,...,an;aq) in Ear we introduce
(3.24) (Bis-- -, BNy Ba) == (Id+ T) *(ai,...,an,aq).
Then

Hlon, ... aniae] =m[By, ..., Bn; Bal.

Proof of Lemma 3.7. — From (3.20), (3.22) and (3.24), we see that m[f1,...,0n;Ba] is the unique
solution to (3.2) corresponding to the boundary data (a1, ...,an;aq).
O

We finish this paragraph by noticing the fact that 7 has important regularizing properties. Recall
that 6 was introduced at the beginning of Subsection 3.1.3.
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Lemma 3.8. — Given 6 > 0, there exists g > 0 such that for all € with € < eq, for all k € N, there
exists a positive constant C' merely depending on k, §, Q and on the unscaled solids S5 such that for any
(M, ---,nN;nq) € Ear, one has

17w me)l gy oy < Ol s 110) oo

Proof of Lemma 3.8. — We introduce for each v € {1,..., N} a neighborhood U, of S, of size O(J),
and hence independent of €,. More precisely, for v € P;), we let U, = Vs (8,) (where we recall the
notation (2.6)). For v € P,, we let U, = B(h,,0/2) and we notice that for suitably small &, one has
S, © B(h,,d/8). We also introduce some neighborhood U/, of S, depending only on § and satisfying
U, < U,: for instance for v € P;y, we consider U, = V;/4(S,) and for v € P, we let U}, = B(h,,/4). In
the same way we introduce the §/2-neighborhood (respectively §/4-neighborhood ) Uy (resp. Uf) of 0.
Then by interior elliptic regularity estimates we find a positive constant C' = C(k,U,,,U!) such that for
any harmonic function f on U, one has

1 ln s gy < ClF Lo

u,
We apply it to %\[m — fjas,] for A # v to get a Holder estimate on U, and restrict it to 0S, and 0Q
(which is trivial with the convention (3.1)). Finally we use (3.21) and (3.23). This ends the proof of
Lemma 3.8. O

3.1.4. Asymptotic behavior for problem (3.2). — In this paragraph we study the behavior of the solu-
tions (3.2) as some of the embedded solids shrink to points. Let € satisfy the assumptions of Lemma 3.6.

We consider a particular case of H[ay,...,an;aq], when all a, but one are zero and ag = 0 as well.
Let k€ {1,...,N} and o, € CY(3S,;R). We denote
(3.25) fulax] == 9[0,...,0,04,0,...,0;0],

where a is on the k-th position. The first result of this section, concerning the case when the k-th solid
is small, is the following one. We recall the notation Pg for the set of indices for shrinking solids, see
(1.13), and the notation (2.6) for a v-neighborhood.

Proposition 3.9. — Let 6 > 0. There exists eg > 0 such that the following holds. There ezists a
constant C' > 0 depending only on 6, Q, k = 2 and the reference solids Si, A=1,...,N, such that for
any € such that € < eg, for any k € Ps, for any q € Qs, for any af € C®(SE;R), one has

(3.26) IVisla®] = Vig[a®]|Le ey < Cexlla®| L= (os:),
€ k—% €
feloNons wyomy * 2 & HeloTond wyoss)
AP\ {k}
k—1 ~
(3.27) +en [fulo] = Talo N nt 1, ose)) < Conlollimcoss),

where f.[af] € C(F (q)) is the unique solution given by (3.25), J«[af] € C(RA\SS) is the unique
solution to (3.6).

Let us highlight that there is no Holder norm in the right-hand side of (3.27), as opposed to (3.8).

Proof of Proposition 3.9. — First, we fix ¢y so that Lemma 3.6 and Lemma 3.8 apply. We let the
(N + 1)-tuple A be
A:=(0,...,0,,0,...,0,0),

where « is on the k-th position and we introduce

(3.28) B=(B1,...,0n,8q) = (I+T) "A).

Then according to Lemma 3.7 we have

(3.29) fola] = m[B] in F.

Now relying on (3.19), we arrive at the formula

(3.30) folal =Felal =5+ Y, B [B] i 7
AEP;
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with

< . o By — \g/,@|53A when \ # &,
(331) gﬂ T g[/gla cee 76]\7(1)769] and for A e 7387 ﬁ/\ = { B}\ . \g/ﬁlas)\ — when \ = k.

Our goal is to estimate the right-hand side of (3.30). A first step is to estimate B — A. To that purpose
we first notice that

(3.32) B-A=-TB)=-To(I+T)'A).
Due to Lemma 3.6, we have |[(I + 7)™ z(co@ar)) < 2, so in particular we deduce
(3.33) IB — Al z2@r) < [T(A)|Le@r)-

Now when computing 7 (A) with (3.21), we see that the function § involved in (3.21) and the constants
¢y from (3.17) are zero because the only non-trivial boundary data « is located on a small solid Sy,
k € Ps. Hence (3.21) gives

f.[a] on 02 andon 08, for Ae{l,...,N}\{x},

(3.34) T(A) = { fule) on

We deduce from (3.33), (3.34), (3.9) and the separation between the connected components of the
boundary, that
(3.35) B = A + O(exle]pe(as,)) in L*(0F).

Now we obtain higher order estimates. By (3.34), (3.9) and interior elliptic regularity estimates,

1T (A k.3 (o) < Cerllalz=@s,)- By (3.35) and Lemma 3.8, [T(B—A)| k3 7 < Cexlalr=@s,). We
deduce
(3.36) HT(B)HCk,%(a}-) < Cegllal = os,),

which together with (3.32) gives

(3.37) B = A + O(e4]|ap=(0s,)) in C*3(0F).

Now the terms in the right-hand side of (3.30) can be estimated as follows. By (3.37), the fact that
A;=0fori=1,..., Ny, uniform Schauder estimates in 7 (Lemma 3.3) and (3.31),

(3.38) < Ceglafr=(os,)-

(85l n 5,

Let us now turn to the estimate of f,\[ﬁ,\] A€ Ps. From B— A = (81 — 6,.10,..., 88 — Su.na, Ba),

(3.37), (3.38) and (3.31), we infer that for all A in Py, |Ba|

convention (3.1) we deduce that

~ 1

Br = e
10SA] Jas,

cr(asy) < Ceifafp=(as,)- Recalling the

ﬂ,\ < CENE/\”a”Loc(aSN).
L*(08y)

Using (3.8) on the solid Sy and the fact that the operators %\ do not see constants we deduce

(3.39) WaePs, [ VR[B] |, (R2\S») ’fx[ﬁx] |Ck,%(R2\SA) < Cegllali=as.)-

Then interior regularity for Laplace equation involves that in the J§-neighborhood Vs(0F\0S,) of
OF\OS,

(3.40) VA€ s, [TalBr] | grd yareiasyy < Cexlalees,)-
Now (3.30), (3.38), (3.39) and (3.40) give (3.26) and
e T rAE T rAE e
|f,i[a ] [ ]|C" Y (Vs (0F)) + ;) E)\ |fn fﬁ[a ]|C""%(V5(6S§)) < Cana HLw(aS:)-

Now we estimate ﬁ,{[a with (3.9) and interior regularity estimate for the Laplace

o3 oo
equation to arrive at (3.27). This ends the proof of Proposition 3.9. O
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There is a corresponding result in the situation where the non-trivial boundary data is not given on
a small solid, but rather on solids of fixed size and on the outer boundary o<Q.

Proposition 3.10. — Let § > 0 and k = 2. There exist two positive constants C and €y depending
only on 8, Q and the reference solids Sy, A = 1,...,N (C depending moreover on k), such that for
any € with € < €q, the following holds. Fiz q € Qs and consider for each k € {1,..., Ny} a function
a, € CY(0S.;R), and let ag € C°(0Q;R). Let

(3.41) o =9[a1,...,ang,,0,...,0;a0] € CO(F (q)),

and §o = glam, ..., ang; aal in Coc(f(q(i))) where § is given by (3.17). Then

(3.42) VHa = Via + Y, Via[Bajas;]

AEP;

where |€| is defined in (1.14), and

3.43 j b <C
B43) 190 = Talont o * 2 % Bolon sy < (laalz=goa) + ) Jetall = 25, ).
VEP s KE (i)

<C|§\(H0¢Q\|Lw(aﬂ) + Z H%Hm(asm)),
Loc(]:a) HE'P(Z')

Moreover, uniformly for ai,...,an, and ag in a bounded set of C° and for in q € Qs, one has for all
AeP,, as ey — 0T,

(3.44) HV?/\ [§a|63§] —> 0 forp< 4w

s bounded, HV%\ [§a|93§] L8255
A

L (R2\S5)

— 0 for any ¢ > 0 and k € N.

d HVA Falose
an fk[g ‘65*] Ck({zeQ/d(z,55)=c})

Proof of Proposition 3.10. — We proceed as in the proof as Proposition 3.9. We introduce
A= (a1,...,an),0,...,0,a0),

and define B = (81, ..., Ax, Ba) again by (3.28). Then Lemma 3.7 states that , = m[B] in F . Here,
instead of (3.30), (3.19) allows writing

Do =8+ Y, fr[Br—Bpjos,] with §s :=3[B1, ..., By, Bal.
AEP;
Consequently
(3.45) Na — fa + Z fx[Bajosy ] = 88 — Ba + Z fa [Ba] + Z fx [Bajos, — 8s10sy ] -
AEPs AEP, NePs

To establish (3.42), we estimate the right-hand side of (3.45), starting with an estimate of B— A. Instead
of (3.34), we now obtain from (3.21) that

T(A) =— Z ?,\[\éa‘ask] on 0F and T(A)=— Z f/\[ﬁa\ask] on 0S8, for v e Ps.
AePs AePs\{v}

Again, T(A) on 0§, is obtained as traces of harmonic functions generated by non-homogeneous data on
boundaries of solids different from S,. Now Lemma 3.2 involves that

(3.46) el sy < ClAlLL- (o,
where with a slight abuse of notation we have set |A|L=or) 1= |aa|r=@q) + Z%p(i) Akl (as,)- By
(3.9) and interior regularity estimates,

IT(A) | oy < CEIIAL Lo

Using (3.33) we therefore obtain
B — A = O([e)|AlL»@r) in LZ(0F),
in place of (3.35). Using Lemma 3.8, we deduce

IT(B - A Clel[A] L= ax)-

<
k3 (oF)
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We arrive at

IT®) o g o) < CIENNAl o0,
which replaces (3.36). Since B = A — T (B),
(3.47) B =A+O(E)|A] sz in C*2(0F).

Then we deduce estimates on the right-hand side of (3.45). First by (3.47) and the uniform Schauder
elliptic estimates in F for d-admissible configurations (Lemma 3.3),

(3.48) 85 8ol g 5, < CTENIAL o).
Next, for A € Ps, by (3.47) and the fact that Ay = 0 for A € Ps, ||ﬂ>‘HC"”%(as ) S Clel| Al L= (or), and
A
consequently
1 _
B — FIN Bx < ClElex|Al L= (ar)-
| S)\‘ 0S8 L©(0Sy)
All the same from (3.48) we deduce
.« 1 S _
85— 8o~ 135 (85 — 9a) < Cleler| Al L= or)-
Al JosSy L (88y)

Hence with (3.8) and the fact that the operators ?u do not see constants we deduce that for all A € Py,

(3.49) (ViB]|

+ vax (85105, — Bajos, | : < CE||A] L= (a7),

L*(R2\Sx) L*(R2\Sx

as0) 7 (i

Putting together (3.45), (3.48) and (3.49) we obtain (3.42).

Now to get (3.43), we estimate the right-hand side of (3.45) in C*2 (Vs5(0F¢)) and in C*2 (V5(3S,))
for v € P,. For the first term in (3.45) we simply use (3.48). We now focus on the two remaining sums.
First, we can estimate them in Ck’%(Vg((?]?‘f)) thanks to (3.49) and local elliptic estimates. Let us now
fix in v € P, and estimate these two remaining sums of (3.45) in C*2 (V5(0S,,)). We first use (3.49) and
interior elliptic regularity to deduce that

> ’?A[BA] , + ) ‘?A[ﬁmask—ﬁawsx]

AePo\ (v} ChIWs08))  \prny

< Clel|A] = ar)-

+ ’f)x[\g/ﬁlﬁ&\ - E0‘\53/\] Ck’é(R2\S>\))

cr b @2\s,y)

< Cle||All o .
b (s (05.)) [ElAllL= (a7

For the remaining terms corresponding to A = v, we use (3.50). Altogether, putting these estimates in
(3.45) we obtain the uniform estimate

Ha — G + Z /f\/\ [Gajas, |

AEP

ot (vs(0F)

+ Z 6113_%

vePy

o — \g,a + Z /f\)\[\g/ah?s)\]
AEPs

< Clel|A] L or)-
C*E (V5(2S,))

Now using (3.46) and interior regularity estimate, we have uniformly in g € Qy:

(3.51) APy [fal < C|A| po(or.

(Vs(951))
This implies in particular |§o —§a (ha)llL=(0s,) < C|A| L= o7 ex for A € P,. Hence using Proposition 3.4

and the invariance of %\ with respect to additive constant, we obtain a uniform estimate

VA e P, 51;_% Hﬁ\ [Gaj08, |

< C|A| = (o7)-
ot} ®2\85) 1A 2= (o)

Moreover by (3.9) and interior regularity estimates, one has

VA e Py, [iaFaros,]

< C|Alp=or-
o aressy < CIALE=65)

This gives (3.43).
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We now turn to (3.44). Since (3.44) corresponds to a phenomenon that we will meet at different stages
of the paper, we encapsulate it in a lemma which establishes the smallness of some correctors on small
solids.

Lemma 3.11. — Let A€ Ps. Lete, € (0,1)N, &, — 0. Let (gn) a sequence of functions g,, : 0Sy* — R

such that, with our convention on the Holder spaces, ||gn| < C. Then, asn — +0o0, Vf§ [gn] is

fs [gn]

chd @s5r)
bounded in L (R*\S5"), — 0 for any ¢ > 0 and k € N, and fo[gn] -0

in LP(Q\S5"), p < 4.

Ck({zeQ/d(z,S;")=c})

Proof of Lemma 3.11. — We first observe that up to an additional constant on dS5", one has
|gnllLe(ossny < Cen. Then the boundedness of Vfi[g,] in L*(R*\S5") is a consequence of (3.8).

Moreover the second part of the lemma follows from (3.9). The third assertion is a consequence of the
first two. H

Now (3.44) is a direct consequence of Lemma 3.11 and of (3.51). This ends the proof of Proposi-
tion 3.10. O

Remark 3.12. — Note that, since e, = 1 for k € Py, Estimate (3.26) is also valid in this case. Indeed
due to (3.42)-(3.44) and (3.8) we see that that Vi.[of] and Vi.[af] are both of size O(|a%]).

3.1.5. Shape derivatives of potentials solving Dirichlet problems. — In this paragraph, we estimate the
shape derivatives of potentials solving Dirichlet problems. This will be useful to estimate the time-
derivative of some velocity fields in forthcoming paragraphs. We refer to [13, 27] for general references
on shape differentiation.

Let us first recall a way to write these shape derivatives. We consider a reference configuration q in
Q. Given pe {1,...,N}, me {1,2,3} and p% = (£}, w}) € R?, we define hy,(t) = hy + tl% and consider
in R? a smooth time-dependent vector field such that &*(t, z) = £% + w(z — hy,(t))* in a neighborhood
of 05,(q) and & (z) = 0 in a neighborhood of dF(q)\0S,.(q). We associate then the corresponding flow
(s,2) = T;¥(s,x) (for s small and z € F(q)) that satisfies

oT*

6: (s,x) = fj(s,T;(s,x)), T:f 0,z) = .
For small s, T)¥(s,) sends F(q) into F(q + spj;), where we denote by pj; € R3N the vector given by
P;, = (6xuP))r=1..n. Then the shape derivative of a potential ¢ = ¢(q,z) (defined and regular on
Uqeolal} x F(q)) with respect to g, is then obtained as

*

Op d _ d 0o ,_
2 (@) = (@ spZ,m)|s:0 = ea+ spZ7T§(s,x))|S:0 -5, (@2) €50, 7).

q
0qy,
This is actually independent of the choice of the family of diffeomorphisms T} (s, -) : F(q) — F (g + sp;};)
as long as T;7(0,-) = 1d, 0,75 (0,-) = & (0,x) on 0S,(q) and 5T} (0,) =0 on 8]-"( N\OS,.(q). We set
op _ 0p
aq;t,m . anL

mo

where (e, ez, e3) is the canonical basis of R3.

Lemma 3.13. — Consider a regular family of functions (®(q,-))qeq, with ®(q,-) : F(q) — R satisfying
—A®(q,-) = 0 in F(q) and ®(q, ) = a(q, ) on 0F(q), where o is a smooth function on qug{q} x

0F(q). Then for pe{l,...,N} and m € {1,2,3} the shape derivative (q,’n) is the solution to the system

0®(q,-)
O0Qu,m
0®(q,") da(q,") N <0a(q,-) _ 0%(q,)

0qu,m - 0qu,m ox ox

—A——= =0 in F(q),

(3.52)

>'nK“,m on 0F(q).
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Remark 3.14. — Note that the material derivative (q ) 4 m(q ) ‘nK,, m is well-defined for functions
a defined on the boundary | Jycolal x 0F(a) in the ( q, ) plane because the vector (8, m, (§um - 7)N)
is tangent to it, where 6, ,, denotes the vector in R3N for which only the coordinate corresponding to

(11, m) is monzero and is equal to 1. Alternatively, we may smoothly extend o in Jycofa} x F(q) and
define the partial derivatives with respect to g, m and x independently.

Proof of Lemma 3.13. — That % is harmonic in F(q) is just a matter of commuting derivatives.
For what concerns the boundary céndition, we use that ®(q,z) = a(q,z) on 0F(q) to infer that for
any py € R3, ®(g + spr, Ti(s, ) = a(q + sp;‘:,Tj(s,x)) for small s and « € 0F(q), where as before
p/”j = (6wp:‘:),€:1“_1\/. Differentiating with respect to s, we deduce

0%(q, ) 4 00(q,") . _ O . da

S = — & 0F(q).

0qu i ox S 2qu Pu ox &u on (@)
It follows that

0®(q, ) dox ola —®(q,)]
3.53 gt —— ot T 0F(q).
(3.53) 2a, Th T ag, P + e ¢y on 0F(q)
It remains to notice that since ®(q,x) = a(q,z) on the boundary, the gradient of a(-) — ®(q,-) with
respect to & on the boundary is normal. With 5;‘ n = Z;:1pz,mKu,mv we reach the conclusion. O

The equivalent of Lemma 3.13 holds for the variant of the Dirichlet problem that we considered above.

Corollary 3.15. — Consider a smooth function o on qug{q} x 0F(q) and a regular family of func-

tions (9(q, -))qe0, with ®(q,-) : F(q) — R and a regular family of constants (¢1(q), ..., cn(q))qeo which
are solution to

~A®(q,") = 0 in F(a),

N<q,):a( ) +ex(q) on dSx(a), VAe{l,...,N},
®(q,") = a(q,-) on 09,

Sasxa ®(q,z)ds =0, Yre{l,...,N}.

d(q. -
Then for pe {l,...,N} and m € {1,2,3} the shape derivative 0%(a, ") is the solution to the system

qu,m
(3.54)
Al ——=| =01 F(qg),
( G,m ) (@)

B ox ox

od (q,-) da(q,-) oa(q,-) a%(q, )
aC]u,m aq,u,m

) nK,m+d\(a) on dSx(q), VAe{l,...,N},

aq)(cb) _ aa(qa) on (99,
aq,u,m aq,u,m

J o (a@(q,-)> ds=0, Ve {l,...,N},
L Jasa Oys,m

for some constants c1(q), ..., (q).

Proof of Corollary 3.15. — We check the validity of the various equations in (3.54). As for Lemma 3.13,
the first equation is obtained by commuting derivatives with respect to x and q. To obtain the second
equation, we observe that the shape derivative of a constant function with respect to x on 0Sy (for each
q) is a constant function on 0Sy. Let us highlight that the regularity with respect to q is a consequence
of the construction and of the regularity for the usual Dirichlet problem. The third equation is trivial.

f aq)((L )

Finally we see that the flux o across 08y for A # p and across 0f2 is zero, since these components

of the boundary are fixed and the ﬂux of CI)(q, ) across them is zero for all q. Considering that aq)quy’n) is

harmonic and using the divergence theorem, it follows that the flux across dS,, of - P (q ) is zero as well.
" O
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Remark 3.16. — In both (3.52) and (3.54), we may write

da(q, ) bala) 20(q,) _ da(q,) do(q,)  0%(q,)
0Gu,m " ( ox or nKym O0qu,m + ox ox Epm-

This is just a matter of stopping the computation at (3.53), or of keeping in mind that, since a(q,-) —
®(q,-) is constant on the boundary, its tangential derivative is zero.

3.1.6. Transposing to the Neumann problem. — Let us now describe how the analysis of the paragraphs
above can be transposed to the Neumann problem. Given k € {1,...,N}, ¢ € Qs and 8 € C*(3S,;R)
such that

(3.55) B(z)ds(z) =0,
0S,

we consider the solution f2/[3] € C*(F(q)) (unique up to an additive constant) of the Neumann problem

AR[Bl =0 in F(q),
(3.56) onfY[B] =0 on 0F(q)\dSx,
anﬁg\[[/@] :6 on aS&a

and f/{;\/ [B] € C*(R?\S,) be the solution (unique up to an additive constant) of the standalone Neumann
problem

AR[B] =0 in RAS,,
Vfﬁ/[ﬂ](x) — 0 as |z| — 400,
OnfN[B] =B on 0S..

Condition (3.55) allows to write the function /5 as
B8 =0.B.

Then the following result is elementary to check.

Lemma 3.17. — One has the correspondence VPV [8] = V4.[B] and ViV [8] = V5. [B]. In particu-
lar, one can apply Proposition 3.4 to f‘y[ﬁ] and Propositions 3.9 and 3.10 and Y [B] with 1Bl 2= as2) =
O(exlBlLe(asz)) in the right-hand side in place of ||a®| L« (ase)-

Of course, in the same way, we can consider the Neumann counterpart of §) defined in (3.2), say
9N[B1, ..., Bn: Bal, and in the same way obtain the correspondence with $[Bi, ..., Bx; Bq] where By,
..., By and Bg are primitives of 8y, ..., By and Bg on 08y, ..., 0Sy and 052, respectively.

In the sequel we will use mainly the case of the Neumann problem.

3.2. Estimates of the Kirchhoff potentials. — In this paragraph we apply the above results in the
case of the Kirchhoff potentials defined in (2.8) and study their shape derivatives as well.

3.2.1. The Kirchhoff potentials. — We first recall several properties of the standalone Kirchhoff poten-

tials proved for instance in [8].

Lemma 3.18. — The standalone Kirchhoff potentials @, ., x € {1,...,N}, k € {1,---,5}, have the
following properties:

R R x—h
o for fized qn, % p(x— hi) =eitM=0L ( )

€k

(3.57) and V@5 p(v—hg) = Ei’@sV@i,k (a: — h”) ,
2+0k>3
(358) o V@ ,(2)=0 (“) at infinity,

|z — hyl|?

(3.59) e 5;5’“>3V@K7k is bounded in R*\S; and &, = O(eLto=3) on 0SE.
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Remark 3.19. — It is elementary to check that given q,, we recover the k-th standalone Kirchhoff
potentials at q,, from their equivalent at the basic position through

@n 1(Qm hy + R(ﬁn)m)) (SBH 1(07 55)) ~ ~
~ ’ :R 77-9/-{ ~ ’ y K H7hR+R 7-9,‘-{ = K 07 i
<%,2<qm v TR D) < ro (2000 puata (0.)2) = $r(0, 2)

ot (Gestoee ZRto) = meon (B267))

Consequently, all the estimates on the standalone Kirchhoff potentials are independent of the position q.

We have the following first statement regarding the behavior of the Kirchhoff potentials ¢, ; in F*°
for small values of ¢,.

Proposition 3.20. — For § > 0, there exists €9 > 0 depending only on §, Q and the shape of the
reference solids S, A = 1,..., N, such that for any € with € < e, the following holds. Let k€ {1,..., N},
ke{l,---,5} and £ € N\{0, 1}. For some constant C > 0 independent of €, the following holds uniformly
forqe Qs:

(3.60) IVork = VP klLo (e (q) < Certo>s,
(3.61)
-3 —3 S 240k >3
|‘p"’k|cf~%(v5(af)) + ,\GPZ\:{K}E/\ |§0m,k)|cf~%(\){;(8$)\)) + €r |<Pn7k - @m,k|ce,%(vé(asm)) < CegTok=38)
240k >3
(3:62) [V klre(Fe(q) < Cel=3 and Ve, p(z) = O (M) for x e F°(q) s.t. |z — hy| = Ce,,

and one has, up to an additional constant on each connected component of the boundary,
O(e2H0=3) on 09,

(3.63) Ouk =13 02 %3¢,y on 0S, if u+# -k,
Pk + O(310k=2) = O(elT9=3) on 4S,.

Proof of Proposition 3.20. — We use Lemma 3.17 with 8 = K, ;, hence we may apply to it Proposi-

tion 3.9 if k € P(;) and Remark 3.12 otherwise. Since || Ky x|r=(as,) = O(z—:i’“%), we obtain from (3.26)
and (3.27) that (3.60) and (3.61) hold. To obtain (3.62) we use (3.60) together with (3.57) and (3.58).
For what concerns (3.63), it suffices then integrate Vi, 1, — V@, 1 on 0S,, taking into account (3.60) and
(3.58) when u # k. O

Remark 3.21. — The Kirchhoff potentials @ 1, are defined up to a single additional constant (while the
aforementioned additional constants in (3.63) many differ from one connected component of the boundary
to the other). We can however normalize this global additional constant so that

(3.64) Onk = O(ELT=3) on 88, and @1 = O(E2T=>2) on OF\S,.
It suffices for instance to take @n 1(X) = @ur(X) for some point X € 0 (and integrate starting from
this point).

In the case of Kirchhoff potentials corresponding to a solid of fixed size, we have the following more

accurate result.

Proposition 3.22. — Let § > 0. There exists eg > 0 such that for all € with € < gg the following
holds. Let r € Py, k € {1,2,3}. Let £ € N\{0,1}. Then for some constant C > 0 independent of €, the
following holds uniformly for q € Qs:

(3.65) Vouk = Vonk + Y. Vir[Bei] < Clel,
AEPs L= (F(a)
. =
(3.66) [P = ‘p“vk|c£~%(v5(af)) + 27; ev ” |<p“’k}cz’%(va(055)) <¢
veEP,

and the terms Vix [@rk]| are bounded in L*(R?\S,), converge to 0 in C*({z € Q/d(z,S\) = ¢} for all
¢>0 and £ € N and in LP(Q\Sy), p < +0.
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Proof of Proposition 3.22. — We let ¢¢ as in Lemma 3.6 and we reason as for Proposition 3.20, using
the correspondence between Dirichlet and Neumann problems (Lemma 3.17) and Proposition 3.10. [

This has the following corollary on the added mass matrix. Recall that the added mass matrices where
defined in (2.12)—(2.15).

Corollary 8.28. — Let § > 0. There exist constants C > 0 and g9 > 0 such that for all K,k €
{1,...,N} and all i,i" € {1,2,3}, as long as (e,q) € QF°,

o ;2465
(367) Ma,n,i,n’,i’ - 5H,HIMQ,K,i,i' < C€i+5315,4 3 /-
Moreover one has, uniformly for q € Qs,
(368) Ma,n,i,n’,i/ - 5/@67’@-)6;@’673(1)-/\/1(1,&,)4,’,2',@‘/ as € — 0.

Proof of Corollary 3.23. — We first write

(369) Ma,n,i,n’,i’ = J (pn,iKm’,i' dSa

S,/
and notice that this formula is insensitive to a constant added to ¢, ;. Estimate (3.67) is then a direct
consequence of (3.63). The convergence (3.68) follows in the same way from Proposition 3.22. O

Remark 3.24. — Notice that both (3.67) and (3.68) prove the convergence to 0 of Mg i . when
k or k' belongs to Ps. When both indices x and ' belong to Py, (3.67) merely proves that it remains

€ =
a,k,i,1

bounded. Notice also that, as a consequence of (3.57), Mg i satisfies the scale relation M\
5?63"’%3“/(/1\}1,,%1-’1»,.
3.2.2. Shape derivatives of the Kirchhoff potentials. — In this paragraph, we estimate the shape deriva-
tives of the Kirchhoff potentials. An expression of the shape derivative of the Kirchhoff potentials was
already obtained in [10]. Here we give a slightly different proof for this expression by relying on the
results of Section 3.1.5 (and extend it for indices 4 and 5). Precisely we consider the shape derivative
0
8%\)6 (q,-) of the Kirchhoff potentials ¢y, for A € {1,...,N} and ¢ € {1,...,5} with respect to the
qu,m
variable g, m, for p=1,...,N, m=1,2,3.

Lemma 3.25. — ForA=1,...,N,te{l,...,5}, u=1,...,N, m = 1,2,3, the function U2Y (q,)

Opu,m
is harmonic in F(q) and satisfies:
0 0P .
(3.70) = ) (@) =0 on 2F(@)\0S,,
0 (0 o [(0
(371) % <a;0A7£) (qv ) = g [( ?;75 - (5)\,5 : T)) (f/t,m . n)] + 6@2357716{1,2}87 (gi_,f ! GM) on a‘S/L'
w,m

We recall that the notation & ¢ is defined in (2.7).

Proof of Lemma 3.25. — As previously, we translate the Neumann problem defining the Kirchhoff po-
tential ¢, ¢ into a Dirichlet problem (or in other words, we consider the harmonic conjugate of ¢y ().
Hence we introduce the function ¢% , and the constants ci,--- , ¢y that satisfy

—ApX = 0in F(q),

P10 = T+ cx on 0Sx(a),
X o = cx on 0S.(q), Vr # A,
X =0on 09,

Onpypds =0, Ve {l,...,N},
4S, ’
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where J ¢ is defined as a primitive of K ¢ on S). Namely we take Jy, = 0 on 0F\0Sy, and on dSy,

|.T - h)\|2

(372) j)\’z:—ffz if€:1, jA’z:Jil if€:2, j,\’e: 9

if ¢ =3,

(1 — ha1)? = (w2 — hy2)?
2

We extend J, ¢ in the neighborhood of these boundaries by the same formulas. In particular, one has
the relation

J,\’e: (!L‘l—h,\’l)(xg—h)\’g) if £ =4 and j)\’[: if £ =5.

(3.73) Ve = —&x in the neighborhood of 0.F.
A5k
Then Vi, ¢ = Vﬂpj,g in F(q), and thus V (%) =vt (m) in F(q). By Corollary 3.15, we find
op* o
Thae _ 5,€)\6MAﬂ + (6:aVTne -1 — On@x o) Kym + ¢, on 0S.(q), k€ {l,...,N},
aq;t,m 5@ ,m ’
a k
Phe _ 0 on 09.
p,m
We compute % as follows:
oJ.
LU 00>30me(1,2) VIr0 - €m on OSy.
aq}\,m
0 P
Since 0,50 = —Onyt, and 0, ( 90”) =0, ( “O“f), using (3.73) we obtain (3.71). O
’ aqM,m aq;L,m

This allows us to prove the following estimates on the shape derivatives of the Kirchhoff potentials.

Proposition 3.26. — Let § > 0. There is g > 0 such that for all € such that € < eg, for A\, u, Kk €
{1,...,N}, for £ € {1,2,3} and m € {1,2,3,4,5}, uniformly for q € Qs, one has

(3.74) ?DJ = 0(56/\[>3+26A#H€Zm3+26u#“5) on 0S, (up to an additive constant),
Qu,m

0
(3.75) HVW _ 0(65)\£>3+26>\¢u6;1+5m3)7

aq,u,m L*(F)

0
(3.76) V;J(m) = 0(66)\'323”6**“6;*5”3) for x such that d(x,S,,) = 6.
w,m

Proof of Proposition 3.26. — We proceed in three steps.

Step 1. By Lemma 3.25,

(3.77) ggpﬂ = f)[2.8B],
Gyoon

where we recall that f-’/:/ was defined in (3.56) and where B is given on 05, by a primitive of the data
(3.71) on S,

oT

where we recall the convention (2.7) on &y ¢ (in particular, this is 0 away from Sy).

0
B = <W - (EN[ ' T)> (gu,m n) + 5@235me{1,2}£i€ *€m Ol aSM’

Step 2. Now we evaluate B on 0S,,. For X\ # p, Proposition 3.20 gives directly

245
< C’e/\’L =3

S 1
i=3

9 %) i
nleae €93 (V5(2S,))

. _ 43 . i—3 o~ 2+680>3
In the case u = A, by Proposition 3.20, for j > 2, one has €\ 2|px¢ SO/\’ACJ’%(V(;(L’SA)) < Cey .

1 ,
Moreover from Proposition 3.4, using the scale relation (3.57), we see that €z\+ : |¢)\,Z|Cj,% < CET‘S‘%.

(F)
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We deduce that

1
J—3 So>3
€ ; < Ce

A ‘¢A7€|CJ’%(V5(0S>\)) = A

i1

On the other hand, for all p (including A), the tangent 7 on S, satisfies itself el 2|r] o4 as,) <C
%

(this is a scaling argument consistent with (3.1)). For what concerns the L®™ norm, it follows from

Propositions 3.20 and 3.22 that |V ¢ = (as,) = (9(5?\5”“-%523). We deduce with the Leibniz rule that

for all pe{l,...,N}

ng‘su%x +0e>3

s
eiloroxel ey os,) < C6

It follows then that

5
(3.78) 1Bl < 25,y + €2 |B] O(Ei5u#x+5z>3gim3).

c*58,)
g

Step 3. Now we deduce estimates on f‘l’:f [0-B] as follows: we apply Lemma 3.17, Proposition 3.9 and
Remark 3.12 to fﬁf[aTB] to obtain that for pe {1,..., N},

(3.79) ViN[0-B] = ViN[0:B] + O (e,4|Bl=(zs,)) in L*(F(q)).

To estimate V%’Y[&TB], we use Proposition 3.4 and (3.78). Hence (3.76) is a consequence of (3.79)
and (3.9), and (3.75) follows from (3.8). We deduce (3.74) by integrating (3.75) (if K = p) and (3.76)

(otherwise) over 0S,. The estimate on 02 is performed in the same way. O
3.3. Estimates on the circulation stream function. — In this section we study the circulation
stream functions ¢2, for k = 1,--- , N, introduced in (2.17).

We first recall several elementary properties of the standalone circulation stream functions 122, for
k=1,---, N, introduced in (2.18). We refer for instance to [7] for a proof.

Lemma 3.27. — Fore, =1,

(3.80) DL ((hs9)s2) = $L((0,0), R(—0,) (z — hy)),
for fized g,

e _ i ~ (@ = hy
(3.81) V%(JC — hﬁ) = - Vi, <€K ) ,

the function 61125 — i&gzz;,@ admits the following Laurent series expansion for C such that S} < B(0,C),

(3.82) (911;»; — 2'62’(//;,{ = + Z a—: for z=x1—h1+i(xa—hoy) and |z = C.
z

2Tz
k=2

Note in particular that (3.81)-(3.82) involve

17e (z = hy)* Ex
. == —— | f — hy| = Cey,
(3.83) Vi (x) 2z — ho]? +0 e or |z | = Ce
and consequently
~ 1
(3.84) (= he)T - Vi (2) = =— + O (g,) for |z — hy| = O(1).

2T

The O (g,;) above can be taken in any norm, because this functions is harmonic, since

(3.85) (2 — he)" - Vi (@) = Re[i(z — hy) (0100, — i021),)].

We are now in position to study :.
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3.3.1. Estimates on the reflected circulation stream function. — For k = 1,..., N, we consider in the
difference between the circulation stream function v, and its standalone version 1., that is

(3.86) U = s = U

By (2.17) and (2.18) there are some constants cy, for A =1,..., N, such that
AYr =0 in F,
YL =c, on 08,

(3.87) Yy = —+ ¢, on 3S,, Vv # K,

YT = —h, on 09,
Sasyanngzo, forall v=1,...,N.

Thus 9, can be considered as a “reflected” circulation stream function: one can view it as the part of
1, due to the response of the domain to the standalone stream function v¢,,. We have the following
estimates on ;..

Lemma 3.28. — Let § > 0. There exists £9 > 0 such that the following holds. Let k€ {1,...,N} and
k € N. There exists C > 0 such that for any € such that € < gy and any q € Qs, one has

(3.88) IV L7y < C,

k=1 .
(3.89) VAe (L N et sy < C

Proof of Lemma 3.28. — We let

(390) A= ({b\/ﬂ@sl Yo 7{[1\#@\051\/“) ,0,...,0, {!}\R\[)Q) and A = (&M&’Sl Yo 7{[;;%\951\7(1.) ) /IZKI‘(—)Q)i

where moreover we replace the k-th element 12,4555 with 0 whenever x € P;.

With Propositions 3.9 and 3.10 in mind, we rewrite v}, as

(3.91) Uh=-9[A1 = Y fultduss, ]

vePs\{xr}

Due to Lemma 3.27, Vi, is bounded on {z /d(x,08;) = 6}, and hence so is .. Thanks to interior
elliptic estimates we may even obtain that

(3.92) &, s — P (B Lo (25, + |9 is bounded for v # .

c*d(as.)
With uniform Schauder estimates in  (Lemma 3.3), this involves that |§[A] [P & is bounded. With

Proposition 3.10 we deduce that $[A] gives a bounded contribution to (3.88) and (3.89).
For what concerns the second term in (3.91), we use Proposition 3.9 and (3.92). It remains then

to estimate the corresponding combination of standalone potentials f,,[zz;,ﬁwgy] for v € Ps\{x}. The
conclusion follows from Proposition 3.4. [

From Lemma 3.28 we can deduce in particular the following uniform estimates of the constants Cy, ., (q)
introduced in (2.17).

Corollary 3.29. — Let 6 > 0. There exists eg > 0 such that the following holds. Let k,v e {1,...,N}
with k # v. There exists C' > 0 such that for any € such that € < g9 and any q € Qs, one has

(3.93) Crula)] < C.

Proof of Corollary 3.29. — From (3.83), (3.86) and Lemma 3.28, we deduce that Vi, is uniformly
bounded for [x—h,| = O(1). Since 1, = 0 on 02, we infer that 1, is uniformly bounded on  J, .. S,. O

In addition to these uniform estimates, one may describe the limit of these circulation vector fields.
For that we rely on the decomposition

(3.94) VA = Vi, + VYL,
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and introduce two particular velocity vector fields that appear in the limit. For k € P, we denote

T — hy L
(3.95) Hy(x) = W

and for k € P, the potential J,: as the solution (up to an additive constant) of
At =0 in Flqe),

VT (z) -n(z) = —Hy(z) -n(z) on QU U 0S,,

(3.96) P
§ VLJ,: ~7ds =0 for vePgy.
oS,
It is straightforward to see that for any x € Py,
(3.97) Hy, + VYD = K[04,] in Flaw)-

Then we have the following convergences, where all vector fields are put to 0 inside the solids.

Proposition 3.30. — Let § > 0. Uniformly for q € Qs, one has as € — 0 for any k€ N, p < +00 and
any ¢ > 0:

(3.98) Vi€ Py, Vi, —> H,(z) in LP(Q) for pe [1,2) and in C*({x € Q / |z — he| = ¢}),
(3.99) Vi e Py, VEYL — VAL in LP(Q) and in L®({z € @ / d(z,U,ep, Su) = c}),
(3.100) Vi € Py, Vg — Vi, in LP(Q) and in L®({z € @ / d(z,U,ep, Su) = c}).

Proof of Proposition 3.30. — We begin with the proof of (3.98). Considering x € P, and p € [1,2), we
first cut the integral in two:

Jue

where C' is taken as in (3.83). For the first integral, using Lemma 3.27 and a change of variable, we get

p

‘v%; ~H(2)| d,

VJ‘@ZE —H (x)‘ de = f
K K
B(hK/7CEN)\Si

~ p
Vige - Hﬁ(x)‘ dz + J
Q\B(hy,Cer)

Vs - Hn(ar)‘p dx = 62"’J VgL - Hﬁ(x)]p dr = O(277).

JB(hN,Ce,{)\Si B(h,,C)\S}

Concerning the second integral, by (3.83), for some R > 0 such that Q < B(h,, R),
1

——dx = O(*7P),
(0,R)\B(h,C2) [T — hu|??

K

J v4s - Hﬁ(x)‘p dr < caf,gf
Q\B(h,,Ce.) B
Since p € [1,2), the convergence (3.98) in LP(Q2) follows. The convergence in L* away from h,, is a direct
consequence of (3.83) and interior regularity estimates for harmonic functions.

We now prove (3.99). Let k € P;. We use the same notations (3.90) as in the proof of Lemma 3.28
and rely on (3.91). Due to Lemma 3.11, each of the terms V=, [12)\,{|(75V], for v € Ps\{k}, converges to 0
in LP(Q), p < 4+ and in L ({z € Q/d(x,J,cp, Sv) = c}). Now by Proposition 3.10,

VH(A) - VE[A] + > Vi[5[A]]
AePs

<C|§\(H%\ag|\m(an) + ) Hi/)masyHwasu))-
L;ﬁ(]_—) VG'PU)

We recall that |[€| was defined in (1.14). Using again Lemma 3.11, we see that each of the terms
Vi [ﬁ[jv&]w&] above converges to 0 in LP(2) and in L*({z € Q/d(x,(,cp, Sv) = c}). Now from (3.96)
and (3.98), using the uniform Schauder estimates (seec Lemma 3.3), we see that VLg[A] converges to
—Vliz,: in C*-3 (F) for all k. This proves (3.99).

The proof of (3.100) is analogous. Let x € P(;). Here (3.86) and (3.91) give

Ve = e — HA) = Y. fulups, ],

vePS
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where A was defined in (3.90). Again, due to Lemma 3.11, each of the terms Vlf,,[zznwsu] above
converges to 0 in LP(2) (for p < +00) and in L*({z € Q/d(z,|J,ep, Sv) = c}). Moreover, Proposition 3.10
gives us here that

V$H(A) + > Vis

AePs

< Clel(I1Pmoalir@ey + ) Idwiaslins.) )-

Loc(]:) veP)\{x}

Using again Lemma 3.11, we see that each of the terms V/f\,\[ [V]] above converges to 0 in LP(§2) and in

L*({z € Q/d(x,|],cp, Sv) = c}). It remains to observe that here b — g[A] = . in F since both sides
satisfy (2.20). This gives (3.100). O

3.3.2. Shape derivatives of the reflected circulation stream function. — Here we are interested in differ-
entiating v, with respect to g, m.

Lemma 3.31. — Let § > 0. There exist eg > 0 and C > 0 such that for all € such that € < ¢, for all
kypwe{l,...,N}, me{1,2,3}, for all q € Qs,

6 r 6 r
3.101 L < Ce% and Y < CejtHoms
(? s 8
QLo (F\Vs/2(2S,)) B L (v5(05,0))
a T
(3.102) ‘V 2 < Caff‘?’ for p<2.
aqli,m LP(F)

Proof of Lemma 3.31. — We proceed in two steps.

Step 1. We rely on (3.87) and use Corollary 3.15 and Remark 3.16 to write

e ~
T PN L (5#,{%/;,@ - WJ;;) Eum + ¢ on 88, for A=1,...,N,
(3.103) - Vs _ 53 Oy
Qa.m ,5/mﬂ on 0f).
O0yu,m

We now study the various terms in the first line of (3.103). Due to Lemma 3.27 we have
(3.104)

0P
0Gk,m

= —Vi, - & b i RIS, with & (q,2) :=¢; for j = 1,2 and & 5(q, z) 1= (v — he)t in R2.

The term &7&55%% merely gives a contribution when g = k on all the connected components of

the boundary but 0S,, = 0S.. Due to (3.83) and (3.104), this contribution satisfies, up to an additional
constant,

b

< Caim.
qu,m

L@ (F\Vs/2(0Sk))

Spuse

Using inner regularity for the Laplace equation and (3.85), the same holds in C*2 (F\Vs(dS,)). Hence,
up to an additive constant, we deduce
O
PN ;éﬁglm@i
ym

< C’e,\sf;”
Lx(aS)\)

Let us now turn to the second term, which merely gives a contribution on 0S) when A = p # k (recall

(2.7)). By Lemma 3.27 and (3.83), we see that the term SrienViby - &u,m gives a contribution of order
g3 in L%-norm and in C*2-norm on 0S,,.
Finally we consider the last term, which again only gives a contribution on 0Sy when A\ = p. By

Lemma 3.28, the term Vi, - £, ., gives a contribution of size 5?;”3 in L%®-norm and at worst of order
1
dms o T2y iy OFo%
O(egr2 ey ?) in C™2-norm on 0S,,.
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Gathering these estimates we obtain, up to an additive constant on each connected component Sy of
the boundary, that for k > 1,

H aw/‘: < CEstgi)\¢u’ 5];+% ‘ awl‘: < Cgfbmisef\)\#u’
Ou,m | 0 25y 0pum | om% (os,,)
o oY
H Vn < Csi’"3 and H Ve < Cei’”3.
aQM,m Lo (09) aqlhm Ck’%((?fl)
Step 2. As before we write
oY oYr oY oYr o
a% =9 a‘/’“ ""’awﬁ ,o,...,o;aw“ + 3 fa Ve .
qu,m Gu,m |as, qu,m oS Qu,m o0 XeP Qu,m |58,

The $ term is bounded in Wl’oo(f ) due Proposition 3.10, the above estimates and the uniform Schauder
estimates in F (Lemma 3.3). The fy terms can be replaced by their standalone counterpart fy thanks to
Proposition 3.9. These f, are estimated by Proposition 3.4 which gives the estimates in (3.101).

Concerning (3.102), by the above considerations, we only need to discuss the contribution of the ?A
terms. Mixing (3.8) and (3.9), and distinguishing « € B(hy, Ce)\S5 and « € F\B(hy,Ce)), we see that

U, H oYy, 0y,
](m> < ‘x_h)\|2 ( aqﬂm Ck\é(@g/\)) .

aq,u,m EEN aqu,m
Now we put the above inequality to the power p and integrate. We can inject  in some ball B(hy, R)
with R > 0 fixed so that we write F < B(hy, R)\B(hy, C’e)) for some positive C’. The result follows. [

(3.105) Va e F,

A

vh|

Lo(28y)

3.3.3. Reflected circulation stream function of a phantom solid. — In this paragraph, we extend the
above estimates on the reflected circulation stream function 9}, to a slight variant. This variant will play
an important role in the definition of the modulation and in the passage to the limit, in particular for
what concerns the desingularization (1.27).

For k € P, we first introduce the following “k-augmented” fluid domain as follows:

(3.106) Fela) := Fla) v Su(a).
Note in particular that

0F.(q) = 0F(q)\0Sk(q) = 0Q U U oS,
ve{l . NR\{r}

Now we introduce ¢7# as the solution in F,(q) (together with constants cx, A € {1,..., N}\{x}) to the
system:

Ayt =0 in Fo(q),
YT = —ih + ey on dSx(q), for Ae{l,...,N}\{x},
(8.107) Ut = e on 20,

J O ds =0 for ve{l,..., N)\{x}.
28, (a)

The only difference indeed between %" and 7* is that the constraint 7 = ¢, on 0S, in (3.87) has

disappeared in (3.107), and that the domain is ]t',{ rather than F. Adapting the arguments above we
obtain the following result.

Lemma 3.32. — Let 6 > 0. There exists eg > 0 such that the following holds. Let k € Ps and k € N.
There exists C' > 0 such that for any € such that € < g9 and any q € Qs, one has

r Sr (k_l)
(3.108) [V e < G, and YA€ {1, N}, ey g o<
(N4 i
(3.109) Sw < ngm?) and ‘ngn < CE;1+57”3+6‘“‘.
Qum || L (F\V52(25,,)) Qum Lo (v5(28,.))
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Moreover, uniformly for q € Qs, one has as€ — 0 for any ke N, p < +00 and any ¢ > 0:
(3.110) VEi# —s VT in LP(Q) and in L ({x € Q/d(x, Usep. iy Sv) = c})-

Proof of Lemma 3.32. — This is a mere adaptation of Lemmas 3.28 and 3.31 and of (3.99). Hence we
only stress the variations in the proofs.
To get (3.108), the main point is that (3.91) has to be replaced by

(3.111) Yt = =54 A) = Y Pbaes, ],

vePs\{k}

where the potentials $” and §# correspond to the domain .7\5,.i rather than F, and where we define the
N-tuple A := (@nwsl, e 7’(2)\K|(35N(i) ,0,...,0, zz;,dm), where N corresponds to N —1 solids plus € (because
there is no boundary dS,;). Then the same argument as in Lemma 3.28 applies to obtain (3.108), using
Propositions 3.9 and 3.10 in the domain with N — 1 solids .7?,.;.

Concerning the estimate (3.109) of the shape derivative, when p # k, it suffices to make the slight
correction to the boundary condition (3.103):

a{b\n r -~
dupt | O (Ve + Vo)  Gum + ¢k on 88y for Ae {1, N}\{},
Gp,m a 31@;
" —(SWm n o0f2.

Then the same reasoning as in Lemma 3.31 applies. Importantly enough, dS,; is now in the bulk of the

- ot
domain F; so that the standalone potentials (see (3.105)) give a bounded contribution to VS;Z}” in the
w,m
neighborhood of S.
When p = &, the situation is a bit different, because % is no longer a shape derivative (the domain

]\5,@ does not depend on ¢,;) but a simple derivative with respect to a parameter The boundary condition
PR N4 >
becomes 22— — —% on 0F,, and the boundedness of £ 0maV sEa— (w — (here in the whole Fy) follows

04r,m
as before.
Finally, to prove (3.110), we rely again on (3. 111) and reason as for (3 100). We approximate V§H”(A)
by V§[A] with the same g and the same A= (Q/chmsla .. ,w,{‘asNO,w,{wQ) as in the proof of (3.100)

(since k € Ps). Hence we obtain the same limit. O

3.4. Estimates of the Biot-Savart kernel. —

3.4.1. Biot-Savart kernel. — The following will be useful for both the a priori estimates and the passage
to the limit. We consider w € L¥(F) and compare the generated velocity K [w] in F (in the domain with
all solids) and the generated velocity K [w] in F (in the larger domain with only solids of family (i)) as
defined in (2.21) and (2.22). In particular we prove that these velocity fields are bounded independently
of €. Precisely we have the following result.

Lemma 3.33. — Let § > 0. There exists eg > 0 such that the following holds. For any p € (2, +00],
there exist C > 0 such that for any (e,q,w) € QF°, one has

B.112)  |K[w] 5oy < Clwllzr(ze) and 5,\75 | K[w]| < Clwlze(Fe), YA=1,...,N.

CcF13(08%)
In the same way, there exists g > 0 and for each p € (1,4+0), there exist C > 0 such that for any
(e.q) € Q5°, any f € LP(F°(q); R?) such that dist(Supp(f), 0F<(q)) = 6,

(3.113) I K[div (D]l o ey < ClF e (Fe)-

Finally, uniformly for (q,w) such that (e,q,w) € Q3° when € is small and w is bounded in L™,

~

(3.114) HK[w] — K[w] 0 forpe (2, +0)

Lr(F(a))

and HK[w]—Iv([w — 0 as€— 0.

H Lo ({wej:—/d(w,uueps gu)%})

Remark 3.34. — Actually, our proof only needs w or f to be supported away from the small solids.
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Proof of Lemma 3.33. — For § > 0, we let £y as in Lemma 3.6. Clearly, the difference R[w] := K[w] —
K[w] satisfies

div R[w] = curl R[w] =0 in F(q),
R[w]-n=0 on 0F(q),
Rlw]-n=—K[w]-n on 0F\0F(q),

%E[w]-7d3=0 for v=1,...,N.
as,

In particular one can write R[w] = V3[w] where

(3.115) Plw)=— ) I [‘T’[W]wsn],

KEPs

and where W[w] is a stream function for K[w], that is, K[w] = V-U[w].

We first estimate K [w]. As for Lemma 3.3, we have uniform Calderén-Zygmund estimates (see e.g.
[6, Lemma 9.17]) in Fas long as q;y € Q(;),5- It follows that for each p € (1,+00), one has a uniform
constant C' > 0 such that

(3.116) Hf([w]H

< C €).
Wi (F) lwll e ()

Then we invoke Sobolev embedding for p > 2 to get the bound

(3.117) HK[W]”Lw(f) < COlwleo-

This embedding is also uniform in F as long as q(;) € Q)5 it suffices to use an extension operator
inside each solid and use the embedding in 2. We notice that since w is distant from the solids, by inner
regularity for the Laplace equation, we have

(3.118) | K[w] ) < Clwloe and [ ) < Cllwlee.

lor 3 (07 [Wllor3 v, 0

Now we apply Proposition 3.9 and Proposition 3.4 to each term in the right-hand-side of (3.115). This
gives

1
2

R[w]

HR[UJ]H < CHWHLP(]:E) and 61;,_

< Clwlprirey, VA=1,....N.
L*®(Fe) ) H HL (F¢)

cF b3 (088

We consequently deduce (3.112) with (3.117).

The convergence (3.114) of R[w] to 0 as &€ — 0 is proven as (3.44): it is a consequence of Lemma 3.11
and (3.118).

Finally (3.113) is proven in the same way, albeit in a weaker context. Denoting by Kp= the Biot-Savart
operator in the full plane, such that

div Kgz[w] =0 in R2?
curl Kp2[w] = w in R2,
Kg2[w](z) — 0 as z —> 00,
we recall that Kz odiv = VlAﬂggl div is a Calderén-Zygmund operator which sends LP(R?) into itself

(for p € (1, +00)). It remains to check that the correction to obtain K[div (f)] is also estimated uniformly
in L?(F(q)). Thanks to the constraint on the support of f, it is again a consequence of interior elliptic

estimates and of Propositions 3.9, 3.10 and 3.4. O
3.4.2. Shape derivatives of the Biot-Savart kernel. — In this paragraph, for fixed w, we estimate the
K]
shape derivative .
p,m
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Lemma 3.85. — Let 6§ >0, pe{l,...,N}, me{1,2,3}. There exists C >0 and g9 > 0 such that for
any (€,9,w )6535,

[w]

< Cs;l‘HSmS
G,m

L* (Vs (05,.))

< Ceyr ”"’Hmmq)) : H Wl o (7 a) -

H aq;tm L*(F\Vs/2(0S,.))

Ce:l‘imS leolpeo (7(q)y for p<2.

Lo (F

5(1/‘ m

Proof of Lemma 3.35. — Here we first introduce Kq[w] that satisfies

div Kg[w] =0 in ©,
(3.119) curl Kg[w] =w in Q,

Kqlw]-n=0 on 09Q.
(Recall that we suppose 2 simply connected to simplify.) Note that Kq[w] (whose shape derivative is
obviously zero) can be put in the form Kq[w] = V1 W¥g[w] with ¥olw] = Ay w, where Ag! is the usual
inverse of the Laplacian with homogeneous Dirichlet boundary conditions on 0€2. Now the difference
R[w] = K[w] — Kq[w] satisfies
div R[w] = cwrl R[w] =0 in F(q),
R[w] - n=—-Kglw]-n on 84S, for v=1,..., N,
(3.120) { R[w]-n=0 on 09,

%R[m]-7ds=0 for v=1,...,N.

oS,
It follows that R[w] can be put in the form R[w] = V+n[w] with

Anlw] =0 in F(q),
nw] = —Yqlw] + ¢, on 8S,, forall v=1,...,N,
n[w] =0 on 09,

J Onnw]ds =0 for v=1,...,N.
oS,

Consequently, using Corollary 3.15 we find that for some constants ¢}, A € {1,..., N}, one has
Onlw] _ 0 on 09 and W] _ ¢\ on 08y for \#p,
aqu,m a(]u,m

while on 0S,(q), one has

(_an\IJQ [w] - 3n77[w]) Ku,m + C;t
= (Kolw]+ R[w]) -7 Kym + ¢, = (K[w] - 7) Kpum + €,

Using Lemma 3.33, we can bound this boundary condition as in the proofs of Proposition 3.26 or
Lemma 3.31, so that we obtain for some uniform constant C' > 0

H onfw] onfw]
aqu’L an,m

+ 6#
L*(2S,)

Om
L SO Wl (req) -
C*3(25,)

Then we use that

=f, [( onlw >|"3 ] in F¢(q), Propositions 3.9 and 3.10 to approximate it by the

0qu,m

functions %\ and 57, and we estimate the latter by Proposition 3.4. The estimate in L? norm is exactly
the same as (3.102). We omit the details. O
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4. First a priori estimates
In this section we establish two a priori estimates on the system. The first one is on the fluid vorticity.

Lemma 4.1. — For a solution to System (1.2)-(1.7) and p € [1,+x], |w|, is conserved over time and
given § > 0, | K[w]|« is bounded independently of t and € as long as (g,q,w) € Ny.

Démonstration. — The first statement is due to
(4.1) Ow® + (uf - V)w® =0 in F°,
and Liouville’s theorem. The second follows then from Lemma 3.33. O

Next result is devoted to a renormalized energy estimate, which gives a first bound of p, (recall the
definition in (2.1)).

Proposition 4.2. — Let § > 0. There exist C > 0 and g9 > 0 such that as long as (e,q,w) € Q5°, the
solutions (u®, h®,9%) of the system satisfy
6%6 iii) A~
(4.2) Vee{l,...,N}, le. “p.| <C.
Let us mention that this estimate will be improved in the sequel, by considering some modulated
energy estimates, for which some intermediate work on the solid accelerations is necessary, for which
these rough bounds are used.

Proof of Proposition 4.2. — We first consider the total energy of the system:

1 1
4.3 E(t) == m,@h;z—l—J,“?;z—l—fJ ul? de.
(4.3) B=5 D (mlhy [95:17) 2m)ll

rke{l,...,N}

For a solution to (1.2)-(1.7), this energy £(t) is conserved over time. This is proven by multiplying (1.2)
by u, the equations in (1.7) by hl and ¥, respectively, summing and integrating by parts. Now the
conservation of £(¢) is insufficient to reach Proposition 4.2 directly because the energy is not bounded
as € goes to 0. This is due to of the circulation part of the fluid velocity (see the second term in the
decomposition (2.24)) corresponding to small solids. To circumvent this difficulty we will rather use the

following quantity:

1 1
(4.4) - Z (mu W2 )? 4 Je|90)?) + *J |uPt|? du,
255{1,...,N} 2Jr

where the potential part of the fluid velocity u?°! was defined in (2.25). Since, by (2.13),

3 N o g [ = Mp -

we{l,...,N} t)
in order to prove Proposition 4.2, it is sufficient to show that the quantity above is bounded independently
of t and e. Indeed, once this is obtained, one uses M, < M to get a bound on p, for x € Py U Py,
and one uses M, < M together with Corollary 3.23 and Remarks 2.1 and 3.24 to deduce a bound on
€xDr When & is in Py

To prove that the quantity in (4.4) is bounded we rely on the decomposition (2.24) of the fluid velocity.
We call u¢ the circulation part of the fluid velocity, that is second term in the right-hand side of (2.24):

u€ = 2 'yHVJW[JH(q(t), ).
re{l,...,N}

Since K|[w] is orthogonal to u?P°! in L?(F(q)) (as follows from an integration by parts), we can decompose
the energy (4.3) as

1 1
=3 O (mdnPa A ey [ P de
re(l,....N} F @)
1 1
+7J |K[cu]|2 derJ uc(t,~)~(K[w]+up0t)(t,~)dx+ff |uc|2 dzx.
2 JFrw F(t) 2JFrw

Proposition 4.2 then follows from the assumptions on the initial data, Lemma 4.1, the conservation of
£(t) and the following lemma.
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Lemma 4.3. — For § > 0, there exists €9 > 0 such that the following properties hold as long as
(e,q,w) € Q5°:

(4.5) J luc(t, ) |* do — J |uc(0,-)|* dz is bounded independently of t and e,
F(t) F(0)

(4.6) f u®(t,-) - (K[w] + uP°")(t, ) dz is bounded independently of t and e.
F(t)

Proof of Lemma 4.3. — We first notice, recalling (2.17) and using an integration by parts, that for
K # U,
Vlwu : VL¢H dz = _Cﬁ,u-
F(t)
The estimate (3.93) in Corollary 3.29 states that the coefficients Cy, are bounded independently of ¢
and ¢ for v # k. Hence to prove (4.5) it suffices to establish that the circulation stream functions ¢,
satisfy

J IV, (q(t), )| de — J |V1b, (q(0), -)|* dz is bounded independently of ¢ and €.
F(t) F(0)
We use Lgmma 3.28; consequently it suffices to prove that for all v, the standalone circulation stream
function v, satisfies
(4.7 f |Vtzl,(q(t), N dx — J |V7,Z,, (q(0),-)|* dz is bounded independently of ¢ and .

F(t) F(0)

Now using Lemma 3.27, we see that

[ widaw - | VO (a(0). )P da.
F(t)

R(—9,)(F(t)—hy(t)+hw,o
Then

| Wi | <[ 9huta(0). )P ds,
F(b) F(0 A,
where A, is the symmetric difference (R(—9,)(F(t) — hy(t)) + hyo) A F(0). Since (e, q,w) € Q5° and
F(t) < Q, there is R > 0 independent of ¢ such that A, < B(h, o, R)\B(hy0,9). Hence using (3.83), we
arrive at (4.7) and hence at (4.5).

To get (4.6) we first integrate by parts:

f Vi, - (K[w] + uP?t) do = fJ Yywdr + f ¥, (K[w] + uP?) - 7 ds(z).
F(t) F(t) OF(t)

: V4 (a(0), ) da

The part of the second integral on 02 vanishes due to (2.17), and the parts of the second integral on each
08y, A =1,..., N, vanish as well because 1, is constant on each connected component of the boundary
and K[w] + uP°" has zero-circulation on each 0S,. Now the first term is bounded independently of ¢
and €, because 1, is bounded on the support of w: this can be seen by integrating Vi, from some
point in 0 and using Lemmas 3.27 and 3.28 and to the remoteness of S to the support of w (due to
(e,q,w) € Q5°). O

Hence the proof of Proposition 4.2 is complete. O

5. Collective normal form and rough estimate for the acceleration of the bodies

In this section we establish a first normal form of the solids’ dynamics. This collective normal form
singles out the leading term with respect to the number of time derivatives, through the total inertia of
the system, including the added inertia, see (2.11).

Proposition 5.1. — Let § > 0. There exists C > 0 and g9 > 0 such that the solutions (uf, h®,9%) of
the system satisfy, as long as (e,q,w) € Q5°, for all k€ {1,...,N} and j € {1,2,3},

(5.1) (M(9)),., = O (1+ [p°))).

From Proposition 5.1 we will deduce the following rough estimate of the solid accelerations.
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Corollary 5.2. — Let § > 0. There exists C > 0 and g9 > 0 such that the solutions (u®, h®, ) of the
system satisfy, as long as (e,q,w) € QF°,

28.ePy i\ R
(5.2) Vee {l,...,N}, lex "Bl < C(1+[p)).

Despite their roughness these estimates will help to uncouple the solids’ equations and to obtain some
individual normal forms in Section 7.

The next subsection is devoted to an auxiliary decomposition of the velocity, which is specific to
this section, and different from the standard decomposition (2.24). Then we prove Proposition 5.1 in
Subsection 5.2 and finally Corollary 5.2 in Subsection 5.3.

5.1. A decomposition of the velocity. — To prove Proposition 5.1 we introduce the following
decomposition of the velocity.

Definition 5.3. — We decompose the velocity field u® as follows:

(53) u® = uP + Z ’YVVLQZV + ue:vt,
ve{l,...,N}

where the potential part of the velocity uP°t was defined in (2.25). We will call u®* the exterior part of
the velocity field.

Notice the difference between (5.3) and the standard decomposition (2.24), in that the circulation
potentials considered here are standalone, following the strategy hinted in Section 2.3, and developed
below, see in particular the treatment of the term 7} in (5.26).

Comparing the standard decomposition (2.24) of ¢ and (5.3), we see with (3.86) that

(5.4) ut = Klwl+ > w Vi
ve{l,...,N}

An important property of the decomposition (5.3) is given by the following lemma, concerning the field
ext

u®** agsociated with a solution to System (1.2)—(1.7).

Lemma 5.4. — Given § > 0, there exist some constants €9 and C > 0 such that, for a solution to the
system, as long as (g,q,w) € Q3°, one has for u*** considered as a function of (t,x):

(5.5) [u | Lo (e < €

(5.6) [0 | oo (s @)\ Uy, Vea(5.)) < C(L+ 7)),

(5.7) 104 Lo (15 (28, )) < Ce,'(1+|p°|), VveP..

Proof of Lemma 5.4. — First, (5.5) follows from directly from (5.4) and Lemmas 3.28 and 3.33. For
what concerns (5.6)-(5.7), we start with

exr a T
(5.8) ot = K[ows ]+ )] S Ko+ > 2wV | pum.
pe{l,...,N} ) ve{l,...,N}
me{1,2,3}

The shape derivatives of K[w®] and V147 with respect to Gum are estimated separately in
L*(V5(0S,(q))) and in L*(F(q)\Vs/2(0S,.(q))) by using Lemma 3.35 and Lemma 3.31 respectively.

Observing that 8‘2{”3 [Pp,m| = |Du,ml, it follows that the second term in (5.8) gives a contribution as in
(5.6)-(5.7).

It remains to study
(5.9) K[ow®] = —K[div (v°w®)].

We estimate u°w® using the decomposition (2.24). Using that (e,q,w) € Q3°, the energy estimates and
(3.62), we deduce that |uP?" w®| L(F(q)) < C. Using that (e, q,w) € Q5° and Lemmas 3.27 and 3.28, we

also find that w® >}, c(; 7, V1, is bounded in L*(F(q)). With (5.5), we finally deduce that

(5.10) ||u5w5|\Loc(]:(q)) < C.
With (3.113) and (5.3), this gives
(5.11) |K[div (u*w®)]| Le(F(q)) < C, for pe (1,+0).
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By using the support of vorticity and local elliptic estimates near the boundaries one concludes that
K[div (ufw®)] is bounded in L*(V5(0F(q))), and (5.6)-(5.7) follow. O

5.2. Proof of the collective normal form. — We are now in position to prove Proposition 5.1.

Proof of Proposition 5.1. — We cut the proof into two steps.
5.2.1. Step 1. — By (1.2), (2.8) and an integration by parts we write the solid equation (1.7) as

(5.12) (M, (D) )y = —L( (@ 0 T) - T

where we recall the notation (2.11). Next we inject the decomposition (5.3) of u®. In the right-hand
side, we extract from J,u® the part corresponding to

(5.13) OpuP°t = Z [p’u,ngou,m + P (Veoum)']-
pe{l,...,N}
me{1,2,3}

When injected in (5.12), the first term in (5.13) gives the added mass term —(Mgy(p®)’)x,; (recall the
notation (2.12)) which we put on the left-hand side, while the second one gives shape-derivatives terms,
see the term T below. For the term (u° - V)u® in (5.12) we use

B v|u5|2

(5.14) (W - V)us :

+ W (uf)t.

When injected in (5.12), the first term in the right-hand side of (5.14) can be integrated by parts to
arrive at

1
,,f [u |’ K, ; ds.
2 Jas,.(a)

Then we develop the square
2

|us|2 = |uPot + Z ’YVVL'(ZV‘FUem 7
ve{l,...,N}

by separating between

vV, and uP + w4+ Z VD,
ve(l, - N1\(s)

to arrive at

(5.15) (Mg(P) + Mo(p®)), . =T1+...+ Ty,

K.J
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where

oV
na-- Y f AL R
Aue{l,...,N} Y F (@) Qu,m
,m=1,2,3
Ty = — Z ’YVJ &:VH;V -V j de,
ve{l,...,N} F(a)
foi= _f Ot - Vipy j da,
F(a)
1 IR
T4 = —*J- ’y,.;V ’(/}n Kn,j ds7
2 Jos.(a)

2

1 ~
Ts = — f uPot 4 ot 4 Z 'Yuvlwu Ky j ds,
2 Jos,.(a) ve{l,...N}\{x}

TG : _%{J‘ upOt + uea:t + 2 'YVVJ_IIZU : VL&;;@ Kﬁ,j dsa
Sk (q)

ve{l,....N}\{x}
Ty = —f weuct V. ;dz.
F(a)

5.2.2. Step 2. — We now estimate these seven terms. In this proof it will be convenient to take the
convention of Remark 3.21 for the Kirchhoff potentials.

Estimate of Ty. We first integrate by parts:

oV
(516) J p)\,épu,mﬂ : vcpn,j dx = p)\,lpp,mj
F(t) J K™ oSy aqM,m

To estimate the integral in the right-hand-side we rely on the estimates of the shape derivatives in

Proposition 3.26. We distinguish several cases, according to the possible equalities between x, A and pu:

— First case: A = p. Then either Kk = A = p and this integral is O(Ei””’ei’"?’siﬁ) (the addi-

tional power of £ comes from the integration on dS,, = 0S)), or k # A = p and the integral is
O(ai%“eim‘*s,l.fé”).

— Second case: A # p. Then either k # p and we see the integral is O(ei

. . 248 1443
and the integral is O(e3 " edmse, %),

1+6;3

+003 246, _
£y, 0m3Ey ),or k=p

We recall that Ezms |Pp,m| = [Pu,m|. Using the energy estimates provided by Proposition 4.2 (which give
£33 py» bounded), we see that in all cases, the term in (5.16) is at least estimated by O(|ﬁmm|sij3)
(the worst case being the first one where k = A = p).

Estimate of To. We first deduce from Lemma 3.27 that

(5.17) Oy + Vs -V, =0, and VD, + VE(vs, - Vi) =0,
where we denote by vs, the v-th solid vector field, see (1.6). We recall the formulas:
(5.18) V(a-b) = (a-V)b+ (b-V)a—a' curl(b) — bt curl(a),

(5.19) curl(zt) = 2,

(5.20) (a-V)zt =at.

By applying (5.18) we find
v(vs,y : V%V) = (5. - VI)VED, + (VA - V)vs, + Vi, curl vs,,

where we used that curl VHZ,, = 0, since {p\,, is harmonic, to discard one term. Moreover, by using (5.20)
and (5.19), we simplify the last two terms of the equality above by — V), and 21, Vi, respectively,
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and arrive at
(5.21) V(vs - V) = (vs, - V)V, + 9,V
Similarly, we use (5.18) to obtain

V(US,V . V@V) = (vs,y - V)V@V + (Vlzy -V)vs,, — quzl, curlvg ,,

where we used that curl Vb, = 0 to discard one term. Moreover, by using (5.20) and (5.19), we simplify
the last two terms of the equality above by ¥/, V11, and —2¢!, V11, respectively, and find that

V(vs - Vi) = (vs, - V)V, = 0,940,
By rotation, we deduce that
(5.22) vt (vs,y : v«ZV) = (vsy - V)V, + 9, Vi,
Comparing (5.21) and (5.22), we conclude that
V(vs,u . VL?ZV) =Vt (vs,u . V&,).
By using this in the second equation of (5.17) we obtain
(5.23) Vi, + v (us,y : viqzy) — 0.

By an integration by parts it follows that
J (?tVJ‘zzl, Vg, jdr = fj S, VL&, K, jds.
F(a) 0Sk(a)

Now when v = k it is straightforward to estimate this term by @(Eij3)|f)5\ since VHZ,i = O(1/ey) on
0S,. When v # k, one can use the divergence theorem inside S:

(5.24) f Vs - Vi, Ky jds = —f div (B, + 9 (@ = )" V), ) do.
9S.(a) Sk(a)
Now on the one hand using (3.83) and interior regularity estimates for the Laplace equation, we obtain

J div (R, - Vb, )6, ;) da = J €y - V(R - VE0,) do = O(2053)|n!.
Sm(q) SN(Q)

On the other hand, we use (3.84) and see that
| (@0 = h - TH)60) ds = OEE0)e, 10,
Sk (CI)

Altogether the term 75 can be estimated by
(5.25) Ty = O30 by |-
Estimate of T5. We first integrate by parts to find
J OpusTt - V. ;dr = J OpucTt - NPy ;ds.
F(a) 0F(a)

By Lemma 5.4 (using (5.6) on 0 and (5.7) on the rest of the boundary), we have || :u""| 11 (o7 (q)) =
O(1+ |p°]). We use (3.64) to estimate the Kirchhoff potential ¢, ; on the boundary and infer that

Ty = O(e7) (1 + [p°)).-
Estimate of Ty. We have for any j € {1,2,3}
(5.26) J 1 V2K ds = 0.

3

This is a consequence of Blasius’ lemma, see e.g. [7, p. 511]. This also a direct consequence of Lamb’s
lemma (see Lemma 7.12 below).
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FEstimate of Ts. Using Lemma 5.4, Proposition 3.20 and (3.83) we see that

(5.27) uP®t 4+ uft 4 Z vV, < C (1 + [pr] + Z 2 |]3,,|> on 0Sy.
ve{l,...,N}\{x} VER

Considering that K, ; = (9(52‘73) and that we integrate over 0S,, using the energy estimates, we deduce
that this term can be bounded by Caiﬂ(l + [Prl)-

Estimate of Tg. Using (5.27), the energy estimates, VlzZi = O(1/e;) on 0S, and again that dS,; is of
size O(g,), we see that this term is also estimated by C’eij?’(l + [Pxl)-

Estimate of Tr7. We use the decomposition (5.3) of u®, the compactness of the support of w® in F(q) due

to (e,q,w) € Q5°, the decay of the Kirchhoff potentials (3.62), the energy estimates, (3.83) and (5.5) to

conclude that this term is of order (9(5,?613).

Conclusion. Gathering what precedes, recalling (2.13), we have established Proposition 5.1. O
5.3. Proof of the acceleration estimates. — We now prove Corollary 5.2.
Proof of Corollary 5.2. — We define the “homogeneous” inertia matrix M° as the total inertia matrix

M where we divide each (k, j)-th row and each (k, 7)-th column by 5ij3. Then, by Proposition 5.1, we
obtain that

‘ (Mo (ﬁs)/)
We now introduce the matrix M* as the total homogeneous inertia matrix M° where each (k, j)-th

. . min(2,0,)0kep, .. .
column is divided by e o

<C(1+1p%)).

KJ

, where we recall that o, was introduced in (1.12). Calling p the
in(2,00)80ep, .
vector with (k, j)-th coordinate 5I:m( o) 7;““’;0,{,]-7 we hence have

MY = MU
Hence to end the proof of Proposition 5.1, it remains to prove that (M*)~! is bounded independently
of € at least for small €. Now gathering the rows and columns of M* according to families (i), (ii) and
(iii), we have a block matrix:
. Awe | Ay | Aw i
M= | _Aune) | At | Ao
AGiiya) | Ay iy | A i)

Using Corollary 3.23 we see that the entries of the added mass matrix M, that correspond to different
solids satisfy:

(5.28) (Ma)reum = O3 2H0m3)  for X # p, £,m =1,2,3.
Moreover, using Corollary 3.23 and Remark 2.1, we see that for A € P;;;) and £,m € {1, 2, 3},
Maenm =35 MY o + O30 F00m),

where /\//\l}z ) is a fixed symmetric positive-definite matrix.

Relying on the genuine mass and (1.10)-(1.11) for the first two families, and either on the genuine
mass (when o, < 2) or the added mass (when «,, > 2) and (1.12) for the third family, we deduce that
the diagonal blocks A (i), Agiyis) and Ay iis) are uniformly invertible. Moreover we also see that the
blocks above the diagonal A (i), Ay and Ay i) remain bounded. Hence by Cramer’s rule the
upper triangular block matrix

. A | Awan | A
MY = 0 | Aunai | Ay |
0 0

whose determinant is det(A;)q)) det(A i) det(A iz sy ), is uniformly invertible. As can be seen from
Neumann’s series, when |[M* — M*| < W for some matrix norm, then M* is invertible with
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[(M*)~H| < 2[(M™)~H]|. Since from (5.28) the blocks under the diagonal A iy, Agine) and Agin i
converge to zero, we see that M* is uniformly invertible for suitably small €. The result follows. O

6. Introduction of the modulations

In this section, we introduce the modulations that will play a central role in the normal forms of
Section 7 and consequently in the modulated energy estimates of Section 8 and in the passage to the
limit of Section 9.

6.1. Decomposition of the fluid velocity focused on a small solid. — In this section, we merely
consider k in Pg, because only the small solids will actually be concerned with the modulations. To
define the modulation, we first introduce a decomposition of the velocity field in the same spirit as (5.3),
but here more focused on the k-th solid.

Definition 6.1. — For each k in Ps, we introduce the following decomposition
(6.1) u® = uP’ + Y Vi, + uft  with  uPot = Z Dri ViPr i
€{1,2,3}

We will refer to uP°t as potential part of the decomposition (6.1), %VHZ,{ as its circulation part, and
ué™ as the k-th exterior field.

When comparing with the decomposition (5.3), we see that

3
(6.2) ul™t =t + Z Zpu,iv%z,i + Z AT

v#FKki=1 VH#K

The k-th exterior field will play a central role in the definition of the modulation. In (6.1), the first two
vector fields can be thought as “attached” to S, (to its velocity and to the constant circulation around
it), while u¢** corresponds to the vector field to which S,; “is subjected” from the exterior (which includes
the reflections of V24, on € and the other solids).

We first note that, due to (6.1), u** satisfies the following div -curl system

K

divu* =0 in F(q),
curl u®* = w¢ in F(q),
(6.3) douemton = =, Vi n+ Y oS puiVeuion on F(q),
§ ut - 7ds = 6yupy, for v=1,...,N.
\ 0S5,

Recall that VHZ,.@ is tangent to 0S,; it follows in particular that ué** -n = 0 on 9S,.

We have the following estimate of the r-th exterior field u&.
Lemma 6.2. — Let § > 0. There exists eg > 0 and C > 0 such that for all € with € < €g, as long as
(e,q,w) € Q5°:

|ue® | 1o as,) < C.

Proof of Lemma 6.2. — Thanks to Lemma 5.4, we only have to estimate the two sums in the right-hand
side of (6.2). For that purpose, we rely on the fact that that the sums are over v # k. Concerning
the Kirchhoff potential parts we can use Vi, ; = O(e2+%3) on 08, (Proposition 3.20) and the energy
estimates (Proposition 4.2) to deduce that this term is bounded. Concerning the circulation part, due
(3.83) we have Vi, = O(1) on 0S,, for v # k, which also yields a bounded term. O
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6.2. Approximation of the x-th exterior field. — The goal of this paragraph is to show how u&**
can be approximated on 0SS, by a linear combination of four basic vector fields. For this we introduce
the following notations.

We introduce the space K of the 2D affine vector fields with traceless symmetric linear part, and
the subspace K of the vector fields of K with zero curl. Recalling (2.7), we observe that for each

k€ {l,...,N}, for any q,
K :=Span {&x.1,&k.2, 0.3, 0, s} and Ky := Span {1, &2, Ex s Ens)-

Note in particular that the vector field £ 3 is excluded from the vector space Ks.

Together with these spaces, we define for each x € {1,..., N}, the linear operator Kir,, defined on IC,
transforming an affine vector field in the corresponding linear combination of Kirchhoff vector fields; it
is defined by

(6.4) Kir,(€,i) = Vo, foralli=1,2,3,4,5.
This operator depends implicitly on q and . Similarly we introduce
(6.5) Kir, (&) = VPn; foralli=1,23,4,5.
It is a direct consequence of Proposition 3.20 that

(6.6) Kir, (&) — Kirg (&e)| < C21028 on 08,

Let us now describe a vector field V,, € Ky that generates our approximation of u¢**. Having (6.3) in

mind, we first introduce the solution %* = %*(q, p,w, ) in F,(q) (recall that this domain was introduced
in (3.106)) of the following system:

div i, =0 in Fr(q),

curl i, = w in Fr(q),

(6.7) Uy - N = f’yﬁvj‘@,{ ‘n+ Zl,#,,i Zlepmv%,ﬂ; - on 6fn(q),
fﬁ Uy -Tds =, for ve{l,..., N}\{x}.
28, (q)

We start with the following lemma which estimates %, regardless of the fact that it comes from a solution
to System (1.2)—(1.7). We recall the notation (2.6) for Vs(0Sy).

Lemma 6.3. — Given 6 > 0 there exist constants g and C > 0 such that as long as (e,q,w) € Q3°,
forallke P, allpwe {1,...,N} and m € {1,2,3}, one has:

- R o
Pilze ey < C 1+ [0l + 3 2| and H :
V#R quﬂn

< ngms <1 + Jw]oo + Z v|Pvl
VH#K

N———

L®(Vs(0Sx))

Proof of Lemma 6.3. — The proof is roughly the same as for Lemma 5.4 with the exception that we
consider functions of (q,z) rather than (¢,z) and that the domain is no longer F(q) but F,.(q). This
latter difference actually simplifies the proof because it avoids the singularity in the neighborhood of
Si. We call cpii the various Kirchhoff potentials in Fr(q), v € {1,..., N}\{x}, i € {1,2,3}, K¥ the
Biot-Savart operator in F,(q), and 9%, for v € {1,..., N}\{x}, the various circulation stream functions

in F,.(q). We recall that for v = «, ¥7# was defined in (3.107). Correspondingly we see from (6.7) and
(3.107) that @, can be decomposed as follows:

(6.8) e = Y pVEE+ > 1V + K w] + 7. Vyr” in Fe(q).
VH#K VH#K

We observe that the statements of Section 3 that were written in a general fluid domain F are valid in
particular in the domain F,(q). This has the following consequences:

— The estimates of Propositions 3.20 and 3.26 are valid for the Kirchhoff potentials ¢,
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— Decomposing the circulation stream functions %, for v € {1,..., N}\{x}, as in (3.86) by introducing
the potential 1" so that

(6.9) W= by + 9l i Fula),
the function ¢ satisfies the estimates of Lemmas 3.28 and 3.31,

— The estimates of Lemmas 3.33 and 3.35 are valid for the Biot-Savart operator K# in F (q).

Finally we recall that the particular term V+¢7# was studied in Lemma 3.32.
Now we proceed as in Lemma 5.4. Concerning the bound on || 1= (v (zs,)), we treat the various
terms in the right-hand side of (6.8) as follows:

the terms p, V! are of order £2p, in Vs(0S,) by Proposition 3.20,

— the terms V+¢# are bounded thanks to Lemma 3.28 and the fact that Vs(0S,) is a distance O(1)
from S,,

the term K*[w] is bounded thanks to Lemma 3.33,

— the term V497 is bounded thanks to Lemma 3.32.

Concerning the bound on the shape derivative d, , T, we proceed as follows, for u # :

— the terms p, Vg, , ¢f are estimated in V5(dS,) by (3.76) in Proposition 3.26,

— for the terms V0, ¥, v # Kk, we use the decomposition (6.9). For aq“,mv%y (which vanishes
unless u = v), we use (3.104), (3.83), (3.84) and the fact that Vs(dS,) is a distance O(1) from S,.
For 0, . V> we use Lemma 3.31 (that is valid in F,.) and again the fact that Vs(0S,.) is a
distance O(1) from 0F,,

— the term 0, , K*[w] is estimated thanks to Lemma 3.35, using again the fact that Vs(0S,) is a
distance O(1) from 0F,,

— the term d,, , V47 is bounded by C’sfﬁ“ in V5(0S,;) thanks to Lemma 3.32.

Finally, when p = &, only the last term in (6.8) actually depends on g.. This dependence —despite the
fact that 4, is defined in F, is due to the boundary conditions in (3.107). The derivative of this term
with respect to gy, is again estimated by Csi’"3 in Vs5(0S) thanks to Lemma 3.32.

This concludes the proof of Lemma 6.3. O

We remark that outside of the support of w, Vi, is a traceless 2 x 2 symmetric matrix; hence it is of

the form

—a b

b a)’
When (g,q,w) € Qgs, hy is outside of the support of w for each k € Ps; consequently we can set
(Vﬂvj)j:1,274,5 as follows

Vn,l 7 _VK,4 VK,5 L ~
(6.10) (sz) = Uy (hy) and ( Vis Vn,4> = Vil (hy),
where to lighten the notation we omitted the dependence on q, p, and w. Correspondingly we set
(611) Vf@ = Z Vm,i gn,i = Vn = ﬁm(qa hn) + (JZ - hﬁ) : vxﬁm(qa h’ﬁ)
i€{1,2,4,5}

We are now in position to state our approximation result.

Proposition 6.4. — Let § > 0. There exists €9 > 0 such that for each k € Py and for € < ey, the
following holds. Consider the vector field u¢®t introduced in the decomposition (6.1) of the solution u® of
System (1.2)~(1.7) and V,; defined in (6.11). Then V, belongs to C1([0,T];Ks) and there exists a family
(parameterized by €) of functions u”. in C1([0,T]; C®(F(q°))) such that, as long as (¢,q,w) € Qs,

(6.12) u®t = (Id — Kir, )V, +e2ul. in F,

and the following estimates are satisfied for some C > 0 independent of e:
(6.13) IVilloo o,y + lwllcoqo.ryseo s,y < C,

(6.14) IVillcoo.rny + exlleuslcoo.ryicoes,)) < C (1 + [BE(1)])-
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Proof of Proposition 6.4. — We proceed in four steps.

Step 1. We start with the estimates on V,,. We denote

U (t,2) := U (q° (), p° (1), w(t), ).
An estimate of 1, in L®(V5(0S,)) is obtained directly from Lemma 6.3 and energy estimates. By the
support of w, this yields the higher-order estimate

(6.15) <C.

Huﬁ HC’“% (V35/4(0Sk))

Concerning the time-derivative of 1i,, from (6.8), we have

. ot
Ot w) = Y. PVl + K¥ow] + ) pumat.
Oyum
VFER pne{l,...,N} )
me{1,2,3}
To estimate the first term, we use the acceleration estimates (5.2): since the contribution of p/, is through
P,V due to (3.62), it is of order O(2p’,) in V5(0S,) and consequently bounded. The term K#[0;w]
is shown to be bounded in LP(F) exactly as in (5.9) and (5.11). Due to the support of w, it is hence
bounded in L*(V35/4(0Sx)). Finally, the last term is of order O(p,) thanks to Lemma 6.3 and energy
estimates (4.2). This proves that 0,1, is bounded in Vs5/4(0S), so that by interior elliptic regularity:

(6.16) 106tl a8 (1, 05,y < €+ IBD-

The bounds on Vj; in (6.13)-(6.14) follow, using (6.10), (6.15) and (6.16). It remains to prove the bounds
(6.13)-(6.14) on u,.

Step 2. Let us now relate the function !, defined by (6.12) to . First, we use (6.3), (6.7) and the
support of w to infer that u®* — i, satisfies

[ div (u** —,) =0 in F(q),
_ Qjﬁ

K

curl(u®®t ) =0 in F(q),
(ué™ — %) -n =0 on 0F(q)\0Ss,
(U™t — ) -n = T, -n on 08,

K

jg(u”t—ﬂ,{)wds:O for v=1,...,N.

a5,

Recalling the notation (3.56), this gives that

(6.17) "t — i = =Vl Tigos, - nl.

Then we use a Taylor expansion of %, in the neighborhood of S,. Using local elliptic regularity estimates

on %, (which is harmonic in the §-neighborhood of S,), we may estimate the second derivatives of @, in
L* in some neighborhood of S, by its L* norm in a larger neighborhood and hence by C|t,|l«. Set

Rn(qv l‘) = ﬂm(qv‘x) — Vi,
where we omit temporarily the dependence of %, on p and w to lighten the notations. Then, recalling
(6.11), we observe that, in the §/2-neighborhood of S,

(6.18) |R(@, )] < Clli]oclz — e,
Recalling (3.56) and (6.4) we observe that
(6.19) Kir,V,, = ViV [V, - n].
Hence by (6.17), (6.18) and (6.19) we arrive at (6.12) with
(6:20) Ui (t2) = 222 {Rula(t). ) — VI [Ru(al). ), -n]}

Step 3. We now turn to the bound of «”, in (6.13). We first notice that, due to (6.18), in the &,-
neighborhood of S,

(6.21) |R(a, ) = (v., (25.)) < Cep.
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Since R,(q, ) is harmonic in z in a neighborhood of S, using a scaling argument and local elliptic
estimates, we also see that

k+ 2
(6.22) ?|Ry(q, - }C’“’%(asﬂ) < Ce2.
Then we apply Lemma 3.17 and Propositions 3.4 and 3.9, taking into account that the normal n satisfies
k+1 :
Er |n‘c’“v%(asn) < C. We obtain
k+3 2
(623) vaj\/[ qQ, (75»9 .n]HLOO(GS +ek 2 }ij\/’[ \05 :HC’C’%(&SK) < C‘Efi‘

In particular we see that u, is bounded on dS,, and satisfies (6.13).

Step 4. We finally estimate dyu’,. To that purpose we introduce the stream function 7, of 4, so that
U, = V1, and we define

ol = oY (q,z) := 7. — Z Vi,idx,is
i€{1,2,4,5}
with J,;; defined in (3.72). By (3.73), Lemma 3.17, (6.11) and (6.18) we have
VfN[ o, -] = Ve[l

Hence (6.20) translates into:
u; = 5;2 {Rn(q(t)a ) - vlfN[af]} .
Thus

(621)  ow(t,7) :—sf{%wm)—vlfﬁ[atw,x)]— N el )'63]},

we{l,...,N} Ou,m
me{1,2,3}

where
R (t,2) = Ra(a (), p°(t), w(t), ) and as(t,z) := ;' (a (), p°(t), w(t), ).
Relying on (6.11) and (6.18), a computation gives
ou,, ou,,
Ry (t, ) = —= A (t,x) — A —(t,hs) — (x —hy) -V
With (6.15) and (6.16) we deduce
(6.25) 1Rkl L (v, 65.)) < Cen(l + D).

Since R.(q,-) = V+taf, it follows, using again interior elliptic regularity, that we may estimate the

second term in (6.24) as follows:

a;:( ) — V20t h) - b ® (= hye).

(6.26) et (t, ) = Boaelts ) |1om s, + 510ty g, < C2(1+ B

With Propositions 3.9 and 3.4, this gives

| V[ dras(t, < Cee(1+ D))

]HLw((/S )

Concerning the third term in (6.24), we use Corollary 3.15, where here the function a,(t, ) is fixed. We

find
Oelen(t)] (Val — Vfu[a]) -1 K + ¢ on 08, and Dt Lax(t, )]
aq;t,m &qﬂ,m

With (6.21)-(6.22)-(6.23) and Propositions 3.4 and 3.9, we conclude that
Of | ar(t, -
o efox(t, )]

OQu,m

= 0 on 0.

< Canefj"s
L*(0Sx)

Injecting in (6.24) we find the last estimate of (6.14), which concludes the proof of Proposition 6.4. [
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6.3. Definition of the modulations. — We conclude this section by introducing the first-order mod-
ulations a; and the second-order modulations f3 ;, for kK € Py and ¢ = 1,2. We set

R X s ﬁﬁ,l L _Vn,4 Vn,5 £
(6.27) for kePs, an;:=Ve,; fori=12, and <5~,2 =\ v V. Co(gs)-

We recall that (Z(gs) is defined in (2.19). We notice in passing that due to Proposition 6.4 and the scale
relation in (2.19), the modulations can be estimated as follows:

(6.28) || < C and |B;] < Cey.

The first-order modulations will play a central role in the normal forms of Section 7 and hence in the
modulated energy estimates of Section 8, but also in the passage to the limit in Section 9. The second-
order modulations 3,1 and 3, 2 disappear in the limit, but play an important role in the normal forms,
in Subsection 7.5 (see Lemma 7.14).

7. Individual normal forms

In this section, we present normal forms for the dynamics of small solids. It will be useful for both the
modulated energy estimates (for solids of family (ii7)) and the passage to the limit (for solids of family
(#i) and (#7)).

7.1. Statement of the normal form. — The following statement is crucial in our analysis. To
lighten its formulation, we make use of several concepts which are defined just after.

Proposition 7.1. — Let 6 > 0. There exists g > 0 such that for € < gq, the following holds. Consider
the corresponding solutions (u®, h®,9°) of the system, for each k € Py the exterior field us™ defined by
(6.1), and V,, defined by (6.10) together with its coordinates (Vi i)ie(1,2,4,5) in the decomposition (6.11).
Introduce the modulated variable p = (py,...,Py) as follows: forie {1,2,3}

(7.1) Dri = Pryi for K€ Py, Pui = Pri — Oieg1,2} (i + Bryi) for ke P

with . ; and P ; given by (6.27), and the time-dependent vector field B, = (B j)j=1,2,3 given by

3
(72) Bus = = D Pas | 0ulu€hpGusds
k=1 05k
Then as long as (e,q,w) € Q5°, for each k € Ps, one has

1
(7.3) Mg oDl + Mo kD + 5/\/!;,11*9& = A.(t) + Be(t) + Cu(t) + Dy(2),

where the term A, is weakly nonlinear with respect to k € Py in the sense of Definition 7.4, the term
C,, is gyroscopic of lower order with respect to k € Ps, in the sense of Definition 7.2 and the term D, is
weakly gyroscopic with respect to k € Py in the sense of Definition 7.3.

Several clarifications are in order to complete the formulation of Proposition 7.1. First, we recall the
notations (2.11) and (2.12) for the matrices M, ,, and M, .. Let us also highlight that the vector field
By, defined by (7.2) and the modulated variable p,, defined by (7.1) satisfy the orthogonality condition:

(7.4) B, -p,. =0,
since

B’{’j ’ ﬁn =k Z ﬁn,kﬁn,jj‘ anwl‘é /J{_,k ’ é-li»j dS’
1<k,j<3 05k
and, for 1 < k,j < 3, §ik ey = —§i’j - &, k- Because of this property, and of the respective sizes with
respect to €., we refer to the term B, as the main gyroscopic term in the right-hand side of (7.3). In
the statement above we also refer to two associated notions which are respectively used for the term Cy
and D,, and defined in the two following definitions below.

51



Definition 7.2. — Under the same assumptions as Proposition 7.1, we say that a time-dependent three
components vector field C is gyroscopic of lower order with respect to k € Pg, if it satisfies for all times
2

(7.5) C(t) - pu(t) =0,

and moreover if there exists K > 0 independent of €, such that, for any j € {1,2,3}, its component C;
satisfies for all times t,

(7.6) |C;(t)] < Kept (1+ [p(1)]?) .

Definition 7.3. — Under the same assumptions as Proposition 7.1, we say that a time-dependent
three components vector field D is weakly gyroscopic with respect to k € Py if it satisfies for some K > 0

independent of e, for all times t,
t
< K& <1+t+f |ﬁK(T)|2dT>,
0

and moreover for some K > 0 independent of €, for any j € {1,2,3}, its component D; satisfies for all
times t,

(7.8) D;(t)] < Kelthss,

(7.7) T)dT

Let us stress the distinction between the modulated variable p,; (for which p, 3 = ;) on the left-hand
side of (7.7) and the scaled variable p,, (with p, 5 = £,9,) on the right-hand side.

Finally we give the definition of a weakly nonlinear vector field to which we refer regarding the term
A, in Proposition 7.1.

Definition 7.4. — Under the same assumptions as Proposition 7.1, we say that a time-dependent three
components vector field A is weakly nonlinear with respect to k € Ps, in the sense that for some K > 0
independent of e, for j € {1,2,3}, its component A; satisfies for all times t,

(7.9) A5 (O] < K™ (1+ [B(t)]).-

The terminology above regarding the terms A,, B, C. and D, was already used in the series of
papers [7, 8, 9]; in particular the gyroscopic term B, is thought as a generalization of the classical Kutta-
Joukowski force in the lift theory in aeronautics, while the notion of weakly nonlinear term originated
from BKW theory in geometric optics.

The rest of this section is devoted to the proof of Proposition 7.1.

7.2. Starting point of the proof: rewriting the solid equation with various terms. — Given
d > 0, we first let g9 > 0 small enough so that all the statements of Sections 3 to 6 apply. To prove the
normal form (7.3), we will use a variant of the decomposition (6.1), which is better adapted to modulated
variables.

Definition 7.5. — For each k € Py, we introduce the following decomposition
(7.10) uf =W 4V, T with W= Y By Vew.
Je{1,2,3}
In particular, comparing the decompositions (6.1) and (7.10) we see that
2
(7.11) =+ Z U+ Brj)ViPr,s

Proof of Proposition 7.1. — We first observe that, by the first equation of (1.2) and by (5.14), the fluid
pressure 7° satisfies:

(7.12) Vrt = -0 —V < 5 ) — wutt.

Then by (1.7), (2.11), (2.8) and an integration by parts we obtain that, for k € P, and j € {1, 2, 3},
(7.13) (Mgp)rj = —Inj = Juj = Ln.j,
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where

(7.14) I ;= J ou® -V jde, Jeji= J A\ <> -V, ; dz,
F(a) F(a) 2

By (7.10)
(7.15) Lej =T+ 10, + 15,
where
(7.16) Ié,j = 'me é’tVL{b\ﬁ Vg, jd,
F(a)
(7.17) 12 = J ol -V, jdr and
F(a)
(7.18) I} = J o™ Vo, jda.
F(a)
Concerning J, ;, we integrate by parts to obtain
12
(7.19) T = f |“2| K, ds.
0Sk(a)
Given two vector fields a and b on 0S,. we define
(7.20) Qr,j(a,b) = f a-bK, jdr and Q;(a):=Qx (a,a).
0S8k (a)
By (7.10), we obtain, for x € Ps and j € {1,2, 3},
(7.21) Jog = da; ¥ 2+ T3 +Ji+Jo 8,
where
1 ~
(7.22) J;,j = §Qﬁ,j (%Vl%),
(723) Jg,j = 'YKQn,j(VJ_'lZmﬂﬁm + Uizt - /US,K)a
(724) Jg,j = PYKQH,j(quZm US,K)?
1 PO
(7.25) Jé,j = iQn,j (@),
1 —E€XI
(7.26) Ty = 5Qus@),
(7.27) IS = Qe (@t ugt),

where we recall that vs, is the s-th solid vector field, see (1.6). In order to reach (7.3), the rest of
the proof consists in combining (7.13), (7.15) and (7.21), and regrouping and treating the various terms
above, for kK € Ps; and j € {1,2, 3}, in the following way:

(7.28)
/ _ . 1 1 3 5 3 2 2 4 6
~(Mgp g = Luj + ey ALt digt Jopoo+ Loy oo+ Jiy o ALt de
——— — — [ —
Lemma 7.6 Lemma 7.7 Lemma 7.8 Lemma 7.9 Lemma 7.10 Lemma 7.11 Lemma 7.15

For the rest of this section we fix k € Py and j € {1,2, 3}.

7.3. Treatment of the simplest terms. — We start with the term L, ; defined in (7.14).

Lemma 7.6. — The term L, ; is weakly nonlinear with respect to k € Ps in the sense of Definition
7.4.

Proof of Lemma 7.6. — This is an immediate consequence of (5.10) and Proposition 3.20, since, due to
(e,q,w) € Q3°, the support of the vorticity is at distance more than § from 0S,. O

For the term J; ; defined in (7.22), (5.26) has established the following result.
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Lemma 7.7. — One has J.. ; =0

Next we combine the I} ; defined in (7.16) and the term Jg,j defined in (7.24).

Lemma 7.8. — One has I} ; + J2 ; = 0.
Proof of Lemma 7.8. — We have
I+ I3, = %f OV P - Vi, s da +%J Vs - Vi, Ky j da
F(a) Sk(a)

%J [(%VLQZ,{ +V (vs’,{ . VLzzn) ] Ve, de.

F(a)

We conclude with (5.23). O
For the term J7 ; defined in (7.26), we have the following result.

Lemma 7.9. — The expression J,jz”j s weakly nonlinear with respect to k € Py in the sense of Definition

7.4.
Proof of Lemma 7.9. — By Proposition 6.4 and (7.11),

2
T = (Id — Kirg) Vi + g0l + Y (i + Brk) Vi in .

k=1
Using (6.27), we obtain
(7.29) 76:” =V.+ Z Bk Vi ks — Z Ve Ve + €iu2 in F.
k=1 k=4

Using (6.28), (7.20), [&x.k ]z (os,) = (9(5,.;) for k = 4,5, |0S.| = O(e,) and (3.62) we see that
= Qu,j (Vi) + O(ex™).

Now integrating by parts inside Sy, we obtaln

Umal¥e) = f div (|Vi[26 ) da = O(2%7),

Sn
which concludes the proof of Lemma 7.9. O
7 4. Exterior acceleration term. — Here we deal with the exterior acceleration term I 3 ; defined
n (7.18).
Lemma 7.10. — The term Ig,j 18 weakly nonlinear with respect to k € Py in the sense of Definition
7.4.
Proof of Lemma 7.10. — In this proof, by convenience, we will again take the convention of Remark 3.21
for the Kirchhoff potentials. We start by integrating by parts and subdivide the boundary integral:
(7.30) J OTET npy ;ds + J OTE npy ;ds. + Z J QU™ n gy ; ds.
V#R

7.4.0.1. Step 1. — We first consider the second term in the right-hand side of (7.30). From (7.29), we
see that

av@m,k

(731) atuemt V/ + Z 6,@ kVWK k — Z VH kv@n k+ Z Z Bn EkPu,m

k=1 pe{l,...,N} p.m
me{1,2,3}

NV
- Z Z Vi EkPp,m E SO L + e atu on 88
k=4 pe{l1,....N} du,m
me{1,2,3}

54



From Proposition 6.4 and Proposition 3.20, we immediately see that the first and third terms in the
right-hand side of (7.31) are of order O(1 + |p|). Moreover, from (2.19) and (6.27), we see that

Bea\ _ (~Vis Vis) r (—Vea Vis 1
7.32 ? = s K, ) + s ) , £ . )
(1.32) () = (e ) Gao+ o (37 1e7) (Gitan)
Using Proposition 6.4 and (2.19) again, we see that this term is also of order O(1 + |p|). Concerning

the last two terms in (7.31), we use Proposition 3.26, (6.13) and (6.28) to deduce that they are of order
O(1 + |p|) as well. We conclude that

[0 | e (os,) < C(L+ D))
Using (3.64) and that |0Ss| = O(e,;) we deduce that

(7.33) O™ gy ds| < Cel™ (1 + [pl).

0S8,
7.4.0.2. Step 2. — We now consider the integral over 02 that is the first term in the right-hand side of
(7.30). Recalling (6.3) and (7.11) we observe that u¢®* - n = —v, V44, - n on dQ. Thus, on 09,

O™t - = —’y,{(étvj‘@,{) n =V (Us,,{ : VJ_,I,/ZJ\I{) ',

thanks to (5.23). Therefore with (3.84), we deduce 0,u¢*" - n = O(|p|). On the other hand, by (3.64),

Prj = O(szﬂm) on 02 and therefore

(7.34) Ot - n g, jds| < Ce2T93 (1 + |p)).

o0
7.4.0.3. Step 3. — Finally we address the integrals in the right-hand side of (7.30) which are over 0S,
for v # k. By (6.2) and (7.11),

3 2
= utt Z Z PriVer + Z MWV + Z(am + Br,i)Veoris

/\#H/ i=1 )\#N i=1
so that
(7.35) fﬂs QU npyyds = EVL 4L+ BV,
Oou
where
Epj=| 0w o ds,
oS,
3
2
Ejj= 2 Zp/mf OnPxi Pr,j ds,
Nk i=1 08,
3
oV
3 2%
E’:’j = Z Z Z PXiPum J 671 ‘NP, jds,
pe{l,..., N} A#r i=1 0S8, Ou,m
me{1,2,3}
4 ~
E; = Z ’Y/\J 0V iy - np, i ds,
A#£K oSy
2
OV, i
v,5 ,
E’@j = Z Z(an,i + Bm,i)pu,mf 67’” "N Pr,j ds,
pe{l,...,N}i=1 88, 94um
me{1,2,3}

2
E,va_s = Z(Om,i + ﬁn,i)/ Vg n @y, ds.
5] = oS,

Estimate of EZ; By (5.6) and (5.7), [0;u®®"| 1= (as,) = O(e;, (1 + [p°])) and by (3.64), with v # &,
6.
Jiox.s1 K

L=(0s,) = Olex
(7.36) EyL = O™ (1 +[p))).

so that, by integration on S,
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FEstimate of E:f First by definition of the Kirchhoff potentials, see (2.7) and (2.8),

3
(7.37) BN =0 f Pr, i Ko i ds.
i=1 oS

v

—26,ep,,., ~ . : .
By Corollary 5.2, |p,| = O(e, % (1+|p°])), and by (3.67) and (3.69), the integral in the right-hand
side of (7.37) is 0(5?‘53%3*531’), so that, since £%%p, ; = P,
(7.38) ES = 027 (1 + [p7))).

K]

Estimate of E:j By Lemma 3.25,

3 3
v 0 0 A
En:j = Z Z Z p/\,ipu,mf g |:< (2;7 - (gk,i . 7')) (glz,m . Tl):| Pk,j ds

m=1 At i=1 oSy
2
(739) + 2 pu,SpV,mf (Pli,jKV’m ds.
m=1 oS,

By an integration by parts

J P . ) e Py _ . ) 0P, j
J-(')Sl, 5 [( or - (£A,z 7—)) (gu,m n)] Pr,j ds = LSV < or (§>\,1 T)) (gll,m ’I’L) aTJ ds.

By (3.62),

= 0(5i+513).
L*(0S.))

(790/\71‘
or

=0( 5)\’73) and ‘&g:,j

L*(28y))

By integration on 08, using that 5‘/5\"’3 Pa,i = Da,i and (4.2), we obtain that the first term of the right-hand
side of (7.39) is (9(5?5“ |P?|). On the other hand, by (3.67), (3.69) and Remark 3.24, the second integral
in the right-hand side of (7.39) is of order O(si+5sj £2) so that by (4.2), we arrive at

(7.40 B3 = O(25 7))
Estimate of EZ;L We deal with the term EZ;L by distinguishing two cases:

— First case: X\ # v. By (5.23),

atviqz/\ NP ds = —J- \Y% (vs,,\ : Vl%) NPy ds.

oS, oS,
By (3.84) and the remark below (3.84), we find
(7.41) IV (vsa - V40) -l oras,) = OB

Hence since v # A we deduce with (3.64)

OV ON - ds = OE2T53p, ).
oS,

— Second case: A\ = v. Using an integration by parts and (5.23) we find

(7.42) 8tVL$,\ ‘NP ds = J atv%% -V, ;de — f (3tVJ‘1$>\ ‘NP ds
S, F OF\0S,
= _J \Y ('US,V : VLQZV) : V@K,j dr + f \% (US,V : Vl@u) NPk, j ds.
F OF\0S,

With another integration by parts, the first term in the right-hand side of (7.42) is transformed
into

—J VS, VHZ,, K, jds.
oS,
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Proceeding as for (5.25), we see that this term can be estimated by (’)(siwj3 |Dv|).- We decompose
the second term in the right-hand side of (7.42) into

f v (Us,l, . V%Z,,) NP ds = f v (Us,u . V%Z,,) NP, ds
0F\OS, 0F\(8S,LAS,,)
+ J \Y% (1157,, . VLIZ,/) “N Yy 5 ds.
0S8y

We use (7.41) and (3.64) to deduce that the terms in the right-hand side of (7.42) are of order
(’)(si+6'73|ﬁ,,|) (using |0S,| = O(ey) for the last one).
Gathering the two cases we finally arrive at

(743) EZ:? — O(Ei+5]‘3 |]/7\1/|)
Estimate of EZ? By Lemma 3.25,
3 2 S
E::? = Z Z (Olrc,i + /Bn,i)py,mf an (aq &z) Onj ds.
S, v,m

m=1i=1

For such indices, by (3.75), V% oS, O(g2e;119m3) (recall that v # ). Combining with (6.28),
(3.64) and [0S, | = O(e,), we arrive at ’

(7.44) E = O(ex3|py|).

K]

Estimate of EZ? Since v # k, by definition of the Kirchhoff potentials, see (2.7) and (2.8),
(7.45) ErS =o0.

7.4.0.4. Step 4. — Gathering (7.35), (7.36), (7.38), (7.40), (7.43), (7.44) and (7.45) we deduce that for
V # K,

(7.46)

J QT - ds| < C2H055 (1 + [B).

oS,

Finally combining (7.30), (7.33), (7.34) and (7.46) we conclude the proof of Lemma 7.10. O
7.5. Main gyroscopic term. — In this section we study the term J,f,j defined in (7.23). We recall
that k € Ps.

Lemma 7.11. — The term J,ij can be put in the form

J,z’j = Bn + AK + Dli7

where By, = (By j)j=1,2,3 is the main gyroscopic term given by (7.2), the term A, is weakly nonlinear
with respect to k € Py in the sense of Definition 7.4 and the term D,, is weakly gyroscopic with respect
to k € Py in the sense of 7.3.

Proof of Lemma 7.11. — We first notice that from (6.1) and (7.10) we have uP®" + u*" = uP°t 4 4.
Using (6.12) and u?°" = Kir,(vs ), we deduce that on 0S,

W+ T — v, = (Id — Kir ) (Ve — vs.0) + €20 = (Id — Kir, ) (Vie — vs,) + 280,

K7KRY

where we recall that Kir,, is defined in (6.5) and where we have set

AT =l el (@K(VK — vs.x) — Kir(V,, — us,ﬁ)) .

K -

Thus for j € {1,2, 3} (recalling the notation (7.20)), we have

(7.47) T2 = T2+ Qs (Vi 1),
where
(7.48) T2 = Qs (v%ﬁ, (1d — Kir,,) (V, — vsﬁ)) .

Using (6.6), (6.13), HVJWZHHLOO((;SN) = O(1/e,;) and |0S,;| = O(e,), we see that the last term in (7.47) is
weakly nonlinear with respect to k € P, in the sense of Definition 7.4.
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To deal with the term J2

K,77

we first observe that, by (2.2), (6.11), (6.27) and (7.1),

3 2 5
(749) Vn — VS, = — Z Tgn,k&{,k - 2 5n,k£n,k + Z Vn,kén,l«
k=1 k=1 k=4

We are therefore led to estimate Q) ; (VHZN, (Id — @N)fﬁ’k), for k € Ps, j € {1,2,3} and k € {1,2,4,5}.
We will rely on the following classical result.

Lemma 7.12. — Let Sy a smooth compact simply connected domain of R?. For any pair of vector fields
u, v in CP(R2\Sy; R?) satisfying div u = div v = curlu = curlv = 0 in R*\Sy and u(z) = O(1/|z|) and
v(z) = O(1/|z]) as |z| — 400, one has, for any j =1,2,3,

LSO (u-v)K;(0,-)ds = & (0,-) - ((u ‘n)v+ (v - n)u) ds.

We refer to [19, Article 134a. (3) and (7)] for a proof of Lemma 7.12; see also [9, Lemma 4.6]).
Lemma 7.12 has the following consequence.

0So

Lemma 7.18. — Forallj =1,2,3 and k =1,2,3,4,5, we have

(7.50) Qi (Vb — VPrk) = N Onthn €5y, - Enj ds.

Proof of Lemma 7.13. — First, using that the vector field Vl{b\n is tangent to 0S,, we split the integral
into two parts

Qui (Vs bk — V) = L . OnUn(Eare - T) K j ds—LS Vi - V@i K ds.

Then thanks to Lemma 7.12, we transform the second integral as
—J IE ((V@mk - n)Vl%) ds.
oSy

Finally, since V@, -n = K. i = —ftk -7, recalling that 7 is the unit clockwise tangent vector field and
that n is the unit normal directed outside F(t), we observe that

_J ff'i,j : ((V@K,k H)VJWZR) ds = J an{ﬁ\n (gé_,k 'T)(gn,j 'T) dS,
08y 0Sy
and we arrive at (7.50). O
Now with (7.49) and Lemma 7.13, we consequently transform (7.48) into
72 72
Je;=DBri +J5;

where we recall that B, = (B, j);j=1,2,3 is the main gyroscopic term given by (7.2) and where

2 5
T2y e Y B | i busds + Y Vi | a6 s
k=1 05 k=4 05

We have the following lemma, which is the main reason for the choice of 1 and S, 2 in (6.27).

Lemma 7.14. — Define B,.1 and By 2 by (6.27). Then one has the following relation for j = 1,2,

2
(751) ];1 Bm,k LS

Proof of Lemma 7.14. — This is a direct consequence of (2.7), (2.18d) and (2.19): for j = 1,2 and
k = 1,2 one finds

5
Ot Enyds = Y Vn,kf O €y € .
k=4

0Sx

K

~ 0 -1
Onthn i 6 s = (1 0 > ’
08, kj=1,2

while for j = 1,2 and k£ = 4,5 one has

~1 o (G2 Ce
an'(/)n gn,k .gﬁ’j ds = (Cn,l _CK,Q)

k=4,5
08k j=1,2
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Hence (7.51) is equivalent to By 2 = Cu2Via + Co1Vis and —Bx1 = Ci1Viea — Cr2Vi 5, that is, exactly
the second relation of (6.27). O

From Lemma 7.14 we readily deduce that f,f 1= JE’Q = 0. Hence it remains only to study

)

2 5
J;{,S = Vs Z /Bn,kf an"/}n fi,k '51@,3 ds + Ve Z Vn,kf anwn gtk . gN,S ds =: D;, + D§
k=1 k=4 08,

K

Let us show that the term J2 = (0,0, D} + D2)7 is weakly gyroscopic. First, with (3.81), (6.13) and
(6.28) = O(e,;) for k = 4,5, it is easy to check that it satisfies (7.8). Let us now prove
(7.7) by treating the two terms (0,0, D)7 and (0,0, D)7 separately.

We start with the term (0,0, D3)T. Here (2.19) gives for k = 1,2

@ﬂzn f;ik Eezds = CZ(QH) T €k

0Sx

Moreover, due to (6.27) we have

2 -V, V,
2 A (an) - = i) AV (ar) where A(V,) :=(v§5’4 vZIi)'

Since the matrix A(V) is a traceless symmetric 2 x 2 matrix, we have R(J)* A(V,) = A(V,)R(9) so
that, using again (2.19),

ch (4s) - ex = 2o - A(VR)R(204)Gp o

k=1
It follows that
[ 3sIDA)ar = —sncicho [ 0.1 AT R GL
By integration by parts we infer
[ #mavioyreoctodr = -3 [ AV REI) - Tickodr
b [AVL ) REDL) - Tkl

Since we can bound the right-hand side by C(1 + |Vi|e + ¢|V/.|w), the estimate (7.7) for the term
(0,0, D3)T follows from Proposition 6.4.

We now consider the term (0,0, D3)T. In that case, the integrals are given by

arﬂzj\n 65{,4 : 5/@,3 ds = J arﬂz;rz [(:172 - hn,2)2 - (xl - hm,l)z] ds
S,

oS,

and Ontn Er e Epads =2 | Ot (1 — hut) (@2 — hyco) ds.
28, ’ 35,
We notice that

(= )" ® (& —h) + (2 — i) ® (z— ) = ((;1 e e Z:j;z (21(;’T’,llfl)_(;?__h’:;’ff)

and consequently

5
S Vi f Outu €Ly - Erp s
k=4 08y

—a( bl ) © () + = i) © o )] ) (377).
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Now the matrix between parentheses can be rewritten as

a5 an{l;n ((17 - hR)L ® (‘T - hﬁ) + (ZE - hK) ® (ZC - hH)J_) ds

=2 R(V,)

K

R(D,0)*.

f 8n1zmo (ar;l Rr+zr® xL) ds
0Sk.0

Call Z the time-independent matrix between brackets. Since Z is a traceless symmetric 2 x 2 matrix, we
have R(9.)ZR(9:)* = ZR(—29,), so that

5
™ Vis
D Vi [ttty buads =~ zr(-200 (1),
k=4 08k K4

Now we deduce

t t
f Pra(T)Di(r) dr = —7~€i61-zf P () R(-29,) (1) dr,
0o 0 Vi,a

and we conclude as for the term (0,0, D)7 by using an integration by parts in time and the estimates
of Proposition 6.4. O

7.6. Added mass term. — In this section we combine the term I,ij defined in (7.17), the term Jé,j
defined in (7.25) and the term Jg ; defined in (7.27). We recall the notation (2.12) for the added mass
matrix M, , which is time-dependent.

Lemma 7.15. — The term I,ij + Jé,j + Js’j can be put in the form
AT 4TS = MaBl+ oM By + A+ C
K,J K,J K, aﬂipn 2 a,npm K Ky

where the term Ay is weakly nonlinear with respect to k € Py in the sense of Definition 7.4 and where
the term Cy is gyroscopic of lower order with respect to k € Ps, in the sense of Definition 7.2.

Proof of Lemma 7.15. — We proceed in three steps.

Step 1. Using the definition of w2°* in (7.10), we find, for j € {1,2, 3},

3
D = OV oyi
Ig,j = (Mawp:q)n,j + Z Z f Pr.iPvk p A 'an,j de.
i=1ve{l,..,N}VF ) Qv .k
ke{1,2,3}
On the other hand, by Reynolds’ transport theorem,
ov Ky oV i
(M:lw"i)ij = Z J Puv,k ! Pr, . VQDKJ' dr + Z J VSDR,'L Dok p Pr,j dx
ve(l,...,N} 7 F @) Qv,k vefl,.,N} I F(®) Qu,k
ke{1,2,3} ke{1,2.3}

+ f Vi Vior i (uP - n)ds,
OF(t)

o

so that

6V<pw- . 6V<pm
aQU,k aqu,k

1 _ 1 _
(Ma,mp; + QM;,KPJ =I5 > L@) i Dok <Vs0m ~ : Vs@m) dx
J

i=1vefl,...,N}
ke{1,2,3}

+

N =

3
Z f @:,N%@ ’ v‘»omj (upOt ’ n) ds.
i=170F (1)
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We focus on the last term in the right-hand side. The idea is to replace uP°! - n with u2°" - n, up to an
error term. Adding and subtracting (7.25) in the right-hand side, and using (7.10) we find

_ 1 _
(Ma,'@p:f + 2M;,mpn> = I;z,; + J:,j

i
13
+§§=

_ av K. av K,1
J pmi Pv.k <VSDKJ' : 0 i - 0 o ’ v@"”wj) dx
F(t) qu.k qu.k

1ve{l,...,N}
ke{1, 2 3}
1
) Lr(w a2 (@ n)Vipn,; — (Vi - n)al’) ds
1
(7.52) + fJ TV, i (uPr — ) - nds.
2 Jarw

Call O} ; the expression in the second line of (7.52) and C? ; the expression in the third line of (7.52). It is
clear that C} = (CL,,CL 5, CL 3)T and C2 = (C2 |, C2 5, C2 5)T satisty the property p,.-C} = p,,-C2 = 0.

Using (3.74) and an integration by parts we see that O} satisfies (7.6). Using (7.1), (7.10), (3.62) and
(6.28) we see that independently of €, we have

(7.53) [T Lo (05, < C(1 + [D]) and @1 (as,) < Cer(1 + |pal) for v # .

With [0S,| = O(ex), we deduce that C? satisfies (7.6). Consequently the terms C'} and C? are gyroscopic
of lower order with respect to x € Py, in the sense of Definition 7.2.

Step 2. Hence we now focus on the last term in the right-hand side of (7.52). We first consider the
integral away from 0Sy:

J- WPt Vi, (uP?r —al) -nds = Z f Pt Ve, uP - nds,
SF(1)\OS =
since uP% - n = 0 on 0F(t)\0S, and since moreover uP°? - n vanishes on 0. From (5.3) we have

3

uPol . p = Z vl on 0S,.

i=1
Using the decay (3.62) of Vi, ;, the energy estimates of Proposition 4.2 and [0S,| = O(e,) we deduce
that

(7.54) J,m s, T Vipng (u?t =) nds| < Ot (L[],
f

so this term is weakly nonlinear with respect to x in the sense of Definition 7.4.
Now we consider the integral over 0S,. By (7.1) and (7.10) we have for xk € {1,..., N},

2
(7.55) (uP°t —7Pot) . Z Qup+ Brt)Kepe on 0S,.

Hence with (6.28) we see that this factor is bounded. We want now to replace in this integral the factor
ub’ -V, ; by aP°t - V@, ;, where we set

upOt an zvgpfﬁ 7

1=1

Similarly to (7.53), we have

(7.56) |aret I o as,) < C(1+ |pxl)-
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Using (3.60) in Proposition 3.20, (7.53), the boundedness of (7.55) and (7.56), we find
1 ~
(7.57) §J W Ve i (WP =) - n) ds = N + O(ex™* (1 + [pal)
S

1 ~ ~ _
where Noyi= 5 [ @ Vpu (@t —a) n) s
oS,

K

Of course the last term in the right-hand side of (7.57) is weakly nonlinear.

Step 3. Hence it remains to consider the term N, ;. Using (7.55) and applying Lemma 7.12 to N, ; we
deduce that

(758) N = Z J Ozﬁ ¢+ Bn g) & - ((upot )V@n,j (V(PK j )upot) ds = N i+ 03,3’

2
where N,Q)j = Z LS (an,l + 6;@,@) 5@ : ai()tKn,j ds
(=1 "

12 ~po ~ ~ ~po
and 2= 3 3 [ (@t Bu) o (@ )V — (Vs - m)E") ds,

As before, we see that C2 = (C3 |, C2,,C3 ;)T is gyroscopic of lower order with respect to « € Py in the

sense of Definition 7.2, and we are left with the term Z\Af,iﬁj. We recombine ﬁn,j with J8 . = Q. ; (@h, ug™)
as follows:

2
(7.59) ]f/‘ﬁ’j — JSJ = J (aiot i [ 7ot + Z (o + Brp)€ ]) Ky jds + Quj (TS™, G — uP?),
0Sr /=1

By (7.11), (6.28) and Lemma 6.2, [u¢**|,, < C. Hence as before, with (3.60) we can estimate the last
term in (7.59) by O(Ei+5i3(1 +|Px|)). Concerning the first term in (7.59), using (7.29), (6.11) and (6.27)
we find

5

[ 7ewt+2 an["'ﬁn[ ] ZBI‘LZ&NZ VQPNZ Z Kl gné VSOKK)—E 'LL 01’1(’)8,{.

Since By = O(ex) for £ = 1,2 and [&x ¢l|p2(as,) = Olex) for £ = 4,5, using (3.62) and (6.13) we see
that these terms are all (at least) of order O(e,) in L™ norm on 0S,. Using |0S.| = O(e,;) and (7.56),
this gives the estimate

Nij = J2 ;= O (1 + [Bl)).
Going back to (7.54) and (7.57) and taking into account the above treatment of (7.58), we deduce that

1 "
(7.60) 5 LH )ﬂf’ém Vi (WP =) - n)ds = Jg ; + CF j + O(EH* (1 + [p])).
t

Of course the last term in (7.60) is weakly nonlinear. Then injecting (7.60) in (7.52) we obtain the
desired result. O

7.7. Conclusion of the proof of the normal form. — Gathering (7.28), Lemmas 7.6, 7.7, 7.8, 7.9,
7.10, 7.13 and 7.15 we conclude the proof of Proposition 7.1. O

8. Modulated energy estimates

This section is devoted to the following crucial a priori estimate.

Proposition 8.1. — Let § > 0. There exists €9 > 0 such that for all k, p. is bounded as long as
(8,q,w) stays in Q5°.
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Proof of Proposition 8.1. — We only consider x € P(;;, since the boundedness of p,, was already ob-
tained for k € P(;y U P, see Proposition 4.2. Now we consider (7.3) and multiply it by p,.: using (7.1),
we find, as long as (g, ¢,w) € Q5°:

1
(an; + 2M;pﬁ) P =Aw De+ B D +Cr Dy + Dy - Dy — MgV, - Dy,

where V,; := (a1 + Bi1, Q2 + Br2,0)T. We observe that the left-hand side equals % (M,.D,, - p,.) and
that the second and third terms in the right-hand side vanish, see (7.5) and (7.4). Concerning the last
term, we use (7.1), (6.13)-(6.14) (recalling that oy ; and S, ; are given by (6.27)) and (1.12); we find

2
MgV B < C ) e [P 11+ 1BD)
j=1

Integrating over time and using (7.9) and (7.7) we deduce

t 3 ) t
B1) [MapPult) = Mp 7,0 < C [ S etmeringp las pl) 4 ek (14 e+ [ 19.7)).

0 j=1 0
Now we introduce the slight variant p,. of the modulated variable:

Dryi = Dryi — Oieq1,2) (Qkyi + Bri)-

The only difference between p,; and p,; lies in the third coordinate i = 3: p,; = €.} while p, ; = ¥%. In
particular

3 3
5is = _ ~
Z 2y |pn,j| - Z |pI€,j
J=1 Jj=1
% —min(2,a,)—08;3—0d;3
K i j Mn’ij

Next we introduce the 3 x 3 matrix M¥ whose entries are given by Mn,ij = &g
for 7,5 =1,2,3. We have

M, By - By, = eR B MED, - .

Hence using P, and M¥*, (8.1) allows to write, with €2 < gmin(Zen),

t t
|meﬁw—Mm¢mmw«ﬂfa+mmu+@+HJ"mﬁ]
0 0

Now there are two cases:

— If o, > 2, then relying on the added mass one has, using Corollary 3.23 and Remark 2.1, that
|(M#)~1| < C independently of € and t.

— If o, < 2, then we rely on the genuine mass matrix and conclude as well that [(M¥)7! < C
independently of € and ¢.

Consequently in both cases we can invert by M} and reach for all x € P;;;):

t t
|mﬂw<cju+mmm+K(u¢+fmﬁ)+mmﬂm
0 0

From (6.28), we see that [p,| < C(1 + [px]) and [px| < C(1 + [pk|). We sum over x € P(;;;) and use that
we already have a bound on pj; for k € P(;y U P(;;). We deduce that for some constant K depending only
on the geometry, § and the initial condition, one has:

t
B < K <1 +t+J 162> .

0

We conclude by Gronwall’s lemma (which we can apply on any time-interval for which (€, q,w) € Q3°).
O
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9. Passage to the limit

9.1. A change of variable. — A difficulty to prove the convergences is the dependence of the domain
on €. This dependence is twofold: first it depends directly on € because the small solids occupy a zone
depending on this parameter; and then it depends on € because the solution does, and all solids whether
small or of fixed size are located according to the variable q°. We can temper the difficulty associated
with the second dependence by using an adequate family of diffeomorphisms which we now describe. It
will not solve the first difficulty but will help with the second one; in particular it will allow to be more
precise on the convergences in the neighborhoods of large solids.
First, we define the following partial set of coordinates for the solids:

(91) gs = (q1a---7QN(i)7hN(,i)+1,~-~7hN)-

This corresponds to the coordinates in which we will actually pass to the limit. Given § > 0, we introduce
the following configuration space @ 5

Qs = {qeR*™NOT2Ne Wk Xe P,k # N, Y, v e P, # v,
d(S.(q), Sx(Q)) > 26, |k, — hy| > 8, d(Su(q), hy) > 26,d(Sk(q), Q) > 25 and d(h,,, 0Q) > 25},

with the obvious abuse of notation for dS.(q). We denote q, the initial value of gq° (which does not
depend on €). We have the following statement.

Lemma 9.1. — There exist a neighborhood Ug of q, Qs and a smooth mapping T : q — Tq
from Uy into the group Diff(QQ) of the diffeomorphims of Q, independent of € (provided that € is small
enough) and such that T = Idq, such that for all q € Z/{q , T ts an orientation and area-preserving

diffeomorphism of Q, whzch sends Sk (qo) to Sk(q) for ke 77(Z )s b to by for k € Pg and such that for
allq € Z/{q , Tq is rigid in a neighborhood of each S.(q ) for k € Py, is a translation in a neighborhood
of hio for k € Py and is equal to identity in a nezghborhood of 092.

Proof of Lemma 9.1. — The construction of such a mapping is easy and classical. We first introduce W,
as the é-neighborhood of S,; for k € 73(1 and of h,; for k € Ps. Given q close to q,, we define 7:1 in W, as

the unique rigid movement sending ¢° to q,. for k € P(;y, as the unique tranblatlon sending h? to h, for
Kk € Py and as the identity in a nelghborhood of 0€2. Then we extend 74 as a global dlffeomorphlm on :
it suffices to write Tq in W, as the flow of a vector field as in Paragraph 3.1.5 and to use extensions of
vector fields. To maEe sure to conserve the zero-divergence of these vector fields, we extend their stream
functions. [

9.2. First step and compactness. —

9.2.1. Fizing eg and T. — Given an initial data (v, qo, Po,wo) we first set (having (1.15) in mind):
(9.2) D:= min{Dg, ge (0,11},
where D, := min { min{dist(S5 o, S}, o), A # p}, min{dist(S5 o,0Q), A=1,...,N},
min{dist(S5 o, Supp(wo)), A =1,... ,N}},

and we observe that D > 0. Next we set

0= 5

and apply Proposition 8.1 with this §. We deduce some g9 > 0 and some C; > 0 such that, as long as
(2,9, w) stays in Q3°, one has
Vee{l,...,N}, |px| <Cy

We reduce if necessary €9 > 0 so that all intermediate results from Sections 3 to 8 and Subsection 9.1
hold as well.
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We deduce from the existence of C; the existence of Co > 0 such that as long as (€, q,w) stays in Q3°,
one has

(9.3) Vee{l,...,N}, |vsx| <Csin Sy,

(9.4) |[uf(t,z)] < Cy on Fs(q(t)) := {x e F(q) / d (x, U S,.i> > 5}.
KEPs
To get (9.4), we used the decomposition (5.3) and Proposition 3.20, Lemma 3.27 and Lemma 5.4 to
estimate the three terms in this decomposition. We let
D
8C"
Then using a continuous induction argument, we see as a consequence of (4.1) and the fact that the solids

move with velocity vs . that, provided that € < ¢¢, one has (£, q,w) belongs to Q5° for all t € [0, 7], and
in particular all the above a priori estimates are true on [0,T]. B
In the sequel, reducing T if necessary, we may ask that for all t € [0,7T], ¢°(t) € Ug , where the

neighborhood Z/lgo was defined in Lemma 9.1.

(9.5) C :=max(C1,Cy) and T :=

9.2.2. Using compactness. — As a consequence of the a priori estimates given in Lemma 4.1 and
Propositions 4.2 and 8.1, we have that pf, is bounded in W% (0,T) for k € P(;y U P and in WH*(0,T)
for k € P(iis), and that w® is bounded in L*((0,T) x Q). Hence we may extract a subsequence (that we
abusively still denote by an exponent ¢) such that

(9.6) g — qp in W>%(0,T) weak — + for r € P,
(9.7) h, — hy in W*%(0,T) weak — + for k€ P,
(9.8) hi, — hl, in WH*(0,T) weak — x for k€ Py,
(9.9) W — w* in L*((0,T) x Q) weak — «.

The fact that we can improve the convergence (9.9) to the convergence
(9.10) w® —> w* in CU[0,T]; L®(Q) — wx),

is obtained as in [21, Appendix C]: this comes from the fact that, thanks to (5.10), we have an a priori
bound on dyw® = — div (uw®) in L®(0,T; W~1P(Q)).

Note in particular that the convergences (1.18), (1.19) and (1.20) are contained in the above conver-
gences. Moreover convergences (9.6) and (9.7) have naturally the following consequence:

(9.11) pf —pr = (g3)" in WHP(0,T) weak —* for e P,

(he) — (hy) in WH*(0,T) weak — + for k€ Py and in L2(0,T) weak — » for k€ Py
9.3. Limit dynamics of the fluid. — Let us now see how the convergences above involve the con-
vergence (1.17) of the velocity field u® to u* satisfying (1.21). We recall that we take the convention to

extend all the vector fields by 0 inside the solids. The family of diffeomorphisms in Subsection 9.1 will
be helpful here. We denote

*

LU TIPS RN 10}
To obtain the convergence of u¢ we rely on the decomposition (2.24) and show that each term converges
towards its final counterpart (2.26). This is done in three separate lemmas.

Lemma 9.2. — As& — 0 forpe|[l,2) :
Kge[w'] o Tqs — Kqp, [w'] 0 T in C°([0,T); LP(F(ao))),
where q(;y := (q1,.-., q]*V(i) ).
Lemma 9.3. — Let p < +o0. As€ — 0:
PuiVes (a8, Tqe () — 03 iV Builay, Ta () in L®(0,T; LP(F(qo))) for v e P,
iV i (d, T ()) — 0 in L*(0,T; Lp(]-v'(qo))) for v e Py and in L .(0,T; L”(]v-'(qo))) for v € Py
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Lemma 9.4. — As€ — 0: forve Py:
VLA, Tae (1) — V0, (a), T (1) in L(0,T5 LP(F(ao))) for p < +o0,
and for v e Py:
Vs (At Tar () — Ko [01] 0 Tar in L2(0,T: L/ (F(a))) for p < 2.

Proof of Lemma 9.2. — For all t € (0,T) we write, using the triangle inequality and recalling that all
vector fields are filled with 0 inside the solids,

~

55 [0 0 Tar — Ko, [6%] © Tar o) < IKG [0 0 Tar — K, [T Tae | o

1R, [0 0 Tar — Kap, [0 0 Tar luniey + 1R, [0 — 01 0 T | 2

q0))

d0))”
For what concerns the first term, since 74- is measure-preserving, we have

K Ge (w0 Tqe — Kag, [0] © Tae | o (#(qo)) = G2 [0°] = Kz, [0 1o (2qe))»
which converges to zero uniformly in time thanks to Lemma 3.33. The convergence of the third term
(uniformly in time) comes from (9.10): it involves the convergence of Kq[w®] to Kq[w*] (recall (3.119))
in C°([0,T]; LP(2)) for p < +00 due to the classical compactness of the operator Kq : LP(Q2) — LP(Q)
(due to the Calderon-Zygmund estimate |Ko[w]|y1.50) < Clw|rr(o) and the Rellich-Kondrachov the-
orem.) Note that using the support of vorticity and interior regularity, this involves the convergence in
CO([0,T]; C*(V5(0Sy))) for each A = 1,..., N. It remains to check that the correction R[w —w*] defined
in (3.120) converges to 0 in CY([0,T]; L?(£2)). This is again a consequence of Propositions 3.9 and 3.10.
Finally, concerning the second term, we consider the function

[0? 1] - Lp(‘/—:(qo))’ S qui)+s(q<(si)7qzi))[w€] © 7‘3*4’5(3573*).

It is well-defined for small enough & (due to the convergences (9.6)-(9.8), so that q* + s(q° — g*) belongs
to the neighborhood Z/{go of Lemma 9.1), and its derivative with respect to s is bounded by

oK oK
(9-12) Cla" —a'l | |52 ==
= = oq . oz -
Lr(F) Lr(F)
Together with Lemma 3.35 and (3.116), this establishes Lemma 9.2. O
Proof of Lemma 9.3. — Here we write for v € P(;:
(9.13)

V68,10, T ()= Vit Tar Doz < 19054000 Tar ()= T B Tar O e .10 o)
+ ‘|V¢V,i(qev7-g5(')) - VS\’EV,i(qz»7-g*('))|‘L00(0’T;Lp(]?O))'

The first term in the right-hand side converges to zero as shown by Proposition 3.22. For the second we
reason as in the proof of Lemma 9.3: we consider the function

s vgﬁu,i(ng/ + S(qi - q:)77—g5+s(q5—q;)('))a
where the abusive notation q° + s(q5 — ¢;;) means that we add s(¢5 — ¢};) only on the coordinate of ¢°
corresponding to ¢,. Now we estimate the s-derivative as in (9.12). The z-derivative is bounded thanks
to the uniform Schauder estimates in F , the q derivative by following the proof of Proposition 3.26 by
elliptic regularity in F. With (9.6), this proves the convergence of the left-hand side of (9.13) to zero.
The conclusion follows then from (9.11) for solids of family (7).

Concerning small solids, the convergence to 0 of the Kirchhoff potentials (uniform with respect to q)
comes from Proposition 3.20, and one concludes in the same way with (9.11). O]

Proof of Lemma 9.4. — Here we write for v € P(;y and all ¢t € [0,T7]:

HVLQ/Ji(qangE(')) - VL(ZV(QLTg*('))HLp(f(qo)) < ”vL@[’i(qaaTgE(‘)) - VLJV(q‘i7'35(-))HL,,(];((10))
+ HVLJu(qga7—35<'>) - Vl/‘;u(Q;a g*('))HLp(fr(qD))-
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The convergence to zero of the first term in the right-hand side, uniformly in q is a consequence of
Proposition 3.30. The convergence of the second term is due to (9.6) and the regularity of V+4, with
respect to q (using for instance Lemma 3.31 and (5.23)).

For v € P, for p € [1,2) and all ¢ € [0,T] we have:

IV 65 (e, Tae () = Kz, 0] © Tar | o2 eqoyy < IV 05 (a5 Tae () = Kaz, [ne] © Tar | 1o (g0
+ [ Ky, [0ns ] 0 Tar = Koz, [0nz ] 0 Tar o (7(q0))-

The convergence to zero of the first term in the right-hand side is due to Proposition 3.30, (3.94) and
(3.97). Concerning the second one, by (3.97)

| Koz, [0ns] 0 T — Koz, [0n31 0 Tar | o (#anyyy < IV 0m(R5) 0 T = V0 (R) © Tar | Lo #(q)y)
+H(=h5) o Tqr = H(o = h}) - Tarll o (£ (qo)-

Due to the uniform convergence of hZ, to Ay, both terms converge to zero, the first one by regularity with
respect to h of V+4),, the second-one by continuity of the translations in LP. O

Now the convergence (1.17) to u* satisfying (1.21) is a direct consequence of Lemmas 9.2, 9.3, 9.4,
and of the decompositions (2.24) and (2.26). Moreover one obtains (1.22) by passing to the limit in (4.1)
thanks to (9.9) and (1.17).

9.4. Limit dynamics of the solids of fixed size. — To pass to the limit in the equation of the
solids of family (i), we must pass to the limit in the pressure. To that purpose, we observe that the
convergences described in Subsection 9.3 are actually stronger when one restricts the space domain to
the -neighborhood of 0S,; for k € P;y, and, for k € P, to an annulus B(hy,§)\B(hx,d/2). This is given
in the following statement.

Lemma 9.5. — For k€ {1,...,N} we let U] the §/2-neighborhood of 0S,.(qo) whenever k € P(;y and
we let U = B(hY,8)\B(h?,35/4) whenever k € Ps. Then one has

u® 0 Tgeys —> U 0 Tgryys im0 Whe(0,T; C*(U)) — wx, for all ke N.

Proof of Lemma 9.5. — This is due to the support of w and the remoteness of small solids from it (since
(8,q,w) € Q3°), which allow to improve the convergences of Lemmas 9.2, 9.3 and 9.4 to the weak-* one
in WH%(0,T; C*(U?)). Since we already have the convergence in a weaker space, it suffices to prove the
boundedness of uf o Tqe in WH(0,T; C*(U?)). That u o Tqe remains bounded in L*(0,T; C*(U2)) is
a direct consequence of the support of w® and interior elliptic regularity, since it is already bounded in
L®(0,T; LP(Fp)).

For what concerns 0, (u® o Tqs) we have

oo [Oru® + (vs - V)uT] o Tge, in Ul for re Py,
u® o = -
' 4 [0iuf + ((hS) - V)ufl o Tqe in UL for ke Py,

so that we only have to estimate (0;u®) o Tqe. Again, by interior elliptic estimates, it suffices to bound
it in L% in a slightly larger set. We rely on decomposition (5.3):
— 0yuc® is bounded in C°([0,T] x U?) thanks to Lemma 5.4,
— the terms ¢, V¢, for v # £ are bounded in C°([0,T] x ¢?) thanks to (5.23), (3.83)-(3.84) and the
remoteness of U° from 0S,,,
— all the same the term 0, V1), is bounded in C([0,T] x U?) thanks to (5.23), (3.83)-(3.84) and to
the choice of U? (that is at positive distance from 0S,, when s € Py),
— the boundedness of d,uP°! follows from Proposition 3.26, acceleration estimates (Corollary 5.2) and
Proposition 3.20 (again thanks to the choice of U2).

O
A first consequence of Lemma 9.5 is (1.23). Indeed, due to (1.21) and (1.22), we have
curl(Gpu* + (u* - V)u*) =0 in ]t'(q’(*l-) (1)).
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For each s € {1,..., N}, we introduce a smooth simple closed loop v, in 2. Then (1.2) involve that for

all t € [0,T] and all €, one has

%(@ua + (u® - V)us)(t,) - 7ds = 0.

Passing to the limit with Lemma 9.5 we infer that for all k € {1,..., N},

%(@u* + (u* - V)u*)-7ds=0.

Vi
This establishes (1.23).

Next we deduce (1.24). It follows from Lemma 9.5 that in a vicinity of S, for € P(;), the convergence
of the pressure is improved: recalling that
Vrf = —diu® — (v - V)u® and V7' = —0wu* — (u* - V)u",

Lemma 9.5 involves that
(9.14) Vo Tge — Vo Tg in LP(0,T5C*(Vs2(0S,))) weak- .
From (1.7) we deduce, for all x € P(;:

my(hi)"(t) = R(V5) f 7t Tae (2)) n(t, T (2)) ds (),
95, (o)
Je(97)"(t) = 7 (t, Tae (2)) (@ = hieo) ™ - n(t, Toe (2)) ds(x).
0Sn(q0)
This involves the passage to the limit in (1.7) for the first family, from which we deduce (1.24).

9.5. Limit dynamics of the small solids and end of the proof of Theorem 2. — To get the
convergence on small solids we go back to the normal form (7.3). Let x € Ps. Since we now know that
p° is bounded, using (7.9), (7.6) and (7.8), we infer that the terms A,, C, and D,; converge to zero
strongly in L*(0,T).

Now we use two lemmas, where we recall that p,, is the modulated variable (before the passage to the
limit) given by (7.1).

Lemma 9.6. — When r € Py, the term Mg .p), + M.

hxDr converges to 0 in W—1%(0,T) as € goes
to 0.

Proof of Lemma 9.6. — We proceed in three steps.

Step 1. First M, . converges strongly to 0 in L*(0,7") due to Corollary 3.23. Since p, is bounded, it
follows that (M, D, )" converges to 0 in W=1%(0,T).

Step 2. By Reynold’s transport theorem:

N N
OVpr,i OV
M i = J (p,,. mz) Ve jdr + Viori - (py . w) dx
o V; Fla) av ’ V; F(a) oqy

+ J (u® - n)Vw ;- Vo, ;ds.
0F(a)

By an integration by parts the first two terms are transformed into integrals over S, with some in-
tegrands which are bounded according to Proposition 3.26. Therefore these two terms converge to 0
uniformly in time. For the third one, we first notice that u® - n = u?°* - n is bounded (thanks to Propo-
sitions 3.20 and 8.1). Now using again Proposition 3.20 we see that on dF(q)\0S, the integrand is of

order 0(5i+5i3+5j3) and that on dS,, it is bounded. Since |0S,| = O(g,), we obtain the convergence of
this term to 0 as well. Thus M, P, converges to 0 in L*(0,T) as € goes to 0.

Step 3. Since
_ 1 _ _ 1 _
Ma,lip; + iM;,npn = (Ma,ﬁpn), - iM;,nprm
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the result follows. O

Lemma 9.7. — When k € Ps, one has the uniform convergence in [0,T] as € goes to 0:
BK/ * * *
(B ) — () = wn (b))
K,2

Proof of Lemma 9.7. — We consider the writing of B,; in (7.2). Using (7.1) and (2.17d), and then (6.27),
(6.28) and (6.10), we see that

Bn,l e\’ ay + B * eV _ e pey\ L
Bn 5 =Tx (hn) - ag + ﬂQ =Tk ((hn) - un(hn» + 0(1)
It remains to prove that
(9.15) a5, (hy) — wi(hy) uniformly in time as € — 0.
To prove (9.15), we first establish the convergence for p € [1, 2)
(9.16) U 0 Tqe —> ul o T in LP(0,T; LP(Fy)).

This derives from (6.8) and the equivalents of Lemmas 9.2, 9.3 and 9.4 in the domain %, where there is
no Sy:

Vi o T — V@, o Tq+ for v e Py,
V(P,E,J/{ o 7:15 —»0forve Ps\{'%}7

Vgt o T — Vi, o Tq+ for v e P,
vlwi’I%OEE N [\6[5”;] o E* forve Ps\{K’L
Ko Tqe — K]0 Ty

Moreover using (3.110) and reasoning as in Lemma 9.4
VA o Tge —> VL 0 Tge = {K[64:] — Hyo} o Tgr

where we recall that ¢ was defined in (3.96) and ¢"# in (3.107). This allows to deduce (9.16) using
the decomposition (6.8) of %,. Then using inner regularity for the Laplace equation, we see that the
convergence (9.16) actually holds in L*(0,T; C*(V5(S,))) since there is no vorticity near S¢. With the
uniform convergence of he, toward h, this gives (9.15). O

Hence we obtain (1.25) and (1.26) by passing to the limit in (7.3) using the assumption that -y, # 0
when x € Py (see the last paragraph of Section 1.2) for the latter. This concludes the proof of
Theorem 2. ]

9.6. Proof of Theorem 3. — In this subsection, we briefly sketch the proof of Theorem 3. Hence we
consider the particular case where the data ensures the uniqueness of the solution to the limit system,
together with the separation of point vortices, of solids of fixed size and of the vorticity support in the
limit. Since the limit system enjoys uniqueness in this situation, the convergence without restriction to a
subsequence is commonplace; let us explain why the maximal existence times T satisfy lim infz_,q T¢ >
T* and the convergences (1.17)-(1.20) hold on any time interval [0,7] < [0,T™).

Consider T' > 0; denoting Si(t) := Sk(qi(t)) for k € Py and S (t) := {hy(t)} for k € Ps, due to the
assumption on the limit system, we can find dp > 0 such that

Vte[0,T], Vee{l,...,N}, d(Si(t),Supp(w*(t))) = dr, d(S;:(t),00) = dr

and YAe {l,...,N}\{x}, d(S;:(t),S55(t)) = dr.

Reducing dr if necessary, we assume that dp < D where D was defined in (9.2). We now introduce
T := SUp {T e [0,7] / oo > 0, Vit € [0,7], V& < e0, Vh € {1,..., N}, d(SE(t), Supp(ws () = dr/2,

d(S5(t),00) = dr/2 and YAe {l,...,N}\{x}, d(S.(t),S5(1)) = dT/2}.

69



Due to the analysis of Subsections 9.2-9.5, we have T}, = T where T was defined in (9.5). Moreover,
the convergence analysis of Subsections 9.2-9.5 can be carried out in any [0,7] < [0, Tinaz) since we
merely use a minimal distance between the solids and between the solids and the vorticity support to
obtain the estimates. Hence to conclude, it suffices to prove that T}, = T'.

Arguing by contradiction, we suppose that T}, < T. Using the convergences (1.19), it is easy to see
that for 7 < Tqs, for suitably small €, we do have d(S5(t),S5(t)) = 3dr/4 and d(SL(t), Q) = 3dr/4
on [0, 7] so that the limitation T;,q, < T can only come from the vorticity. But using the definition of
Trnaz, (1.19), the decomposition (2.24) and the estimates of Section 3, we see that for 7 < Tyuq4, for
suitably small €, one has the uniform log-Lipschitz estimate on the support of w:

[ (t, ')H[:[:(]:\UKE,PS Vg a(h5 (1)) < C uniformly for ¢ € [0, 7].
Moreover, reasoning as in Lemma 9.5, we see that for p € (1, +00),
[ Orus (2, .)HLP(]:\UKEPS Vaga(hL(®))) < C uniformly for ¢ € [0, 7].

This implies that the convergence (1.17) can be supplemented by
u(t,) — u(t,-) in CO[0,7]; COFN | Vagsa(hi(1))))).

KEP
This involves the convergence of the corresponding flows on Supp(wp). In particular, Supp(w®(t))
converges to Supp(w*(¢)) uniformly in time for the Hausdorff distance. Since the convergence analysis
of Subsections 9.2-9.5 is valid on any [0, 7] < [0, Tynaz), we deduce that one can find for any such 7 an
g0 > 0 such that for € < g, for all k € {1,..., N}, d(S:(¢), Supp(w®(t))) = 3dr/4 on [0,7]. This puts
Timaz < T and the boundedness of the velocity of the vorticity support and of the solids in contradiction.
This ends the proof of Theorem 3. O
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