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Abstract

In this paper, we consider the controllability of a transport equation perturbed by small diffusion
and dispersion terms. We prove that for a sufficiently large time, the cost of the null-controllability
tends to zero exponentially as the perturbation vanishes. For small times, on the contrary, we prove
that this cost grows exponentially.

1 Introduction

In this paper, we consider some null-controllability problems for a transport equation perturbed by small
diffusion and dispersion effects. Precisely, the system under view is the following

Yt — Myy + 0Ypzx — €Yzz =0 in@:=(0,T) x (0,1),
Yjz=0 = U(t)7 Yjz=1 = 0, Yz|z=1 = 0 in (O7T)a (1)
Yit=0 = Yo in (07 1)7

where T > 0, § > 0, e (typically non-negative) and M are real numbers. In (1), we have denoted yo
the initial condition and v the control. Our main problem is the following. Consider the unperturbed
transport equation :

Yy — My, =0in Q.

This equation is null-controllable from the boundary provided that 7' > 1/|M|. The question which
arises is to determine whether it is possible for such times to control (1) at a uniform cost as € and ¢ tend
to 0. On the other hand, it is to expect that for times T < 1/|M|, the cost of null-controllability will
dramatically increase. These problems have already been treated in the case of vanishing viscosity (see
Coron-Guerrero [4] and Guerrero-Lebeau [9]), and in the case of vanishing dispersion (see Glass-Guerrero
[8]). Several statements proved below are new even in the case of pure dispersion (e = 0), see Theorems
1 and 4.

The motivation for studying the dissipation-dispersion mechanism arises from continuous dynamics.
In particular, in nonlinear elastodynamics, these terms can model viscosity and capillarity effects. These
are particularly important in the theory of nonclassical shock waves (see in particular the book of LeFloch
[11]). Nonclassical shock waves are shock waves for conservations laws with non-convex flux, which are
selected through perturbative terms such as the ones of (1); in that case they can differ from the classical
shock waves selected by vanishing viscosity. Hence, although the system which we consider here is linear,
one can see the results described below as a first attempt to control nonlinear conservation laws in a
dissipative-dispersive limit. Such a study in the purely dissipative limit has been handled by the authors
in the case of the Burgers equation in [7].

We establish the following results.
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Theorem 1. There exists Cy > 0 such that the following holds. For any M >0, any T > Cy/M, there
are positive constants ¢ and C' (depending on T') such that for any (8, ¢) € (0, 1], there exist v € L*(0,T)
driving yo € L?(0,1) to 0 and which can be estimated as follows:

¢ cM
Wexp{_max{(Ma)m,e}} ol z2- 2)

Remark 1. Theorem 1 improves the one in [8]. In fact, for e =0 a similar result was proved in [8] but
with the help of three controls, one on each boundary condition.

lvllz2 <

The meaning of a solution of system (1) will be given in Section 2 (see Definition 1 and Proposition 1).
In a context of more regular solutions (which are easier to define via a lifting of boundary conditions),
one can state the following.

Corollary 1. In the above framework, we can obtain a more regular control v in H(0,T) with the
following estimate
C(o, M

L rreetes e 1 P ®

where C(§, M) behaves at most polynomially in 61 and in M (that is to say, |C(6,M)| < K(§~ 1+ M)"
for some K > 0 and some r € N).

Let us recall that Theorem 1 is valid for the heat equation (0 = 0) with Dirichlet boundary conditions
regardless of the sign of M, see [4]. Hence it is natural to wonder if it is still valid when ¢ > 0 is small
with respect to €. An answer is given in the next result.

Theorem 2. Let 0 < v < 1. Then there exists Cy (depending on ), such that for any M < 0, any
T > Cy/|M]|, there are positive constants ¢ and C' (depending on T and ~) such that for any (6, €) € (0, 1]?
satisfying

€ > 70| M|, (4)

one can find a control driving yo to 0 and which can be estimated as follows:

lv]|z2 <

C c|M}
—_— - 2. )
o o)

In the next result we consider the case of negative e. It is somewhat surprising that the dispersive
term can overpower a small dissipation term with the wrong sign.

Theorem 3. Suppose ¢ € (0,1] and € is negative but satisfies —e < k§ (for some fived k < 3/2):
o the Cauchy problem for equation (1) is well-posed,
e if moreover one has M > 0 and —e < %\/ OM , then the conclusion of Theorem 1 still holds.

Corollary 2. In the framework of Theorem 3, it is possible to design a more regular control v in H*(0,T)
with estimate (3) fulfilled.

Now we consider the case where T' < 1/|M]|. In this case, the transport equation (6 = ¢ = 0) is no
longer controllable. One should hence expect the cost of null-controllability to blow up as d, e — 0. This
is shown in the next result.

Theorem 4. Consider M # 0 and T > 0 such that

T < Vi (6)

Then there are some constants ¢ > 0 and ¢ € N (independent of € € [0,1] and § € (0,1]) and initial states
yo € L%(0,1) such that any control v € L*(0,T) driving yo to 0 is estimated from below as follows

Y C
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Remark 2. As far as we know, this result is new even in the case e = 0.

Remark 3. Let us recall that in a bounded domain, one can transform equation (1) in a linear KdV
equation without diffusion term through the following transformation. We set

) €
z = exp(—ax)y with a = 35 (8)
Then z satisfies
+6 Yy Ky GVl DO (9)
T O%en T 35 Y 9% ) "

So the zero-controllability of (1) for fized 6 and € follows from Rosier’s result [13] on the controllability
of the linear KdV equation. The exact controllability with two Dirichlet controls also follows from this
remark and the results from [8].

However, the estimate of the cost (2) cannot be obtained by this transformation and our method for
the linear KdV equation from [8]. In particular, the above transformation gives bad estimates in the
regime when the diffusion dominates, that is, when €2 > 6. It seems natural that difficulties appear in
the above transformation when the third order term is very small.

2 Cauchy problem

Let us briefly discuss the Cauchy problem for equation (1). For recent references concerning the initial
boundary value problem for the Korteweg-de Vries equation, let us cite [2, 3, 10] and references therein.
First, we introduce the adjoint system

—Wg — MWygy — EWge + Mw, = f  in (0,T) x (0,1),
W|g=0 = W|g=1 = Wg|z=0 = 0 in (OvT)a (10)

W=7 = Wo in (0,1).
The solutions of system (1) are to be understood in the sense of transposition:

Definition 1. Given T > 0, yo € H~'(0,1) and v € L*(0,T), we call y a solution of (1), a function
y € L2((0,T) x (0,1))NC°([0,T); H=1(0,1)) satisfying for all f € L?((0,T) x (0,1))+ L*(0,T; H}(0,1)),

T r1 T
/ / y fdxdt = (yo, wlt=0) r—1(0,1)xm2 (0,1) + 5/ V Wz |p—o AT, (11)
0 JO 0

where w is the solution of (10) associated to [ with wy = 0.

Of course, any regular solution of (1) is a solution in the above sense, as easily shown by integration
by parts.

Proposition 1. For M € R, § € (0,1], and either ¢ € [0,1) or e < 0 and —e < k6 (for some fized
K< %), T >0, yo € H0,1) and v € L?(0,T), there evists a unique solution of transposition of (1).
Moreover, there exists C > 0 independent of € and § such that

C
Y122 (0,7 % (0,1))nCo (0,77 -1 (0,1)) < 6*3(||”HL2(0,T) + lwollz-1(0,1)- (12)

Proof of Proposition 1. It suffices to demonstrate that for f € L?((0,T) x (0,1)) + L*(0,T; H} (0,1)),
we have w € C°(0,T; H}(0,1)) and Wog|o=0 € L?(0,T), together with an estimate on this quantities in
terms of f. For further purposes, we will consider wy not necessarily 0, although this is not needed to
establish Proposition 1. Let us remark that the existence of solutions of (10) for regular data follows for
instance from the transformation (8)-(9).

To do this, we perform several different energy inequalities. As we will see, this is valid in both cases
when € € [0,1) and when € < 0 but —e < 24. Consider a regular solution w of (10). The general case
follows from a regularization procedure.



First inequality. We multiply (10) by w: this yields

5 1
—— | |w]?dz+ wIw +e/ |w, da:—/ wfdz. 13)
2dt/ | |lz=1 ° ; (

Second inequality. We multiply (10) by (1 — z)w: this yields

1 d 1 ) 36 1 ) 1 ) 1
LA wlde+ 2 [ dx+e/ (1 2)[ws| dx:/ (1-2wfde.  (14)

When adding (13) and (14) we arrive at

1d (! 36 ! §
I — ; (2—x)|w|2dx—|— (?—&-6)/0 |w$|2dx+§wi|w:1

2dt
< C{ || V 2 _xw||L2|| \% 2_$f||L27 1ff € Ll(ovT; L2(071))7
a [l ga | fller—1, if f € L2(0,T; H(0,1)).

Hence we get an a priori estimate on w in L ([0, T; L*(0,1)) N L2([0, T]; H*(0,1)) in terms of f and wp:

3
lwl| Lo (jo,77;22(0,1)) + 55 + e llwll L2 (jo,17:51 (0,1)) < Cllwollz2(0,1)
C’{ I fllz2 070201y, if f € LY(0,T; L*(0,1)),
szl fllz2o,rsm-1(0,1)) if f € L2(0,T; H-1(0,1)).

Note that, due to the fact that x < 3/2, (15) provides an estimate of w in L?([0,T]; H'(0,1)) in terms
of wy and f, with a coefficient which grows as 1/0.

(15)

Higher order estimates. Now let us denote

=003, — €02, + MO,. (16)
Let us also introduce B
F3(0,1) = {u € H2(0,1) N H(0, 1), ttyjs—0 = O}. (17)

If f e LY0,T;(H?N HZ)(0,1)) or f € L?(0,T; H3(0,1)), then we can perform the above estimates on
Pyw (which indeed fulfills the same homogeneous boundary conditions as above). This yields a priori
estimates on Pyw in L* ([0, T); L?(0,1)) N L2([0, T]; H'(0,1)) in terms of P f and Pywy:

3
| Prwl| Lo (jo,17:22(0,1)) + Fite | Prwl| 20, 77:11.0,1)) < CllPrwo||£2(0,1)
C{ 1Py fl L o,msp20,0y), if f € LY, T (H3 1 HZ)(0,1)),
s P2 omsm-1(0,0))s if f € L2(0,T5 HZ(0,1)).

Now we infer estimates on w (with polynomial growth in terms of ¢) in the following way. We write

(18)

(Owy + €w) g = —Prw + Mwy,. (19)
Suppose that f € L2(0,T; H3(0,1)). Using (15), (17) and (18), we deduce
C o
6wz + ewl| 20,1112 (0,1)) + [[0We + €w|| oo (jo,17;11 (0,1)) < m”wOHHS(O,l) + g||f”L2(o,T;ﬁg(o,1))~ (20)

(We use ||hHH2(0 1y < (||hHLz(O 1) + [[hzell£2(0,1)) Which holds in dimension 1.) Using again (15) to
estimate ew in L2( T; H(0,1)) N LOO(O T;L?(0,1)), we reach

C C
16wl 2 0,152 0,0)) + 0wl e 0,738 0,1)) = 573 Nwoll oo,y + 5 IF | e, 7z 0,0))-



Injecting in (20) we obtain

C
l0wl| L2 (jo,77: 13 (0,1)) + 10w Lo (0,752 (0,1)) < 532 lwollrs0,1) + 5311l 20,752 0,1))-

Using (18) and (19) again, we easily get

C C
lwllzz(o,73;740,1)) + wllzee (o, 73;120,1)) < W”wOHHi"(O,l) + 57“]”||L2(0,T;Hg(o,1))~ (21)
The same can be done in the same way in the case where f € L'(0,T; (H? N H3)(0,1)) (see (15)-(18)).

Interpolation argument. Now an interpolation argument (see [1]) between (15) and (21) proves that if
£ e L20,T; L2(0,1)) + L' (0, T; HE (0,1)) and wo € HY, then w € L2(0, T; H2(0,1)) N L>=(0, T; H2 (0, 1))
with the following estimate

C
lollz a0, pens oo < 55 (120202014 110,830, + lwollmgo,n) - (22)

Additional trace estimate. As in [8], we introduce p € C3([0, 1]; R) satisfying

p|[071/2] =1 and p|[3/471] =0.

Now considering f € L?(0,T;L?(0,1)) + L'(0,T; H}(0,1)) and wg € Hg as above, we multiply (10) by
pwy, and integrate in x. This yields

) ) 5 1 ) 1
§|wmx|z:0| = 75 pz‘wxx‘ dx — Wt Pz Wy
0 0

1 1 1 1 1
B / (pwi)t + 6/ p|wa:w|2 dx — M/ PWeWeq AT + / fpWeq d.
2 0 0 0 0

Together with estimate (22), this implies that wg,,—o € L?(0,T), with the estimate

C
||wm|m:0||L2(o,T) < 5572 (Hf||L2(O,T;L2(071))+L1(0,T;H(}(0,1)) + ||w0||H3(0,1))- (23)

3 Proof of Theorem 1

3.1 Carleman inequality

Let us consider the following backwards (in time) problem, which is the adjoint system associated to (1):
—Pt = 0Praa — €Pze + Mpp =0 in (0,T) x (0,1),
Plz=0 = Pla=1 = Pz|z=0 = 0 in (0,7, (24)
Pl=T = YT in (0,1).

The objective of this paragraph is to state a Carleman inequality for the solutions of this system. In
order to state this estimate, let us set

B(x)

at,z) = T —

(t,z) € Q, (25)
for some p € [1/2,1]. Here, 3 is a strictly positive, strictly increasing and concave polynomial of degree
2. Weight functions of this kind were first introduced by A. V. Fursikov and O. Yu. Imanuvilov; we refer
to [6] for a systematic use of them.

Observe that the function o satisfies

C S T2ua7 Cooé S Qg S ClOé, C'005 S —Qgg S Cla in (OvT) X [07 1]7 (26)



and
e + |aat| + gt < CTQWHD/E oy < CT2aWH2/E i (0,T) x [0, 1], (27)

where C, Cy and C are positive constants independent of T'.
We have:

Proposition 2. There exists a positive constant C independent of T, § > 0, ¢ >> 0 and M € R such
that, for any o1 € L?(0,1), we have

s// e 25 ((52|g0m|2 + (0%5%a% + )| |* + (6%s*at + 62$2a2)|<p|2) dx dt
Q

T
< 05/ (580[‘3;:0 + 6)6_25a‘z:0|80zx|x:0‘2 dt, (28)
0

for any s > CTH(TH + (1 +THMH*) /(61 7+e2=1)), where ¢ is the solution of (24).

Remark 4. Note that in the dispersive regime (that is, when § > €2), one could deduce Proposition 2
from the Carleman estimate of [8], by putting the diffusion term ep,, on the right hand side. In passing,
when this term is put in the right hand side, the sign of € does no longer matter. See Proposition 6 for
a precise statement with a negative €.

Since the proof of Proposition 2 is very technical, we postpone it to an appendix, at the end of the
paper.
3.2 Exponential dissipation result

It follows from (13) that the solution of the adjoint system (24) satisfies

1 1
[ et oPde< Kt [ lettso)P e 0<t<n<T, (29)
0 0

with K (t1,t2) = 1. In this paragraph we will prove that, whenever the time passed t3 —t; is larger than
1/M, the constant K can be dramatically improved: typically, it behaves like

eplo ¢
P max{§1/2 e} |

The precise result is stated in the next proposition:

Proposition 3. Let T >0 and § >0, € > 0. Let 0 < t; < to < T such that ta —t; > 1/M. We have
the following decay properties for the solution of (24):

o If 2 >35(M —1/(ty — t1)), then

C (M(ta —t1) 1)
K< exp { (1+ \/§)2e(t2 —t1) } . (30)
o Ife2 <306(M —1/(ty —t1)) then
2(M(ty —t1) — 1)3/2
K< exp {3\/3(1 V2202 (ty — )12 } : (31)

Proof of Proposition 3. This is inspired by [5]. Let us multiply (24) by exp{r(M(T —t) — ) }¢, where
r is a positive constant which will be chosen below. Then, integrating in (0, 1) and integrating by parts
with respect to x, we deduce

1d (! ) 5 [t )

—5=2 | exp{r(M(T —t) —x)}e["dr + 5 [ exp{r(M(T —1t) — )}z || dx
2dt Jo 2 Jo
1 1

—5r/ exp{r(M(T —t) — z) }puz pdz + e/ exp{r(M(T —t) — z)}|¢u|*dx
0 0

1
—% exp{r(M(T — t) — z)}0y|¢|*dz = 0.
0



Integrating again by parts, we obtain

_%% ; exp{r(M(T — t) — z)}|¢|?dx + gexp{r(M(T —t) — 1)}|<Pm|x:1\2
+%§r /0 exp{r(M(T —t) — x)}|¢.|*dx + 6/0 exp{r(M(T —t) — )} |*dx (32)
*% /0 exp{r(M(T — t) — x)}(0r® + er?)|p*dz = 0,

which implies

—i eXpPy— 7"3 67“2 — 1ex r — — T T 2 X
& (el 4 ert)T =) [ explrT — 1)~ aipte o) ) <0, (33)

for ¢ € (0,T). Integrating between t; and ts, we get

1 1
| ettna)Pde < K [ jotta )P, 31
0 0
with
K = exp{6(ta — t1)r® + e(ta — t1)r* + (1 — M(t2 — t1))r}. (35)
Now, we choose r > 0 to minimize K, that is to say, we take

— Al
Az + (A3 4+ 34, 45)Y/2

r

with
A1 :M(tgftl)fl, A2 :5(t27t1), Agie(tgftl).

With this choice of r, we have that K (given by (35)) coincides with

A As+2(A3 + 34,4512 }

K = k8
eXP{ 3 (A3—|—(A§+3A1A2)1/2)2

First case: 34,4, < Ag.
We first use that K written in the form exp{—y/z} (y,z > 0) is an increasing function of z and we
get

A2 Az +2(A% +3A1A2)1/2}
(14 v/2)2 A3 '
Now, taking into account that (A2 + 34, 45)Y/2 > Az, we obtain

K< exp{—3

Second case: A% < 3A4;A,.
Similarly as in the previous case, we first have that

A3 Az +2(A% +3A4,45)12 }
(1+2)2 A1As '

Finally, we take into account that (A3 + 3A4;A45)'/2 > (34,45)'/? and Az > 0 and we obtain

o 43/?
K <exp{ — L 7z (-
3V3(1+ v2)2 AL

K< exp{—9

This establishes (30)-(31).



3.3 Proof of Theorem 1

1. Let us first deduce an observability inequality from the Carleman inequality (28). To do this we
must distinguish two regimes: the “dispersive regime” where MJ > €2 and the diffusive regime where
M§ < 2. We consider ¢ a regular solution of (24) and use Proposition 2 for a time T} = 1/M. Denote
Q1 :=[0,71] x [0,1] and @, := [T1/3,2T1/3] x [0, 1].

e First regime: MJ > €2. We fix p = 1/2. We consider s fulfilling the assumptions of Proposition 2:

1+T11/2M1/2) ! 1

1/2 1/2
s=CT)/ (Tl/ +—7 —_—

BEYRRTVTIVER

Observe in particular that 71 /s < 1. From (28), we infer

Ty
0%s? // a’e” | da dt < C/ (6%sa(t,0) + 65)672m(t’0) |aa(t, 0)[*dt,
1 0

for some C' > 0 independent of §, € and M. From the definition of « (see (25)), this yields

5285 528 T
08" ~Cas/mi // |<p|2dxdt§Cg(—+65)e_c3s/T1/ (paa (£, 0) 2, (37)
T; 1 T 0

for some Cs, C3 > 0. Then, we use here the following energy inequality

1 1
/ lo(ty, z)|? dz g/ lo(ta, z)[Pdr 0<t; <ty <T.
0 0

In particular, using T /s < 1, this allows us to deduce the following observability inequality from

(37):
1 T
o0, ar < / (Prepamol® dt, (38)
with 12
« € C4M
C C4(1+6)6Xp{51/2},

for some Cy > 0 independent of M, ¢ < 1 and § < 1. Now, we use ¢ < vdM and deduce an
estimate on the observability constant

(39)

M1/2
C* < Cs exp{CS }

51/2

o Second regime: M < €2. We choose p = 1. Here we deduce from (28) that for s as in Proposition
2 (observe now that 72/s < 1):

T
253 // e p2dr dt < C’/ (62sa(t, 0) + €8)e= 2520 (8, 0)|dt,
1 0

for some C' > 0 independent of §, e and M. From the definition of « (see (25)), this yields

253 o e ) 525 oo [ 2
Gre ot [ lpPdvdt < Oo( g + )T [t o),
17 N h 0

for some Cg, C7 > 0. Proceeding as previously we obtain (38) with C* estimated by

. PR CsM
C S C‘g(({*2 + E) exp{ 86 } . (40)




2. Now, given T > Cy/M (with Cy > 2 to be chosen large enough later), we use the above observability
inequality (38) between times T'— 1/M and T'; we deduce

T
(T =M < C* [ fprmpal
T—1/M

During the time interval [0,7 — 1/M], we use Proposition 3 to compare |[¢(T — 1/M)||2. to ||¢(0)]2,
(that is, we take t; = 0 and to = T — 1/M). We finally obtain

1 T
/ p(0,2)2 dx < KC* / (e pocol? d,
0 T—1/M

with K(0,7 —1/M) and C* given by (29)-(31) and (39) in the first regime and by (29)-(30) and (40) in
the second one. It is then clear that by taking Cj large enough (independently of the parameters 4, e,
M), we can bound the observability constant in the following way:

—01M1/2

i in the first regime,

Cg exp
Cons < 2

) —aM
Cy (72 + 7) exp { a } in the second regime.
€ € €

Now, from these observability inequalities for the solutions of (24), it is classical to prove that for
any yo € L?(0,1), there exists a control v € L?(0,T) such that the solution y € L?(0,T; H'(0,1)) of (1)
satisfies y(T,x) = 0 for x € (0,1) with vy estimated by

Coe
[o1l172(0,7) < T;

YollZ2(0,1)-

Let us emphasize that the § factor comes from writing the duality relation between (1) and (24) and
applying the standard H.U.M. procedure (see [12]). Then, one can estimate the factor C,,./d? in the
following way:

ClO { 7C2M1/2 . .
—— expq ——=— , in the first regime,
C(;;S <y M {51/2 —esM
Cho (m + E) exp { p } in the second regime,

and hence one obtain the form (2) in both cases (slightly reducing c;). This concludes the proof of
Theorem 1.

3.4 Proof of Corollary 1

In this proof, C(6, M) will denote a generic positive constant depending on 6~ and M at most polyno-
mially.

The construction consists of two steps: first, we let the control be zero in (1), and prove that this
regularizes the state of the system. Next, we find a convenient control for more regular initial data.

First step. We consider some t* € (0,7). Let us prove that setting the control to zero yields a state
y(t*) in H3(0,1).
We recall that we already have that y € L2((0,T) x (0,1)) N C°([0,T]; H~1(0,1)) and
yll L2 (0,7 x (0,1 e 0,111 (0,1)) < C (8, M) (I|v]l 20,1y + 1Yol -1(0,1)) (41)

(see (12)). We also remark that changing x into 1 —x and ¢ into T — ¢ transforms system (42) into system
(10), so that we can use (22) and (21) in the sequel.
Let 1 € C1([0,t*/2];R) be a non-negative function such that
m(t) =0 ifte[0,¢*/4],
mt) =1 ifte[t*/3,t*/2).



Let y1 := m1(t)y; it satisfies
Y1t + 53/1”9; — €Y1zx — Mylw =Mty in (07 t*/2) X (05 1)7
Yijz=0 = 0, Yijz=1 = 0, Yizg|z=1 = 0 in (O7t*/2)7 (42)
Yijt=0 =0 in (0,1).

Thanks to (41), the right-hand side of (42) belongs to L?((0,t*/2) x (0,1)) and so inequality (22) gives
that y, € L2(0,¢*/2; H%(0,1)) and

ly1llz2 0,6+ s2:m20,1)) < C(6, M)yl L2¢(0,7)x (0,1)) < C(0, M)(||U||L2(0,T) + HyO”H*l(O,l))- (43)
Let now consider 7o € C*([0,¢*]) a non-negative function such that

me(t) =0 ifte0,t*/3],
{ m(t) =1 ifteft/2,t%].

Let yo := n2(t)y; it satisfies system (42) with gy in the right hand side, which, thanks to (43) belongs
to L2(0,t*; H2(0,1)), where

H{(0,1) == {u € H*(0,1) N Hy(0,1), uyp—y = 0}. (44)
Using estimate (21) we deduce that y € L*(0,t*; H*(0,1)) N C°([0,t*]; H3(0,1)) and
ly2ll£2(0,6%; 14 (0,1))nL> (0,6%; 12 (0,1)) < C(6, M)(HU||L2(O,T) + ||Z/0HH*1(0,1)), (45)
which concludes the desired proof.

Second step. Hence, considering y(t*) as our new initial condition, we can consider that yo € (H® N
H2)(0,1). We now reduce Corollary 1 to an internal regularity property for system (1). In order to do
this, we extend yo into §o € (H*> N HZ)(—1,1) (in a continuous manner) and we consider system (1) in
[-1,1] rather than in [0,1]:

Gt + Oliwww — €Jze — MGy =0 in Q:=(0,T) x (—1,1),
g|x:71 = ﬁ(t)7 g\z:l =0, ?jx\m:l =0 in (OaT)v (46)
Y=o = Yo in (—1,1).

Due to Theorem 1, there exists a control & € L?(0,T) driving go to 0 at time 7. Now for system (46),
we establish in the Appendix the following internal regularity result.

Proposition 4. Let (§,¢) € (0,1]%> (or § > 0 and —€ < K6 with k < 3/2), M € R. Consider § a
solution of (46) for some © € L*(0,T) and §o € (H3NHE)(—1,1). Then Ji-11 € L2(0,T; H*(—3,1))Nn
HY(0,T; H'(—1,1)), with the estimate

13-yl iz crmem < €@ M) [Iollas -1 + 191 20.1)] (47)

for some constant C (5, M) depending at most polynomially in 6= and |M]|.

Now it is clear that y = §jjo,1) fulfills the requirements of Corollary 1, since g has a trace at z = 0
belonging to H'(0,T) and satisfying estimate (47).
3.5 Proof of Theorem 2

The only part of the proof of Theorem 1 which needs to be changed is the dissipation inequality. For
that, we start from (32), but here, due to the sign of M, we consider r < 0. Provided that

2¢
r>

= T35 (48)
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the integral concerning ¢, has a positive coefficient. It follows that (34) is still valid in this situtation,
with here K given by

K= exp{é(tz — tl)Tg + €(t2 - t1)7"2 + (—1 - M(tQ - tl))’f’}, (49)
instead of (35). Now we consider
2y(|M| — £
B0 - ) 50
3e
Observe that, since
1
2> y5(|M| -
€2 > ~5(|M]| tQ_tl),
(see condition (4)), r* indeed satisfies (48). Now injecting 7* in (49) and neglecting the first term in (49)
yields
(tQ — tl) 4 2 2 ]. 2
o (- T L)
<exp - 57 +37) 1Ml t2_t1]

which, recalling that v < 1, proves the exponential decay property. Now the rest of the proof follows the
lines of Theorem 1.

4 Proof of Theorem 3

First, let us recall that the Cauchy problem for such € was investigated in Section 2. That the required
Carleman inequality holds in the context of this result (viz. when € is negative but small) was explained
in Remark 4; see Proposition 6 for a precise statement. Also, we need to extend the validity of the
dissipation estimate (Proposition 3) to our context.

4.1 Dissipation and Carleman estimates

The dissipation result which we use here is the following.

Proposition 5. Consider T >0, ¢ <0 and § > 0 satisfying —e < 36/2. Fix co > 0. If

< 3 M5CO
—€ - ,
“ 22V 1+¢

then for every 0 < t1 < to < T such that to —t1 > (14 ¢o)/M, the solutions of (24) satisfy the decay
property (29) with the constant K estimated by:

& 3/2 M3/2(t2 — tl)
Kser {_ (2(1 T c0)> 5172 } | (52)

Proof of Proposition 5. The computations that led to (32) are still valid. But due to the negative
sign of €, estimate (33) could possibly no longer occur. However, if we choose r properly and prove that

(51)

2€
r>

T (53)

then the sum of the two terms of the second line of (32) is non-negative, so that (33) holds.
Hence it remains to choose r satisfying (53), in order to make our constant K given in (35) satisfy
(52). First, we remark that due to the sign of ¢, we have:

K S exp{5(t2 - t1)7"3 —+ (]. — M(tg — tl))r}.

We choose
C()M
2(1+co)d’

T =

11



In particular, (53) is a direct consequence of (51). Due to M(ta — t1) > 1+ cg, we have

Co

M(to —t1) — 1> 1JrCOM(152 —t1),
hence we deduce easily
co
K <o~ 5 ity
= P 2(14 ¢o) (f2 =t1)

which yields (52).

The Carleman estimate that we use here is the following

Proposition 6. Consider T >0, M >0, § > 0 and € < 0 satisfying —e < 36/2. There exists a positive
constant C' independent of the previous quantities such that, for any oo € L*(0,1), we have

T
// e (|50m|2 + %0 |a|? + 84a4\<p|2) dx dt < C'/ Qo€ 2500 o2 d, (54)
Q 0

for any s > C(T + (T/8)"/? + TM'/?/§'/2), where ¢ is the solution of (24).

Proof of Proposition 6. We modify the proof of Proposition 2, by taking u = 1/2 and placing the
€pzr term in (24) on the right-hand side. This yields

e // e (|pgol? + 5202 |po|? + s*a*|l?) du dt
Q

T
gC(S(S?/ Ajgm0€” N0 0 o] dt + € // 6_23a|<ﬂzw\2dxdt>, (55)
0 Q

for any s > C(T 4 (T/8)Y/? + TM'/?/§/2). (Essentially, this is the Carleman estimate from [8, Propo-
sition 4], with an additional right-hand side and a slightly more general weight function.)
Now to absorb the last term on the right-hand side by the first term on the left-hand side, it suffices
to take
T
s > 5z

But since 36/2 > —e, we see that (56) does not provide an additional condition.

(56)

4.2 Conclusion: proof of Theorem 3

We take ¢y = 1 in Proposition 5 (in that case, (51) is satisfied by assumption of Theorem 3). Hence (29)
and (52) are valid for the solutions of (24).

Now from the Carleman inequality (54) applied for a time T3 = 1/M, we deduce the observability
inequality (38) as in Paragraph 3.3; here the observability constant C* is estimated by

* 1 1/2 1
1

We proceed as in the proof of Theorem 1 and get an observability constant which is the product of C*
and K. If we take a sufficiently long amount of time for the dissipation, we see that we can absorb the
constant from (57) by the constant from (52) (used during the time interval [0,7" — 1/M]). This yields
an observability constant of the form:

M1/2>

Cobs S Cexp(fcm .

(58)

Recall that the constant giving the cost of the control is Colb/f /8. This yields the conclusion.
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4.3 Proof of Corollary 2

One can reproduce the proof of Corollary 1. Concerning the first step (using a null control regularizes
the data), inequality (45) is still true, since we did not use the sign of € (apart from the fact that
3/254+¢ > (3/2—k)d). Concerning the second step (the interior regularity result), we can see in Section
7 that we only use %5 +e>0.

5 Proof of Theorem 4

We first consider the case where M > 0. At the end, we will describe the modificiations needed in the
case where M < 0.
We introduce R > 0 such that
0<2R<1-MT. (59)

We introduce ¢pr € C5°(0,1) such that

Supp (¢r) C (R,2R),
@T 2 07

1
/ o2 dr = 1.
0

We consider the corresponding solution ¢ of (24). Now the proof is twofold. First we show that the
mass of ¢ is essentially conserved in the sense that

(60)

1
[ 1ew.opdr=c>o, (61)
0
for some constant ¢ > 0. Next, we prove that p,,|,—o decays exponentially as €,§ — 0t.

First step. We introduce 6(¢,z) as the solution of

0, — M0, = 0in (0,T) x (0,1), )
H‘t:T = @T in (O, 1)
Due to (59) and (60), we have for all ¢ € [0, T
Now, using
T 1
/ / 0(_92% - 6¢wxm - ESaxm + M(ﬁm) dtdr = 0,
0 Jo
we easily get
1 T 1
/ (0(0,2)¢(0, ) — O(T, 2)(T, ) da + / / (630ms — €30 dt da = 0. (64)
0 0 Jo

Now we have a uniform L2(0,1) estimate of ¢ independently of § and ¢, see (15). It follows that for €
and § suitably small (depending only on T and R), we have

! ) e . I 1
[ o0p0.0d = 5 [ omo)p(t,a)de = 3lerlaon = 5
0 0

which implies (61).

Second step. First, we prove the following estimate
R/4 1
[ etoPdr <k [ (ol ds, (65)
0 0

13



with

R2
K=C — . 66
exp ( 500 max((0T R)'/2, ET)) (66)
For that, we proceed as in Proposition 3. Introduce ¢ € C*°(R) satisfying
¥ =01in [R,+00),
¥ =1in (—oo, R/2], (67)

¢ <0.
We multiply (24) by ¥(x — M(T —t)) exp{r(M(T —t) — z)}$, for some r > 0. In Proposition 3 we

multiplied (24) with exp{r(M (T —t) — x)}¢, which led to (33). Here there are additional terms due to
the presence of ¥(x — M(T —t)) ; we put them in the right-hand side. This yields

_a exp{—(0r% + er®)(T — 1exr —t)—=z z— — b(t, x)|? du
& (et 4 )T = 0) [ explr(aa(r =) = )t = M(T - D)lot0,0)] o )

R+M (T—t)

<C (19" lloo + 119" [loo + 19" |oo) exp{r(M(T = t) — 2)}|@(t, x)|* dz, (68)
R/2+M(T—t)

where C' depends on r in a polynomial way. Using (15), we easily obtain

1
- % (exp{—(5r3 +er?)(T —t)} /0 exp{r(M(T —t) — z)}(x — M(T —t))|p(t, )| dx)
< Cespl-rity2)} | erPdr. (69
0
We integrate over [¢,T] to infer that for all ¢ € [0,T]

1 1
/0 exp{r(M (T —t)—x)}p(x—M(T—1))|p(t, z)|* de < Cexp{5r3(T—t)+er2(T—t)—TR/2}/0 |o7|? de.

(70)
We estimate from below the left-hand side by
R R/4
exp{rM(T — )= )} [ [e(t.a) ()
0
where we have used that ¥(x — M(T —t)) =1 for (¢,2) € [0,T] x [0, R/4]. Finally, we get
R/4 1
/ G(ta)Pde < Cexplord(T —t) + er®(T — ) — r[M(T —t) + R/4}}/ or|? da
0 0
1
< Cexp{or3T + er’T — rR/4}/ |or|* de. (72)
0
Now we choose r as follows R ) )
r= 3 min (W, ﬁ) (73)
Using, r < 1/(RST)"/?, this yields (65)-(66) with C' at most polynomial in 1/4.
Now from (65)-(66), we are going to deduce an estimate of the type
R? !
A2 A 12
||<PHL2(0,T;H3(0,R/16)) < C(6) exp ( 500 max((5TR)1/2,ET)) /o |pr|* du, (74)

for some constant C(4) whose growth in 1/§ is at most polynomial.
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To do so, first, we consider equation (24) in [0, R/4] and multiply by (R/4 —z)3$ and get as for (14):

1d [f/4 96 R/4

R/4
e UW4—®ﬂm%m+4i/ (R/A—2)%|@,2dx —36 [ | da
2 dt 0 2 0 0

M R/ R/4 R/4
+7/ (R/4—:v)2|<,27|2dm+6/ (R/4—x)3|¢az|2dx—3e/ (R/4 — )| pp|* dz = 0.
0 0 0

This yields (using (60))
A N € N
(R/4 — x)3/2<p||L°°(07T;L2(0,R/4)) +[(R/4 =)@l 20,751 (0,R/4)) < C(g + D@l z2(0,7:22(0,r/4))- (75)
From now, we consider the problem in [0, R/8]. We use Proposition 4; since we consider the adjoint
problem in [0, R/8] rather than the direct one in [—1, 1], the same result holds replacing [—1/2,1] by

[0, R/16] for instance. Hence we deduce

1@l L2014 0.8/16)) < CO)PN| 20,7307 (0.R/8))- (76)
Then (74) follows from (65), (66), (75) and (76). Finally we get

RQ

[@eatemllizom < COexp (= oaomrm o) I¢rlon (77)
With (61), this proves Theorem 4, when M > 0.
When M < 0, we define R essentially as in (59)
0<4R<1—|MIT. (78)

and replace the condition on the support in (60) by
Supp (1) C (1 —2R,1 - R).

Then the step 1 in the above analysis is easily adapted in this situation. Concerning the second step, we
redefine ¢ € C*°(R) by
¥ =0in [l — 2R, +00),
¥ =11n (—o0,1 — 3R], (79)
P’ <0.
Then the goal is again to establish (65)-(66). The same computation as previously gives (68) where
the limits of the time-integral in the right-hand side have to be replaced with 1 — 3R + M (T —t) and
1—2R+ M(T —t). Next, (69) still holds with a different coefficient

- % (exp{(5r3 + erz)(T —t)} /0 exp{r(M(T —t) — x)}w(x — M(T —1t))|¢(t, :v)|2 dx)
1
< Cexp{r(3R — 1)}/0 |o7|? da.

As previously we integrate in time; here with the new definition of ¢ we again have ¢)(z — M (T —t)) =1
for (t,x) € [0,T] x [0, R/4], and we get

R/4 1
/O 16(t, )2 dz < Cexp{or3(T — t) + er®(T — ) — r[M(T — t) + 1 — 133/4]}/0 Gr? da.

Then one may conclude as previously (note in particular that due to (78), (72) is valid), which ends the
proof of Theorem 4.
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6 Appendix 1: Proof of the Carleman inequality
Let ¢ := e *“p, where « is given by (25) and ¢ fulfills system (24). We deduce that

L1y + Ly = Lsv,

. Lith = 6y + Oy + 305%a21h, + 280,10, — M)y, (80)
Lotp = 053a31) 4 €502 + 36500000 + €y + 5040 + 30500005 — SMag) (81)
and
L3t) = —05Qp021) — 305200 ppt) — €501 (82)
Then, we have
a9ty + ¥l +2 ] Lt Lapdedt = syl 3

In the following lines, we will compute the double product term. For the sake of simplicity, let us
denote by (L;y); (1 <i<2,1<j<7) the j-th term in the expression of L;3p. To identify the signs of
the following integrals, we recall that o > 0, o, > 0 and a,, < 0.

e First, integrating by parts with respect to x, we have

83
(L19)1, (La¥)1) £2() :—525// @30, [0, |? dx dt + 36%s3 // 2 e |the|? da dt
Q Q

3 3 T
+36%s° //Q axaiwaxhﬂz dl‘dt=529;//QOliazx|¢x|2 dmdt—dQ%/ O‘ilz:1|wx\x=1|2 dt
0

(84)
953 s3 (T
—36%s° // o2 Y| dodt > 62— // e |the|? da dt — 527/ ai‘ [t | dt
Q 2 Jo 2Jo 7
— C&*TH 53 // P p|* dx dt.
Q
Here, we have used that ;=01 = ¥z|,—¢ = 0, (26) and the fact that a;,, = 0.
For the second term, we do very similar computations and we obtain
s2
(Law)s, (Lav)a)agy =~y [ a20ufunPdedi+ 205" [ csanlinf? dode
Q Q
- (59
> 3eds? // Qg Qg |the|? da dt — 658—/ ai‘ :1|1/)Z|1.:1|2dt.
Q 2Jo 7V
For the third term, we integrate by parts with respect to the x variable and we obtain
538 9 9938 T 9
((Llw)la (L2¢)3)L2(Q) > —0 E Oém:|1/)m| dz dt + 6 ? az|x:1|wzz\z:1| dt
¢ " (86)

T
—6’523/ a\z:0|¢xaz\x=0|2dt-
0

We consider now the fourth term of Lyt and we readily get

5 T T 5 T
((L11/1)17 (LQw)Zl)Lz(Q) = % (/0 |wmx\z:1|2dt _/O |wxmz—0|2dt> > _%/0 |wzz|x20|2dt (87)
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The next term gives

((Llw)lv(LQw)5)L2(Q) :—53 //Q O‘tar|1l)x|2 dmdt—i—ég //Q amtax|¢|2 dx dt

+6s// Qi || da dt = §(53// Qi || da dt
Q 2 Jq

T (58)
- 55 / at|w:1|w$\x:1|2 dt
0
T
> —CsT <// QWD By, [? de dt +/ oD oy 2 dt) 7
Q 0
thanks to a,., = 0 and (26)-(27).
Furthermore, since azer = 0 and 9,9 = 1/}1|x:0 = 0, we have
T
((L1¥)1, (L2¢)6)L2(Q) = —30% // Oéxa:WmF dx dt + 3528/ Oém|m:11/)m|x:1¢m\z:1 dt
Q 0
s [T
> —3523// amWa;ﬂdedt—éQi/ Ot [ Voo | dt. (89)
Q 0

T
— 0528T4“/0 01‘3:5:1|¢m\z:1|2 dt.

Observe that for the last integral of the first line of (89) we have used Cauchy-Schwarz inequality and
the estimate a2, /o, < CT** a3 for some constant C' > 0. The last term in the second line of (89) yields
a positive term when combined with the last term in the first line of (86) thanks to «, > 0.

For the last term of Lo, we have

M
(L0, Eatn)io =65 [[ couliult w450t [ oot doa

. (90)
> —O68|M|(/ O‘|m:1|¢x\x=1|2dt+// a|¢x‘2d$dt)
0 Q
All these computations ((84)-(90)) show that
96253 9625
((L1¢)17L21/))L2(Q) Z 2 // aiaa:m|wm|2d-rdt_ T// aa;mhbwm'zdxdt
Q Q
5283 T
—C5s|M\// altp, |2 dx dt + 3eds? // amam|wm\2dxdt—7 a3 ey [ | di
Q Q 0
T eds? [T
—065|M\/ a|$:1|ww‘w:1|2dt—7 aim:lwﬂw:ﬂzdt—CésT// a2 dedt (91)
0 0 Q

T
_OTH§2 g3 // o®|ap|? da dt—C/ (528a|3¢20 + §)|7/sz|$:0|2 dt
Q 0

T
_CS/O (6T04(M+1)/M + 52T4uafw:1)|¢w\x=1 |2 dt.

Jr=1

e Concerning the second term of Ly, we first integrate by parts with respect to ¢:

3 3
((L1h)2, (L)1) L2(q) = —0 ; // G| da dt > —0553T// QB2 da dt. (92)
Q Q
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Similar computations give the following for the second term:

((L1%)2, (Lav)2) 12(q) = —€s // gty |[Y)?dedt > —Ces*T // aPHFD/ 112 dy dt. (93)
Q Q
For the third one we use that ¢y,_g = 2,7 = 0 and (27) and we get

(e, (o)) = 0[] ccoutiul? de it =35 ] ocovse

_ 538 // amt|z/)m\2dxdt—3§s// Qg thpty da dt (94)
2 Jg Q

> —C(SST// a(“+1)/“|wz|2dajdt—3és// Qpapthy dz dt.
Q Q

Then, we readily see that ((L1%)2, (L2t)4)r2(q) = 0.
Again using Y|;—o = Y—r = 0 and (27), we deduce

((Ll’(ﬁ)g, (LQ’L/J)5)L2(Q) = —S//Q O‘tt"(/)|2 dx dt > —CsT? //Q a(u+2)/u|w|2 da dt. (95)

Furthermore,

((L1v)2, (L2¥)6) L2 (@) = 30s //Q Qg W2y dx dt. (96)

This term cancels with the last term in (94).

Finally, the last product of the second term of Ly provides
sM
(L1w)a, (Law))12(@) = —5- // e[| dz dt > —Cs|M|T// a2 dz dt. (97)
Q Q
Putting together all the computations concerning the second term of Ly ((92)-(97)), we obtain

(L19)2, Lav) 12(q) = —C8sT // ottty | de dt — C // 0s* Tl V1 || de dt
Q Q

(98)
- C// (es>Ta D/ 4 gT20 W+ D1 g M| T WD) 4|2 da dt.
Q
e We consider now the products concerning the third term of Ly1. First, we have
15s° . .
(Lav)s, (Lav))agy =025 [ alasaloPdode= s [[ fuPasar (99)
Q Q
Secondly
((L1%)s, (Law)2) r2(q) = —6eds? // B ag || do dt > ceds? // | dx dt. (100)
Q Q
Thirdly,
2275 2 2 295 g 3 2
((Lll/})g, (L2¢)3)L2(Q) = —5 5 o O[Ia:vwhba:l d{I} dt + 6 7 a$|m:1‘w1|a::1| dt (10].)
0
For the fourth term, we have
2 4T
2 2 3s 2 2
((L1¢)3, (LQ’(/J)4)L2(Q) = —3658 CEIOZII|’(/J1;| d.’E dt + 6(57 aﬂ:|m:1‘w1|x:1| dt (102)
Q 0
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Using (27), we obtain the following for the fifth term:

3s3
(L1)3, (L2¥)s) r2(Q) = _57 // (ahay)o Y| da dt > —Cos°T // a1 |2 dg dt.
Q Q

Furthermore,

((L19)3, (Latp)6) £2(q) = 95°s° // 02y |th | d dt.
Q
Finally,

9. .
(Lo (B = 555°M [ ool dvat = 05| [ 0*lof ot
Consequently, we get the following for the third term of Ly ((99)-(105)):

((L1%)3, Lath) 12(q) > Co // (5235a5+6534a4)|w|2daﬂdt—25233// 2 |t |? da dt
Q
T
—3ed s> // Qp Q|| dmdt—l—f/ (3523ai|w:1—I—eéaim:l)\wﬂx:ﬂ?dt

0

—6’533|M|// a3|¢\2dxdt—c5s3T// Bt/ 12 dy dt.
Q Q

e Now, we compute the fourth term. First, we have:

((L19)a, (L2tp)1) 120y = —4eds? //Q 08 O Y] daz dt.

Similar computations give

(1), (Lav)a)agy = —365° [ a2avalof? dode.
Q
For the third term, we get
T
(L19)a, (L2vp)3) 12(q) = —6eds> //Q O [0 | de dt + 36682/0 ai|gg:1|¢w‘z:1|2dt.
Then,
T
(L19)a, (Lot)a) r2(q) = —623//62 am|wm\2dacdt+62$/ et Vo [Pt
0

The fifth term gives

((L1t)a, (L2v)s)L2(q) = —€s // Qp ) |p|? da dt > —CeT's? // QG2 da dt.

Direct computations for the sixth term provides

((L1tp)a, (Low)s) £2(q) = 6€ds” //Q Qg Qg |the|? da dt.

This term cancels with the first integral in the right hand side of (109).
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At last,
((L19)4, (L2¥)7) 12(Q) = 2¢M s* //Q Qe |Y0|? d dt > —Cle| M | //Q 2|2 dx dt.
All these computations ((107)-(113)) gives
((L1tp)a, Lotb) r2(q) > —es® // (465202 + 3esay ) gty |12 da dt
¢ T T
—ets //Q el Pdrdt +3655° [ 2 ana P+ s [ it P

—CeT's? // oD/ B 2 da dt — Ce| M |s* // o2 |Y|2da dt.
Q Q

e Concerning the fifth and last term of Li1, we have:

(L1v)s, (La¥)1) 2 () = g(SMS‘3 // @2 |p|Pde dt > —C8|M|s® // o> 2de dt.
Q Q

Then,

(Lad)ss (Lav)2) gy = M3 [[ avanlvPdodt > ~CeMls [ o?ludoadt.
Q Q
Now, we compute the third one:

3 3 T
((L11))s, (L2v)3) L2(q) = §5MS //Q o |the| da dt — §5M8/0 Oéz|z:1|1/fz|z:1|2 dt

T
> 5ol ls [ auali P dudt = CoMs [ avmiligm P at.
Q 0

Then,

eM [T

T
(L19)s, (L2¥)a)r2@) = — - ; | o |” dt > —C€|M\/O |Vaja—1|?dt.

Additionally, integrating by parts again with respect to x, we have

Ms
(L19)s, (Latp)s) r2(q) = 2//62 e |[0|? da dt > —C|M|Ts//Q QWD 1|2 d d.

Furthermore,

((L1v)s, (L2v)6) L2 (@) = —35Ms//Q |V |* dez dt.

This term can be combined with the first integral in the second line of (117).

Finally,

M2
(L1v)s, (L) 7) 12 (@) = — 5 i //Q Qe [V|? da dt > 0.

All these computations for (Li)s ((115)-(119)) show that

(L1v)s, La) 12(q) = —C’|M|((5$3 // a3|w|2daﬁdt—|—632 // oz2|1p|2dxdt
Q Q
T T
+e/ |¢I|x:1\2dt+6s/ a‘x=1|wm|x:1|2dt+6s// altp, |2de dt
0 0 Q

+Ts // a(“+1)/“|w|2dt).
Q
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(113)

(114)

(115)

(116)

(117)

(118)

(119)

(120)

(121)

(122)



Let us now gather all the product (L1%), Lat))12(g) coming from (91), (98), (106), (114) and (122):

// (625°a° 4 edsta’ + €253a?) |1/J|2dxdt+623// a|w$|2dxdt+(52s// a|thpe|?de dt
Q Q Q

+/ (5 SO‘|£ 1+€5)|w1£\x 1| dt+/ (5253a|z 1+€ Salx 1)|1/}x|a: 1| dt

<C(T4“623// PP de dt + | M|5s® // AP dx dt 4 | M |es? // 2| dx dt

(123)
155 // (Tal /0 1 M) l|2da dt + | M|5s / ot |toafas Pt + [ M]e / o [2dt

+/ (63T aBrTU/1 2T 20/ L gT20 (2 /1 | M| oD/ o2 da dt

T T
+8/ (52T4#a:\3$:1 +5Ta|(5:11)/u)|wa:|w:1‘2dt+/ (5 S| z=0 + )|wzm\a: 0| dt)
0 0

e Concerning the zero order terms, we see that the first term in the right hand side of (123) is
absorbed by the two first terms in the first line of (123) by taking s > CT?*. Let us now prove that all
the terms in the fifth line of (123) can be eliminated with the help of the first integral of (123) with the

choice ) |
TH T=F|M|H
s> ST g1 and s > 6751—%2”—1‘

Firstly we observe that the integral

520 2—20 2043 // a29+3|1/}|2d:rdt (125)
Q

is bounded by the first integral of (123) for all § € [0,1]. In particular, for § = 1/(2u) (recall that
€ [1/2,1]) this gives

(124)

S5/ 1 e2u=1)/p o (3pu+1)/p // a(3“+1)/“|w|2dx dt. (126)
Q

With a choice of s as the first one in (124), we readily see that the first term in the fifth line of (123) is
absorbed by (126). Furthermore, for § = (1 — u)/(2p) in (125), we have the integral

(L) /1 (Bu=1) /1 (2011) /1 / / Q2D 20 i
Q

which absorbs the second term in the fifth line of (123) with the first choice in (124). The same can be
done for the third term in the fifth line of (123) for 6 = (1 — u)/p.

Analogously, one can use (125) to absorb the last term in the fifth line of (123) with 0 = (1 — )/
and

T3;L/2|M‘u/2
Sl-pezp—1 °
which can be obtained as an interpolation of the two choices in (124).
We also use (125) to absorb the second (resp. third) integral in the right hand side of (123) with
0 =1/2u (resp. with 8 = (1 — pu)/2u) for a choice of s like the second choice in (124).

e On the other hand, the presence of the first and last terms in the first line of (123) provides the

s>C (127)

term
5283 // o?1h,|? da dt. (128)
Q
Analogously as before, we also obtain the following integral in the left hand side of (123):
§20,2-20 20+1 // o0+, [2dz dt, (129)
Q
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for all § € [0, 1]. Thus, taking § = 1/(2u), this gives

L/ =)/ g (et 1) // QD iy 124 it (130)
Q
which serves to eliminate the integral

CoTs // oD/ 2 de di
Q

by using the first choice in (124).
Next to eliminate the integral

065|M\// ol |2 da dt
Q

we also use § = 1/(2u), but we use the second choice in (124).

e Concerning the traces, the first term in the last line of (123) is absorbed by the third term in the
second line by taking
s> CT* (131)

Now, from the two last terms in the second line of (123) we also have the following integral in the
left hand side of (123):

T
62962729529+1 /0 0529+1|/l/}m|x:1 |2 dt (132)

|z=1

Making the choice § = 1/(2u) and taking again s like in the first choice of (124), we absorb the second
term in the last line of (123).

Next, we can also use (132) to absorb the second integral in the fourth line of (123) with 6 = 1/(2u)
using the second choice in (124).

Finally, we can use (132) to absorb the last integral in the fourth line of (123) with 6 = (1 — p)/(2u)
using the second choice in (124).

With all this, we get

T
523//Qo<|¢m|2dmdt+//Q(6233a3+e2sa)|¢x|2dxdt+/o (62520, _; + €250 51|y | dt
T (133)
+ [ @5 s Etatpp < 0 ( | st )l + ||L3¢%2<Q>> ’

for a choose of s like s > CTH(TH + (1 + TFMH)/(5*~#e2#~1)). Now, from the expression of Lzt (see
(82)), we see that

||L31/JH%2(Q) < C//Q(52(32T6” + M) 0P 4 22T || da dt

which can also be absorbed by the left hand side of (133) with s > CT?*.
Finally, we come back to ¢ by using the definition of ¢ = e™**p and the properties on the weight
function « given in (26). As a consequence, we deduce estimate (28).

7 Appendix 2: interior regularity estimates
An alternative proof can be found in [13, Section 2]. Let us consider § a smooth solution of (46). The
general case follows from a density argument. Our goal is to estimate gjj_1/2,1] in L2(0,T; H*Y(-1/2,1))N

HY0,T; H'(—1/2,1)) in terms of ||§|| 220,712 (1,1)) + |%0l 3 (=1,1)- Once this is established, (47) follows
from (12).
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We introduce p € C*°([—1,1]), such that

A

P
1i

M‘H

0
p
p(=1)

I :‘/\

1
-
0.

We introduce Ry (z) := f 1 p¥. The estimates are done in four steps. In what follows, C' denotes a
constant mdependent of ¥, whose growth in 1/6 and M is at most polynomial, and which can change
from one line to another. Consider m > 5.

Step 1. We differentiate (46) with respect to ¢, multiply it by Ro,,—2%; and integrate; we get

1 1 T 3 T pl T pl
7[/ Rgm_2|gjt|2dm} +75// p2m*2|gzt\2dtdx+e// Rom—a|te:|* dt dx
2L 4 o 2 JoJ 0 J-1
T r1 T r1 M T r1
8= [ [ (o™ Ol dtdo—ctm) [ [ et atdo =~ [ [ il dtda,
0 J-1 0 J-1 0 J—-1

It follows that for some C > 0,

o™ 15

el 2o,z -1,1)) < CUP™ el 200211y + [Goll a3 (-1,1))- (134)
Now we fix §j := p™~1§; it satisfies the following equation:
{ _Pl*g = pmilgt + [pm717 Pl*]gv
Q\z:q = g|a::1 = gz|m:1 =0
where
=60?

rrx

—€d?, — MO,.

It follows that
-1

91l 22 0,750 <11 < Clp™ g+ [0™ Y, Pl 20,111 (—1,1)»

which implies that

91 20,71 (~1,1)) < C(Hpm_lgtHL2(O,T;H1(—1,1)) + Z ||Pm_5+aag?3”L2(0,T;L2(—1,1)))'
a<3

With (134), we deduce that

lp™ = el 20,7 (-1, + 10" 7 Gl 20,78 (-1,

< O( S om0l a0riaa -1y + Iols 1.y + 0™ 2l 20z (-1.1)- (135)
a<3

Step 2. We multiply (46) by p*™ *§,.., integrate and integrate by parts; we get

T (1 T 1
(5/ / 0" s |* dt da = (2m—4)/ / 020 Pl dt da
0 J-1 0
T (1
+/ / PP yzzyztdtdm—l-/ / 2m=dy ee(€lpe + M3y) dt d.
0 J-1

Now we estimate the first two terms in the right-hand side in the following way: for all v > 0, there
exists C' > 0 such that

T r1 T r1
en—a [ [ pggdtdn s [ g dd]
0o J-1 0 J_1

< Clp™ P Gaalliemie -1y + (10" Gl 0 mim —11y) F 10720l Z2 0 1202 1.1))-
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This yields

m—2~

o mw”p 0,T3L2(~1,1)) = C(llp™ 3gw$||%2(0,T;L2(71,1)) + ”pm_2g$H%?(O,T;Lﬂfl,l)))
+ '7(||pm_1gt||%2(0,T;H1(71,1)) + ||pm_2gt||%2(0,T;L2(71,1)))‘

We use (46), and we absorb the last term of the previous inequality with the left hand side, taking ~
suitably small in terms of § (in a polynomial way); we get:

o™ %

UtllL20,m02(-1,1)) + 10" *Jae |l L20,1522(~1,1)

< C(1™ Gawll L20.1:L2(-1.0)) + 10" Gl 20122 (-1,1))) + 0™ el L2 0,187 (~1.1)-

Step 3. We multiply (46) by p>™~57,, integrate and integrate by parts; we get

T p1 T pl
5 / / PP G| dit d = / / P7" GG dt dz
0 J-1 0 J-1
T pr1 T pl T pr1
—d(2m — 6) / / P Poliaalle dt dz — € / / P o dt dz — M / / P0G, dt dv.
0 J-1 0 J-1 0 J-1

It follows that for all v > 0, there exists C' > 0 such that

T r1 5 T r1
(5// pz'”_ﬁ\ﬂm|2dtd$§ 7// p2m—6|gw$|2 dt dz
0 J-1 2Jo Joa
T r1 T r1
oy [ emtaPaeds e [t
0 J-1 0 J-1

Step 4. We multiply (46) by Ra.,—s¥, integrate and integrate by parts; we get

1 1 v g [T T 1
: / Rooslifdtds] + 56 [ [ 2 pavdeve [ [ RaosliPardr
o(m —4) // P2 5| dt de—e(m—4) // PP 9|y|2dtdx———// =852 dt du.

We deduce
m—4~

6™ Gl 20,102 (-1, < CU1P™ *Fll 220,112 (~1,1)) + 1ol L2(=1,1))-

Conclusion. Putting the above inequalities together, we obtain

o™ g

Gell2,m5m (—1,0)) + 0™ il 20500 —1,1)) < C(10™llL20,7502 (< 1,1)) + 1ol m2(—1,1)), (136)

which due to the choice of p yields the desired estimate (47).
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