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Abstract

In this paper, we study the controllability of the Vlasov–Poisson system in a periodic
domain, by means of an interior control located in an spatial subdomain.
The first result proves the local exact zero controllability in the two-dimensional torus

between two small acceptable distribution functions, with an arbitrary control zone.
A second result establishes the global exact controllability in arbitrary dimension, provided

the control zone satisfies the condition that it contains a hyperplane of the torus.
r 2003 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper, we study the exact controllability problem for the Vlasov–Poisson
equation in the n-dimensional torus Tn :¼ Rn=Zn: The Vlasov–Poisson system reads,
for two functions f ¼ f ðt; x; xÞ and f ¼ fðt; xÞ:

@t f þ x &rx f þrxf &rx f ¼ Gðt; x; xÞ; for ðt; x; xÞA½0;T ( ) Tn ) Rn; ð1:1Þ

*Dfðt; xÞ ¼
R

Tn)Rn f ð0; x; xÞ dx dx*
R

Rn f ðt; x; xÞ dx ¼ r0 *
R

Rn f ðt; x; xÞ dx;
R

Tn fðt; xÞ dx ¼ 0:

(

ð1:2Þ
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Here n is the dimension; the variables are the time t; the position x and the velocity x:
The unknown functions are the distribution of particles f and the potential f: The
symbols rx and rx stand, respectively, for the gradient with respect to x and to x:
The term r0 stands for a constant neutralizing density, equal to

R

Tn)Rn fjt¼0: Finally,
G is a source term, used as a control in our problem.

The problem of exact controllability is the following: consider an arbitrary non-
empty regular open set o in Tn; and fix T40: Now consider two ‘‘reasonable’’
distributions f0 and f1: Is it possible to steer f0 to f1 when following (1.1)–(1.2)
between times 0 and T ; by choosing a relevant function G ¼ Gðt; x; xÞ whose support
according to the variable x is localized in o? Precisely, does there exist a solution of
(1.1)–(1.2), satisfying

f ð0; x; xÞ ¼ f0ðx; xÞ in Tn ) Rn; ð1:3Þ

f ðT ; x; xÞ ¼ f1ðx; xÞ in Tn ) Rn; ð1:4Þ

and

G ¼ 0 in ½0;T ( ) ½Tn\o( ) Rn: ð1:5Þ

We answer this question in the affirmative in two cases. The first case concerns
n ¼ 2 and requires f0 and f1 to be small enough. The second one is valid in any
dimension, and does not require f0 and f1 to be small, but assumes that o contains
the image of a hyperplane of Rn by the canonical surjection (which we call a
hyperplane of the torus). Precisely, we show the following results:

Theorem 1. Set n ¼ 2: Consider g42 and k; k0X0: Let f0 and f1 be two functions in

C1ðT2 ) R2Þ-W 1;NðT2 ) R2Þ; satisfying the condition that for any ðx; xÞAT2 ) R2

and iAf0; 1g;

j fiðx; xÞjpkð1þ jxjÞ*g*1;

jrx fijþ jrx fijpk0ð1þ jxjÞ*g;

(

ð1:6Þ

and

Z

Tn)Rn
f0 ¼

Z

Tn)Rn
f1: ð1:7Þ

Assume also that k and k0 are small enough (in relation to o and T). Then there exists

GAC0ð½0;T ( ) T2 ) R2Þ satisfying (1.5), such that the solution of (1.1)–(1.2) and (1.3)
exists, is unique, and satisfies (1.4).

Theorem 2. Set nX2: Consider g4n and k; k0X0: Suppose that the regular open set o
contains the image of a hyperplane in Rn by the canonical surjection. Let f0 and f1
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be two functions in C1ðTn ) RnÞ; satisfying the conditions

j fiðx; xÞjpkð1þ jxjÞ*g*2;

jrx fijþ jrx fijpk0ð1þ jxjÞ*g;

(

ð1:8Þ

and (1.7). Then there exists GAC0ð½0;T ( ) Tn ) RnÞ satisfying (1.5), such that the
solution of (1.1)–(1.2) and (1.3) exists, is unique, and satisfies (1.4).

Remark 1. Note that, because of the necessary global neutrality in the torus, one
cannot ask for G to be non-negative. On the contrary, it has to satisfy that for any
tA½0;T (;

Z

Tn)Rn
Gðt; x; xÞ dx ¼ 0:

Remark 2. In general, the function f0 and f1 are non-negative. We do not need it for
Theorems 1 and 2. However, the solution f is also usually asked to be non-negative,
which Theorems 1 and 2 do not ensure. But as will be clear during the proofs, one
has

f0; f1X0 ) 8tA½0;T (; f ðt; x; xÞX0 in ðTn\ *oÞ ) Rn;

for some open set *o satisfying *oCo; the non-negativeness being probably not
satisfied inside *o:

To be more consistent with the model, one can replace the source by the sum of
two sources, corresponding to different species of particles (one of them never
leaving o), of opposite charge. Consider indeed f þ; supported in ð0;TÞ ) o) Rn;
non-negative, with the same type of regularity as f ; and such that f þ f þX0: Then
f # :¼ f þ f þ satisfies (1.1) with source

G# :¼ G þ ð@t f þ þ x &rx f
þ þrxf &rx f

þÞ; ð1:9Þ

and f þ satisfies (1.1) with source

Gþ :¼ @t f
þ þ x &rx f

þ þrxf &rx f
þ; ð1:10Þ

the corresponding potential being fixed by

*Dfðt; xÞ ¼ r0 *
Z

Rn
f #ðt; x; xÞ dxþ

Z

Rn
f þðt; x; xÞ dx:

(One can even put a different mass for the new type of particle by putting a relevant

multiplicative coefficient before rf &rx f
þ in (1.10).) In this setting, both f # and f þ

are non-negative.
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Remark 3. It is approximately equivalent to state that the control is given by the two
following data:

* the value of the potential f on ½0;T ( ) @o;
* the (non-negative) value of f ðt; x; xÞ at the points ðt; x; xÞ of ½0;T ( ) @o) Rn

where x enters inside Tn\o; i.e. satisfies x & nðxÞ40; if n is the unit outward normal
on @o:

Remark 4. In fact, if we do not require uniqueness for the solution, one can replace
(1.6) or (1.8) by

j fiðx; xÞjp *kð1þ jxjÞ*g;

jrx fijþ jrx fijp *k0;

(

ð1:11Þ

in both cases. By the way, only the smallness of ð *k; *k0Þ is required in Theorem 1.

The equivalent problem for the Euler system of incompressible inviscid fluids has
been studied by Coron and the author (see [6,7,9,10]). The controllability of the
Vlasov–Poisson equation shares certain properties with the Euler one. This is not so
surprising, since the Vlasov–Poisson system has in some way a comparable structure
with the Euler equation, and is even known to converge to it in a certain sense (see in
particular [4]).

One of the major problems for the controllability of this system is that, as
for the Euler equation, the linearized equation is not controllable in general.
For instance, consider the linearized equation around the solution given by
f ¼ f ¼ 0:

@t f þ x &rx f ¼ G: ð1:12Þ

This equation, which describes the free transport of particles, is not controllable
unless o ¼ Tn (take f0ðx; 0Þaf1ðx; 0Þ for some xATn\o).

As for the Euler system, the main idea is to use the ‘‘return method’’ introduced by
Coron (originally concerning a finite-dimensional stabilization problem, see [5]).
This method has also been used by Coron to establish an approximate controllability
result for the 2-D Navier–Stokes equations, see [8], and by Horsin to prove a
controllability result for the Burgers equation, see [12]. The principle is to find a

solution ð %f;jÞ of the non-linear problem, which starts from 0 and goes back to 0 at
time T ; and around which the linearized equation is actually controllable. Then one

looks for a solution of the non-linear problem ‘‘close’’ to ð %f;jÞ: In this paper, when
writing ‘‘start from 0’’ or ‘‘go to 0’’, we will often refer to a configuration 0 except in
the control zone o: Indeed, the distribution function f ðt; &; &Þ has a constant weight in
our problem.

To use this method here, we will have to distinguish the high velocities from the
low ones. The treatment of each one is given in separated sections. To simplify the
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notations, we call T the time assigned for each part of the control process (instead of,
for instance, T=2 or T=3).

The corresponding Cauchy problem (for strong solutions) has been solved in 2-D
by Ukai-Okabe [17], and in 3-D by Lions-Perthame [14], Pfaffelmoser [15] and
Schaeffer [16] (see also [2] in the periodic case). The construction of solutions to the
non-linear problem that we use here is essentially the one of Ukai and Okabe but
simplified because essentially the local in time existence is sufficient to our use, since,
if one can control the system in any time, one can steer the configuration to a stable
one (0 for example) before any possible blow up. Remark in particular that Theorem
2 guarantees the existence in the large of classical controlled solutions for nX4;
which is not necessarily the case for the uncontrolled one (see e.g. [13]).

In the next section, we give some notations and expose the principal tools for the
construction of a solution of the non-linear problem. Sections 3 and 4 prove
Theorem 1, and Sections 5 and 6 prove Theorem 2. Precisely, Section 3 is devoted to
the treatment of the high velocities of f0 and f1: Then Section 4 gives an exposition of
the treatment of ‘‘small’’ velocities (precisely, it studies the case when f0 and f1 have
compact support in x), which allows to finish the proof of Theorem 1. Section 5 deals
with the case corresponding to f0 and f1 with bounded velocities in the direction of
the normal to the hyperplane in o: Section 6 shows how to restrict to the case of
Section 5, which finishes the proof of Theorem 2. Finally, the appendix in Section 7

gives the proofs of some lemmas, useful to construct the solution ð %f;jÞ:

2. Notations and machinery

2.1. Notations

We will generally agree with [17] on the notations. For T40; we denote QT :¼
½0;T ( ) Tn ) Rn; and OT :¼ ½0;T ( ) Tn: For a domain O; we write also BlðOÞ; for
lAN; for the set ClðOÞ-Wl;NðOÞ: All the same, BlþsðOÞ for sAð0; 1Þ stands for the
set of Cl functions with uniformly s-Hölder l-th derivatives. Also, Bs;lþs0ðOT Þ (resp.
Bs;lþs0ðQT Þ), for lAN; s; s0A½0; 1Þ is the set of continuous functions in OT (resp. QT ),

which are Cl with respect to x (resp. to ðx; xÞ), and which l-th derivatives are all Cs

with respect to t and Cs0 with respect to x (resp. to ðx; xÞ).
For x in Tn and r40; we denote by Bðx; rÞ the open ball with center x and radius r;

and by Sðx; rÞ the corresponding sphere. The radii will always be chosen small
enough in order that Sðx; rÞ does not intersect itself (that is ro1=2 in the standard
torus). Let us agree to call nðxÞ the outward unit normal vector on this sphere when
there is no ambiguity. We will precise it by a subscript when we consider the ball in
the whole space Rn: The unit zero-centered sphere in Rn is also denoted by S:We will
denote the canonical surjection Rn-Tn by S:

Finally, we will denote by L the operator g/
R

Rn gðxÞ dx; which maps a function

in variable ðx; xÞ to a function in variable x: For the sake of simplicity and without
losing generality, we suppose that Tn is of measure 1.
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2.2. Characteristic equation

It is well known that, the function f being fixed, solving (1.1) and (1.3) reduces to
solve the characteristic equation

d

dt

X

X

 !

¼
X

rfðt;XÞ

 !

; ð2:1Þ

with the initial condition

X

X

 !

jt¼s

¼
x

x

 !

: ð2:2Þ

Let us denote by ðX ðt; s; x; xÞ;Xðt; s; x; xÞÞ the solution of (2.1) at time t with initial
conditions (2.2) at time s: One gets

Xðt; s; x; xÞ ¼ xþ
R t
s Xðt; s; x; xÞ dt;

Xðt; s; x; xÞ ¼ xþ
R t
s rfðXðt; s; x; xÞÞ dt:

(

ð2:3Þ

Then the classical solution of (1.1) and (1.3) is given by

f ðt; x; xÞ ¼ f0ðX ð0; t; x; xÞ;Xð0; t; x; xÞÞ þ
Z t

0
Gðs;Xðs; t; x; xÞ;Xðs; t; x; xÞÞ ds: ð2:4Þ

Let us recall that, the vector field ðx;rfðxÞÞ being divergence-free with respect to
ðx; xÞ; this flow preserves measure. In the sequel, it may be useful to precise which
field rf generates the flow: when necessary, we will precise this by an exponent.

2.3. A lemma for the characteristic equation

Here, we state a Gronwall-type result. In the spirit of Lemma [17, Lemma 5.2], we
prove the following lemma:

Lemma 1. Fix dAð0; 1Þ: For rAB0;dðOTÞ such that

Z

Tn
rðt; xÞ dx ¼ 0 for all tA½0;T (;

there exists cðjjrjjB0;dÞ such that, if ðX ;XÞ are the characteristics corresponding to the
potential f given by

*Dfðt; xÞ ¼ r;
R

Tn fðt; xÞ dx ¼ 0;

(

ð2:5Þ
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then one has: for any ðt; s; x; xÞ and ðt0; s0; x0; x0Þ in ½0;T (2 ) Tn ) Rn with jx* x0jo1;

jðX ;XÞðt; s; x; xÞ * ðX ;XÞðt0; s0; x0; x0Þj

pcðjjrjjB0;dÞð1þ jxjÞjðt; s; x; xÞ * ðt0; s0; x0; x0Þj; ð2:6Þ

and moreover

jðX ;XÞðt; s; x; xÞ * ðX ;XÞðt; s; x0; x0ÞjpcðjjrjjB0;dÞjðx; xÞ * ðx0; x0Þj: ð2:7Þ

Proof of Lemma 1. We follow [17, Lemma 5.2]. It is sufficient to study the case when
x ¼ x0; x ¼ x0 and s ¼ s0; the case when s ¼ s0 and t ¼ t0 and the case when x ¼ x0;
x ¼ x0 and t ¼ t0:

(i) The first case follows from

jX ðt; s; x; xÞ * Xðt0; s; x; xÞjpjt* t0jðjxjþ T jjrfrjjLNÞ;

jXðt; s; x; xÞ * Xðt0; s; x; xÞjpjt* t0j) jjrfrjjLNðOT Þ;

and from usual elliptic estimates.
(ii) The second one is a consequence of Gronwall’s inequality. Indeed, one has

jXðt; s; x; xÞ * Xðt; s; x0; x0Þj

pjx* x0jþ Cjjr2frjjLNðOT Þ

Z t

s

jX ðt; s; x; xÞ * X ðt; s;x0; x0Þj dt;

and

jX ðt; s; x; xÞ * Xðt; s; x0; x0Þj

pjx* x0jþ T jx* x0jþ CT jjr2frjjLNðOT Þ

Z t

s

jX ðt; s; x; xÞ * X ðt; s; x0; x0Þj dt;

for which Gronwall’s inequality gives first the X part (again with elliptic estimates),
then the X one, of (2.7).

(iii) The third case follows from

ðX ;XÞðt; s; x; xÞ * ðX ;XÞðt; s0; x; xÞ

¼ ðX ;XÞðt; s; x; xÞ * ðX ;XÞðt; s;X ðs; s0; x; xÞ;Xðs; s0; x; xÞÞ;

and from the two previous cases.
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2.4. A remark concerning the scaling of the system

Let us first remark that system (1.1)–(1.2) is invariant by some change of scale,
precisely, when f is a solution of (1.1)–(1.2) in ½0;T ( ) Tn ) Rn; then for la0; the
function

f lðt; x; xÞ :¼ jlj2*nf ðlt; x; x=lÞ; ð2:8Þ

is still a solution of (1.1)–(1.2), in ½0;T=l( ) Tn ) Rn for the following potential:

flðt; xÞ :¼ l2fðlt; xÞ: ð2:9Þ

Hence, using (2.8) with l ¼ *1; we see that it is sufficient, in order to prove
Theorems 1 and 2, to restrict to the case where f1 ¼ 0 in ½Tn\o( ) Rn: Indeed, treat
the cases:

* f0 as initial value and 0 (in ðTn\oÞ ) Rn) as the final one,
* ðx; xÞ/f1ðx;*xÞ as initial value and again 0 as the final one,

each in time T=3: We obtain two functions f̂ 0 and f̂ 1: Now consider the function f̂
partially defined in QT by

f̂ ðt; x; xÞ ¼ f̂ 0ðt; x; xÞ; in ½0;T=3( ) Tn ) Rn;

f̂ ðt; x; xÞ ¼ 0; in ½T=3; 2T=3( ) ½Tn\o( ) Rn;

f̂ ðt; x; xÞ ¼ f̂ 1ðT * t; x;*xÞ in ½2T=3;T ( ) Tn ) Rn:

8

>

>

<

>

>

:

Then ‘‘fill’’ regularly f̂ inside ½T=3; 2T=3( ) o) Rn; taking care to preserve for any t

the value of
R

Tn)Rn f̂ ðt; x; xÞ dx dx: Then you get a relevant solution f : From now, we

consider hence that f1 ¼ 0 (in ðTn\oÞ ) Rn; of course).
Let us remark also that if we can solve the controllability problem with initial data

f l0 ðx; xÞ ¼ l2*nf0ðx; x=lÞ; for lAð0; 1Þ; then we can solve the problem with initial
data f0 (in smaller time).

2.5. Notations for Theorem 2

In Sections 5 and 6, the control zone o is supposed to contain a hyperplane H in
the torus, that is, the image by the canonical surjection S of an Euclidean
hyperplane H of Rn: Now, up to a translation, H is a subgroup of Rn; and there are

two cases for Hþ Zn:

* either Hþ Zn ¼ Rn and in that case, H is dense in Tn: Then, as o is a regular
open set, this implies o ¼ Tn: In that case, the problem is trivial since a ‘‘straight
line’’ between f0 and f1 is a suitable solution of (1.1). From now, we suppose that
we are in the following opposite case;
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* or, Hþ Zn is a strict closed subgroup of Rn (up to a translation). Then, see for

instance Bourbaki [3, VII, Corollary 1], Hþ Zn is composed of countably many
parallel hyperplanes, whose intersection with any complementary linear subspace
is a discrete group. For dimension reasons, see [3, VII, Corollary 1], such a
discrete group is of the form Z~uu: This implies that Hþ Zn is of the form Hþ Z~uu:

We call v a unit vector, orthogonal to H: By the previous argument, we can define
dARþ! such that H þ ½*2d; 2d(vCo and such that 2d is less than the distance

between two different hyperplanes in S*1ðHÞ: We denote by %H the linear vector
space corresponding to the directions of H:

It may happen that in Sections 3 and 4, we conserve the notation n for the
dimension (instead of 2), for objects useful in next sections.

3. Theorem 1: the problem of high velocities

In this section, we study the way to ‘‘suppress’’ the particles at high velocity, viz. to
find a control such that, starting from an arbitrary f0; the corresponding solution of
the Vlasov–Poisson system reaches a configuration with compact support in x at time
T : Then, Section 4 shows how to reach exactly 0, which as we explained is sufficient
to establish the general case.

The proof relies on a special solution ð %f;jÞ that we describe in the following

paragraph. Then, we construct an operator Ve; using this function ð %f;jÞ: We show
that this operator admits a fixed point for appropriate e: Finally, we will show that,
for e small enough, the fixed point that we found is relevant, that is, satisfies system
(1.1)–(1.2) with (1.3) and (1.5), and actually ‘‘treats’’ the high velocities, in the sense
that

f ðT ; &; &Þ is compactly supported: ð3:1Þ

During the proof of the existence of solutions in Theorem 1, we will use only
(1.11)—see Remark 4. In Section 3.5, we use the stronger assumption (1.6) to get
uniqueness.

3.1. The function %f

We have the following proposition:

Proposition 1. Given x0 in T2; and r0 a small positive number, there exist

jACNðOT ;RÞ and mARþ! such that

Dj ¼ 0 in ½0;T ( ) T2\ %B x0;
1

10
r0

! "# $

; ð3:2Þ

Supp jCð0;TÞ ) T2; ð3:3Þ
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and such that, if one considers the characteristics ð %X; %XÞ associated to j; then

8xAT2; 8xAR2 such that jxjXm; (tAðT=4; 3T=4Þ; %Xðt; 0; x; xÞAB x0;
r0
4

% &

: ð3:4Þ

We prove this proposition in the appendix.

Now let us describe the function %f: Consider a function ZACN
0 ðRn;RÞ satisfying

the following constraints:

ZX0 in Rn;

SuppZCBRnð0; 1Þ;
R

Rn Z ¼ 1:

8

>

<

>

:

ð3:5Þ

Consider x0 in o and r0 a small positive number such that Bðx0; 2r0ÞCo (reducing o
if necessary, we now assume that Bðx0; 2r0Þ ¼ o). Define a function j as in

Proposition 1. Then we introduce %f ¼ %fðt; x; xÞ as

%fðt;x; xÞ :¼ ZðxÞDjðt; xÞ: ð3:6Þ

Of course, %f satisfies (1.1) in ½0;T ( ) T2 ) R2; with source term

%Gðt; x; xÞ :¼ @t %fþ x &rx %fþrj &rx %f; ð3:7Þ

which is supported in ½0;T ( ) Bðx0; r0Þ ) R2: Up to an additive function of t; the
function j satisfies Eq. (1.2) corresponding to %f (with %fð0; &; &Þ + 0). We denote

%rðt; xÞ :¼ L %f ¼ Djðt; xÞ:

3.2. The operator Ve

In this section, e is a positive real number such that ep1: We first define the
domain Se of Ve by

Se :¼ fgABd2ðQTÞ=

ðaÞ jjLðg* %f ÞjjCd1 ðOT Þpe;

ðbÞ jjð1þ jxjÞgðg* %f ÞjjLNðQT Þpc1½jj f0jjB1ðT2)R2Þ þ jjð1þ xÞgf0jjB0ðT2)R2Þ(;
ðcÞ jjg* %fjjBd2 ðQT Þpc2½jj f0jjB1ðT2)R2Þ þ jjð1þ xÞgf0jjB0ðT2)R2Þ(;
ðdÞ 8tA½0;T (;

R

T2)R2 gðt; x; xÞ dx dx ¼
R

T2)R2 f0ðx; xÞ dx dxg;

ð3:8Þ
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with c1; c2 depending only on g; T ; and o (and hence on ð %f;jÞ), but not on e: The
indices d1od2 in ð0; 1Þ are fixed as follows:

d1 :¼
g* n

2ðgþ 1Þ
and d2 :¼

g
gþ 1

: ð3:9Þ

For fixed c1 and c2 large enough depending only on ð %f;jÞ; and f0 small enough, one

has Sea| (for instance, f0 þ %fASe in this case), and hence jr0jpe: From now, this is
systematically supposed to be the case.

Now we introduce the following subsets of Sðx0; r0Þ ) R2:

g* :¼ fðx; xÞASðx0; r0Þ ) R2=jxj41
2 and x & nðxÞo* 1

10jxjg; ð3:10Þ

g2* :¼ fðx; xÞASðx0; r0Þ ) R2=jxjX1 and x & nðxÞp* 1
8jxjg; ð3:11Þ

g3* :¼ fðx; xÞASðx0; r0Þ ) R2=jxjX2 and x & nðxÞp* 1
5jxjg; ð3:12Þ

gþ :¼ fðx; xÞASðx0; r0Þ ) R2=x & nðxÞX0g: ð3:13Þ

It can be easily seen that

distð½Sðx0; r0Þ ) R2(\g2*; g3*Þ40:

We introduce a CN-B1 regular function U : Sðx0; r0Þ ) R2-R; satisfying

0pUp1;

U + 1 in ½Sðx0; r0Þ ) R2(\g2*;
U + 0 in g3*:

8

>

<

>

:

ð3:14Þ

We also introduce a function U :Rþ-Rþ; of class CN; such that

U is non-increasing;

U + 1 in ½0; 1=4(;
U + 0 in ½3=4;þNÞ:

8

>

<

>

:

ð3:15Þ

Now, given gASe; we associate fg by

*Dfgðx; tÞ ¼ r0 * Lg in ½0;T ( ) Tn;
R

Tn fgðx; tÞ dx ¼ 0 in ½0;T (:

(

ð3:16Þ
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Then, we define ṼðgÞ :¼ f to be the solution of the following system:

f ð0; x; xÞ ¼ f0 on T2 ) R2;

@t f þ x &rx f þrfg &rxf ¼ 0 in ½0;T ( ) ½ðT2 ) R2Þ\g*(;

f ðt; x; xÞ ¼ U t
w

% &

þ U T*t
w

% &h i

f ðt*; x; xÞ

þ 1* U t
w

% &

* U T*t
w

% &h i

Uðx; xÞf ðt*; x; xÞ on ½0;T ( ) g*:

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

ð3:17Þ

In the previous writing, f ðt*; x; xÞ is the limit value of f on the characteristic leading
to ðx; xÞ as the time goes to t*: (For times before t; but close to t; the corresponding
characteristic is not in g*:) Of course, (3.17) has to be understood in a characteristics
sense, that is, for each characteristic, f is ruled by (2.4) as long as the characteristic
curve does not meet g*: When the characteristic meets g* at time t; then the value of
f at time tþ is fixed according to the last equation in (3.17). Note that the set of
different times a characteristic curve meets g* is discrete as seen from the definition
of g*:

We fix the parameter w as the following positive number:

w ¼ T

8
: ð3:18Þ

We now consider a continuous linear extension operator

%p :C0ðT2\Bðx0; 2r0Þ;RÞ-C0ðT2;RÞ; and which has the property that each Ca-
regular function is continuously mapped to a Ca-regular function, for any aA½0; 1(:
Moreover, we manage in order that for any fAC0ðT2\Bðx0; 2r0ÞÞ; one has

Z

Tn
%pð f Þ ¼

Z

Tn)Rn
f0ðx; xÞ dx dx: ð3:19Þ

The last condition can easily be obtained by considering a regular non-negative
function u with integral 1 in Bðx0; r0Þ; and adding to %pð f Þ the function ð

R

T2)R2 f0 *
R

T2 %pð f ÞÞu:
We fix cp such that for any fAC1ðT2\Bðx0; 2r0ÞÞ; one has

jj %pð f ÞjjB1pcpjj f jjB1 ;

jj %pð f ÞjjLNpcpjj f jjLN :

(

ð3:20Þ

From this operator, we deduce a new one p :C0ððT2\Bðx0; 2r0ÞÞ ) R2Þ-C0ðT2 )
R2Þ according to the rule

ðpf Þðx; xÞ :¼ ½ %pf ð&; xÞ(ðxÞ: ð3:21Þ
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Finally, we introduce the operator P :C0ðð½0;T ( ) ½T2\Bðx0; 2r0Þ( ) R2Þ,ð½0; w=4( )
T2 ) R2ÞÞ-C0ð½0;T ( ) T2 ) R2Þ given by

ðPf Þðt; x; xÞ :¼ U
4t

w

! "

f ðt; x; xÞ þ 1* U
4t

w

! "# $

½pf ðt; &; &Þ(ðx; xÞ: ð3:22Þ

We now define V ½g( by

V ½g( :¼ %fþPð fjð½0;T ()½T2\Bðx0;2r0Þ()R2Þ,ð½0;w=4()T2)R2ÞÞ in ½0;T ( ) T2 ) R2: ð3:23Þ

It will be shown that the function f is C1 regular at the neighborhood of any point

ðt; x; xÞA½0;T ( ) T2 ) R2 such that ðx; xÞeg*: This implies in particular that

fj½0;T ()½T2\Bðx0;2r0Þ()R2 is C1 regular. Another argument (see (3.26) below) proves the

C1 regularity of fj½0;w=4()T2)R2 : This will imply, together with the construction of P;

that V ½g( is in C1ð½0;T ( ) T2 ) R2Þ:
Finally, we note W the same operator as Ṽ but without absorption, that is, where

the function U is replaced by 1. In other words, W satisfies

W ½g(jt¼0 ¼ f0; ð3:24Þ

@tW ½g( þ x &rxW ½g( þrfg &rxW ½g( ¼ 0 in QT : ð3:25Þ

(Hence, W ½g( is transported by the characteristics of fg:) Let us remark that, due to
(3.15) and (3.17), one has

Ṽ½g(ðt; x; xÞ ¼ W ½g(ðt; x; xÞ for tA½0; w=4(: ð3:26Þ

In the sequel, the goal is to find a fixed point to Ve; for any e small enough,
provided f0 is chosen small enough in terms of e:We may sometimes omit the index e
in Ve and Se:

3.3. Finding a fixed point of Ve

Here, the goal is to apply the Leray–Schauder Theorem. Let us check that its
assumptions are satisfied.

1. The first point, precisely that Se is a convex compact subset of C0ð½0;T ( )
T2 ) R2Þ is a consequence of Ascoli’s Theorem.

2. Let us check the continuity of Ve for the C0 topology. Assume that a sequence gi
of elements of Se converges to g for the C0 norm (set gN ¼ g). As Se is compact,
one has that gASe: Then, the corresponding sequence Lfgi is bounded in

Cd1ð½0;T ( ) T2Þ: It follows that rfgi-rfg for the C0ðOTÞ topology. Now consider
the characteristics ðXgi ;XgiÞ corresponding to the potential fgi ; and ðXg;XgÞ those
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for fg: We have for any ðt; s; x; xÞA½0;T (2 ) T2 ) R2; (in LN norm),

d

dtþ
jjðXgiðt; s; x; xÞ;Xgiðt; s; x; xÞÞ * ðXgðt; s; x; xÞ;Xgðt; s; x; xÞÞjj

pjjXgiðt; s; x; xÞ * Xgðt; s; x; xÞÞjjþ jjrfgiðt;XgiÞ *rfgðt;XgÞjj:

But one has

jjrfgiðt;XgiÞ *rfgðt;XgÞjj

pjjrfgiðt;XgiÞ *rfgðt;XgiÞjjþ jjrfgðt;XgiÞ *rfgðt;XgÞjj

pjjrfgiðt;XgiÞ *rfgðt;XgiÞjjþ jjrfgjjB0;1ðOT ÞjjX
gi * Xgjj;

pjjrfgi *rfgjjB0ðOT Þ þ jjrfgjjB0;1ðOT ÞjjX
gi * Xgjj:

It follows from Gronwall’s lemma and elliptic estimates for jjrfgjjB0;1ðOT Þ; that for

iAf1;y;Ng;

jjðXgi ;XgiÞ * ðXg;XgÞjjB0ð½0;T ()QT ÞpCjjrfgi *rfgjjB0ðOT Þ; ð3:27Þ

for C independent from i: Hence one has

jjðXgi ;XgiÞ * ðXg;XgÞjjB0ð½0;T ()QT Þ-0 as i-þN: ð3:28Þ

Let us prove that this involves that for ðt; x; xÞAQT \ð½0;T ( ) g*Þ; one has

Ṽ ½gi(ðt; x; xÞ-Ṽ½g(ðt; x; xÞ: ð3:29Þ

Fix ðt; x; xÞAQT \ð½0;T ( ) g*Þ: In a first case: if the trajectory from ðXg;XgÞð0; t; x; xÞ
to ðx; xÞ does not meet g2* for a time sXw=4; then it is a clear consequence of (3.28)

that Ṽ½gi(ðt; x; xÞ-Ṽ½g(ðt; x; xÞ: Indeed, for i large enough, the trajectory

ðXgi ;XgiÞð&; t; x; xÞ does not meet g2* either for sXw=4; and we consequently have

Ṽ½g(ðt; x; xÞ ¼ f0½ðXg;XgÞð0; t; x; xÞ( and

Ṽ½gi(ðt; x; xÞ ¼ f0½ðXgi ;XgiÞð0; t; x; xÞ(: ð3:30Þ

In particular this is valid for ðt; x; xÞA½0; w=4( ) T2 ) R2:
Now, let us study the case when the trajectory from ðXg;XgÞð0; t; x; xÞ to ðx; xÞ

meets g2* for a time sXw=4: Using (2.3), the value of x & nðxÞ on g*; distðg*; gþÞ40

and the uniform bound for jjrfhjjLN ; for all hASe; one can see that there exists

m ¼ mðjxjÞ such that, if sA½0; tÞ satisfies Xgiðs; t; x; xÞAg*; then Xgið½s*
m; sÞ; t; x; xÞCT2\Bðx0; r0Þ and Xgiððs; sþm(; t; x; xÞCBðx0; r0Þ (for iAf1;y;Ng).
It follows then that two different times for which ðXgi ;XgiÞð&; t;x; xÞ meets g*

ARTICLE IN PRESS
O. Glass / J. Differential Equations 195 (2003) 332–379 345



(a fortiori g2*), are distant at least from mðjxjÞ40 (independently from i). We denote

by t1;y; tnA½w=4; tÞ the different times for which ðXg;XgÞð&; t; x; xÞ belongs to g2*; in
increasing order.

Now we claim that, for i large enough, one has

(ðsi;1;y; si;nÞA½0; tÞn and (t40; (R40 such that

ðiÞ ðXgi ;XgiÞð½si;j * t; si;j þ t(; t; x; xÞ-g* ¼ fðXgi ;XgiÞðsi;j; t;x; xÞg;
ðiiÞ for sA½0; tÞ; distðs; fsi;1;y; si;ngÞXt ) distððXgi ;XgiÞðs; t; x; xÞ; g2*ÞXR;
ðiiiÞ si;j-tj as i-þN; for all j ¼ 1;y; n: ð3:31Þ

Indeed, consider two points ðXg;XgÞðtj þ t; t; x; xÞ and ðXg;XgÞðtj * t; t; x; xÞ; with
tomðjxjÞ; the first one just after the point has left the circle Sðx0; r0Þ and the second
one just before. For i large enough, by (3.28), Xgiðti þ t; t; x; xÞ is inside Bðx0; r0Þ and
Xgiðti * t; t; x; xÞ is outside. Consequently, there is a point Xgiðsi;j; t; x; xÞ (close to
the one for g) which cuts the circle at time si;jA½tj * t; tj þ t(: Then, again by (3.28),
the corresponding point ðXgi ;XgiÞðsi;j; t; x; xÞ is in g* for i large enough, and by the
definition of mðjxjÞ satisfies (3.31)(i).

Now consider ðXg;XgÞð&; t; x; xÞ for times in ½0;T (\
Sn

i¼1½ti * t; ti þ t(: the distance
of these points to g2* is positive. Hence with (3.28), one gets (3.31)(ii) for i large
enough.

To get (3.31) (iii), it suffices to consider ðXg;XgÞðtj þ t0; t; x; xÞ and ðXg;XgÞ
ðtj * t0; t; x; xÞ for t0ot; and arguing as previously, we obtain si;jA½tj * t0; tj þ t0(
for i large enough.

This involves (3.29) in the general case. Indeed, if n ¼ 0; this is the first case that
we have already treated. If nX1; one gets for i large enough

Ṽ½gi(ðs; x; xÞ ¼ f0½ðXgi ;XgiÞð0; t; x; xÞ( )
Y

n

j¼1

U
si;j
w

! "

þ U
T * si;j

w

! "# $'

þ 1* U
si;j
w

! "

* U
T * si;j

w

! "# $

U ðXgi ;XgiÞðsi;j; t; x; xÞ
( )

*

(including for i ¼ N if we fix si;N ¼ ti) which together with (3.28) and (3.31), leads
to (3.29).

Now we conclude in a standard way, using the property (yet to be proven) that
VðSeÞCSe: Indeed, if we admit this for the moment, we get that the

V ½gi(j½0;T ()ðT2\oÞ)R2 are in a compact subset of C0ð½0;T ( ) ðT2\oÞ ) R2Þ: So the

previous pointwise convergence is in fact valid in C0ð½0;T ( ) ðT2\oÞ ) R2Þ: It is also
valid in C0ð½0; w=4( ) T2 ) R2Þ (as (3.30) applies in ½0; w=4( ) T2 ) R2). With the

continuity of P; this involves the convergence of V ½gi( to V ½g( in C0ðQT Þ:

3. Now we have to show that VeðSeÞCSe if f0 is small enough.
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The fourth point in the definition of Se is observed as a consequence of the
construction of P: So there are essentially three points to check. We establish points
b and c, before returning to the central point a. We may omit the indices g in the
sequel.

(b) We want to establish the second condition in VeðSeÞCSe: We recall f :¼ Ṽ½g(:
One has

j f ðt; x; xÞjpj f0½ðX ;XÞð0; t; x; xÞ(j:

This is due to the fact that, by (3.17), f is constant along a characteristic as long as it
does not meet g*; and when it does, then one gets j f ðtþ; x; xÞjpj f ðt*; x; xÞj; thanks
to the choices of U and U : Consequently, one gets

j f ðt; x; xÞjp jjð1þ jxjÞgf0jjLNð1þ jXð0; t; x; xÞjÞ*g;

p jjð1þ jxjÞgf0jjLNð1þ jx* xþ Xð0; t; x; xÞjÞ*g:

Now we remark that for all tA½0;T (;

jx* Xð0; t; x; xÞjpT jjrfgjjLNpCTðjjDjjjLN þ 1Þ: ð3:32Þ

Using

ð1þ jx* x0jÞ*1p1þ jxj
1þ jx0j; ð3:33Þ

we get for ðt; x; xÞAQT ;

jð1þ jxjÞgf ðt; x; xÞjpjjð1þ jxjÞgf0jjLN ½1þ CTðjjDjjjLN þ 1Þ(g:

Now using the construction of P; we deduce

jð1þ jxjÞgV ½g(ðt; x; xÞjpcpjjð1þ jxjÞgf0jjLN ½1þ CTðjjDjjjLN þ 1Þ(g: ð3:34Þ

We choose c1 ¼ cp½1þ CTðjjDjjjLN þ 1Þ(g: Then the second condition in VðSÞCS
is established.

(c) Now we wish to have estimates on the derivatives of V ½g(: First, we prove the
following lemma.

Lemma 2. For gASe; one has Ṽ½g(AC1ðQT \STÞ; with ST :¼ ½0;T ( ) g*: Moreover,

for any ðt; x; xÞ and ðt0; x0; x0Þ in ½0;T ( ) ½T2\o( ) R2; with jx* x0jp1; one has,

jṼ ½g(ðt; x; xÞ * Ṽ½g(ðt0; x0; x0ÞjpC½jj f0jjB1ðT2)R2Þ þ jjð1þ jxjÞgf0jjLNðT2)R2Þ(

) ð1þ jxjÞjðt; x; xÞ * ðt0; x0; x0Þj; ð3:35Þ
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and also

jṼ½g(ðt; x; xÞ * Ṽ½g(ðt; x0; x0Þj

pC½jj f0jjB1ðT2)R2Þ þ jjð1þ jxjÞgf0jjLNðT2)R2Þ(jðx; xÞ * ðx0; x0Þj; ð3:36Þ

the constant C being independent from f0:

Proof. We begin with a remark concerning the number of times a particle can meet

g*:We fix ðt; x; xÞ in ½0;T ( ) T2 ) R2: Here, we denote t1;y; tn the different times in
½w=4; t( for which ðX ;XÞðti; t; x; xÞ belongs to g* (sorted increasingly). Of course, n
depends on ðx; xÞ: As gASe; we get, at least if we have chosen e small enough, that

jXðt; 0; x; xÞjpjxjþ T jjrjjjC0ðQT Þ þ 1 for tA½0;T (: ð3:37Þ

On another side, we remark that

distðgþ; g*Þ40: ð3:38Þ

From (3.37), (3.38) and the boundedness of the acceleration for gASe; we deduce
that for a certain c40;

nðx; xÞpcð1þ jxjÞ: ð3:39Þ

Now, let us briefly explain the continuity of f :¼ Ṽ½g( in QT \ST (this is proven
approximately as (3.29)). Locally around ðt; x; xÞAQT \ST ; f is constant along
characteristics, hence (with Lemma 1) it is sufficient to prove the continuity of
f ðt; &; &Þ close to ðx; xÞ:

Given ðt; x; xÞAQT \ST ; we consider the characteristic curve from

ðXð0; t; x; xÞ;Xð0; t; x; xÞÞ to ðx; xÞ: If this characteristic curve has not met g2* after
time w=4 during the process, then for ðx0; x0Þ close to ðx; xÞ; the characteristic from

ðXð0; t; x0; x0Þ;Xð0; t; x0; x0ÞÞ to ðx0; x0Þ is close (for the B0ðT2 ) R2Þ norm) to the one
for ðx; xÞ (see (2.7)), and as a consequence, if jðx; xÞ * ðx0x0Þj is small enough, this

characteristic does not meet g2* after w=4: Consequently one has

Ṽ½g(ðt; x; xÞ ¼ f0½ðXg;XgÞð0; t; x; xÞ( and Ṽ½g(ðt; x0; x0Þ ¼ f0½ðXg;XgÞð0; t; x0; x0Þ(:

Then the continuity at point ðx; xÞ follows from the regularity of the flow—see
Lemma 1.

If the characteristic curve for ðx; xÞ has met g2* after w=4 (i.e. nðx; xÞX1), then for
ðx0; x0Þ close to ðx; xÞ; we consider the characteristic curve from
ðXð0; t; x0; x0Þ;Xð0; t; x0; x0ÞÞ to ðx0; x0Þ: For t small (in particular such that tow=4
and tot* tn), one has Xðti þ t; t; x; xÞABðx0; r0Þ and X ðti * t; t;x; xÞAT2\Bðx0; r0Þ:
We suppose that t is small enough in order that any characteristic corresponding to a
velocity x0 such that jx0jpjxjþ 1 cuts g* at most once by time interval of length 2t (as
seen previously).
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As for (3.31) we get that ðXð0; t; x0; x0Þ;Xð0; t; x0; x0ÞÞ cuts g* once in each ½ti *
t; ti þ t( and that the characteristic corresponding to ðx0; x0Þ cannot meet g2* outside
these intervals, if it is close enough to the one for ðx; xÞ: As ðx0; x0Þ tends to ðx; xÞ; the
place in g* where ðXðs; t; x0; x0Þ;Xðs; t; x0; x0ÞÞ cuts g* during ½ti * t; ti þ t( tends to

the one for the ðx; xÞ-characteristic. This gives again that Ṽðt; x0; x0Þ-Ṽðt; x; xÞ as
ðx0; x0Þ tends to ðx; xÞ; as for (3.29).

We now consider the derivatives of Ṽ½g(:We remark that if the characteristic curve
starting at ðx; xÞ at time s; does not meet g* during the interval ½s; t( then the
derivatives at time t and s are linked by

dx;x f ðt; x; xÞ ¼ dx;x f ðs;Xðt; s; x; xÞ;Xðt; s; x; xÞÞ3dx;xðX ;XÞ: ð3:40Þ

(Note that rx;xðX ;XÞðt; s; &; &Þ is uniformly bounded for gASe by Lemma 1.) Given
tiAð0;TÞ; we define on g* the functions f *ðti; x; xÞ as

f *ðti; x; xÞ ¼ lim
t-t*i

f ðt; ðX ;XÞðt; ti; x; xÞÞ;

and f þ given similarly with the right limit. The functions f * and f þ are related by
(3.17). We wish to compare jrf *ðti; x; xÞj and jrf þðti; x; xÞj; for ðx; xÞAg*: Observe
that the surface g* is not characteristic in our problem. Consider t one of tangen-
tial unit vector field on the circle Sðx0; r0Þ: The partial derivatives @t f þ; @t f þ; rx f

þ

and x &rf þ can be easily derived on g*; and are continuous. Indeed, let us begin
with @t:

@t f
þðti; x; xÞ ¼

U
ti
w

! "

þ U
T * ti

w

! "

þ 1* U
ti
w

! "

* U
T * ti

w

! "! "

Uðx; xÞ
# $

rx f
*ðti; x; xÞ & t

þ 1* U
ti
w

! "

* U
T * ti

w

! "! "

f *ðti; x; xÞrxU & t: ð3:41Þ

Now we have the same for the x derivatives (consider hAR2):

rx f
þðti; x; xÞ & h ¼

U
ti
w

! "

þ U
T * ti

w

! "

þ 1* U
ti
w

! "

* U
T * ti

w

! "! "

Uðx; xÞ
# $

rx f
*ðti; x; xÞ & h

þ 1* U
ti
w

! "

* U
T * ti

w

! "! "

f *ðti; x; xÞrxUðx; xÞ & h: ð3:42Þ
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Concerning the time direction, we have

@t f
þðti; x; xÞ

¼ U
ti
w

! "

þ U
T * ti

w

! "

þ 1* U
ti
w

! "

* U
T * ti

w

! "! "

Uðx; xÞ
# $

@t f
*ðti; x; xÞ

* 1

w
U 0 ti

w

! "

* U 0 T * ti
w

! "# $

ð1*Uðx; xÞÞf *ðti; x; xÞ: ð3:43Þ

From (3.17), we finally get

rx f
þðti; x; xÞ & x ¼

U
ti
w

! "

þ U
T * ti

w

! "

þ 1* U
ti
w

! "

* U
T * ti

w

! "! "

Uðx; xÞ
# $

rx f
*ðti; x; xÞ & x

* Cðti; x; xÞf *ðti; x; xÞ; ð3:44Þ

with

Cðti; x; xÞ :¼
1

w
U 0 ti

w

! "

* U 0 T * ti
w

! "# $

ð1*Uðx; xÞÞ

þ 1* U
ti
w

! "

* U
T * ti

w

! "# $

rxUðx; xÞ &rfgðti; xÞ:

Consequently, at each time a characteristic curve meets g*; one has

rt;x;x f
þðti; x; xÞ ¼ art;x;x f

*ðti; x; xÞ þ Bi; ð3:45Þ

with 0pap1 and Bi which coordinates in the basis ðt; xÞ are bounded by
bj f *ðti; x; xÞj; with b independent from f : Note that when ðx; xÞ belongs to g*;
the matrix of the transformation from the base ðt; xÞ to the base ðt; nÞ is bounded,
hence Bi itself is bounded by bj f *ðti; x; xÞj; with b independent from f : With (3.40),
this leads to the relation valid for times tA½tþi ; t*iþ1(:

rx;xṼ½g(ðt; x; xÞ ¼ *airx;xW ½g(ðt; x; xÞ þ
X

i

j¼1

Bj; ð3:46Þ

with 0p*aip1 and Bj bounded (in LN norm) by bj fj j jjrx;xðX ;XÞjj; where fj is given
by fj ¼ f ðtj;X ðtj ; t; x; xÞ;Xðtj; t; x; xÞÞ:Note that, thanks to Lemma 1, jjrx;xðX ;XÞjj is
uniformly bounded for gASe: Now using again (3.34), we get

j fjjpKð1þ jxjÞ*gjjð1þ jxjÞgf0jjB0ðT2)T2Þ:
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With (3.39), one gets, for ðt;x; xÞAQT \ST ;

jrx;xṼ½g(ðt; x; xÞjp jrx;xW ½g(ðt; x; xÞj

þ cðjjLgjjB0;d1 ðOT ÞÞjjjð1þ jxjÞgf0jjB0ðT2)R2Þ: ð3:47Þ

Now, using Lemma 1, we have the estimate on W ½g(; for jx* x0jp1 and tA½0;T (:

jrx;xW ½g(ðt; x; xÞjpcðjjLgjjB0;d1 ðOT ÞÞjjrf0jjC0ðT2)R2Þ; ð3:48Þ

where in fact cðjjLgjjB0;d1 ðOT ÞÞ depends only on Se: We consequently get that for

ðt; x; xÞAQT \ST ;

jrx;xṼ½g(ðt; x; xÞjpcðjjLgjjB0;d1 ðOT ÞÞðjjrf0jjC0ðT2)R2Þ þ jjð1þ jxjÞgf0jjB0ðT2)R2ÞÞ:

Using (3.17), we deduce

j@tṼ½g(ðt; x; xÞjp cðjjLgjjB0;d1 ðOT ÞÞð1þ jxjÞ

) ½jjrf0jjC0ðT2)R2Þ þ jjð1þ jxjÞgf0jjB0ðT2)R2Þ(:

Now for x; x0AT2\o such that jx* x0jpr0 (in order that ½x; y( does not cut %Bðx0; r0Þ),
we deduce that one has

jṼ½g(ðt; x; xÞ * Ṽ½g(ðt0; x0; x0ÞjpCð1þ jxjÞ

)ðjjrf0jjB0ðT2)R2Þ þ jjð1þ jxjÞgf0jjB0ðT2)T2ÞÞjðt;x; xÞ * ðt0;x0; x0Þj

and

jṼ½g(ðt; x; xÞ * Ṽ½g(ðt; x0; x0Þj

pCðjjrf0jjB0ðT2)R2Þ þ jjð1þ jxjÞgf0jjB0ðT2)T2ÞÞjðx; xÞ * ðx0; x0Þj:

Now for x; x0AT2\o such that jx* x0jXr0; one gets the same type of inequality,
using the LN estimate. This ends the proof of Lemma 2. &

Remark 5. Note that if we use (1.6), we get all the same as for (3.34) that

j f ðt; x; xÞjpK jjð1þ jxjÞgþ1f0jjB0ðT2)T2Þð1þ jxjÞ*g*1:

Then one can precise (3.47) by

jrx;xṼ½g(ðt; x; xÞjpjrx;xW ½g(ðt; x; xÞjþ cjjð1þ jxjÞgþ1f0jjB0ðT2)R2Þð1þ jxjÞ*g:

ARTICLE IN PRESS
O. Glass / J. Differential Equations 195 (2003) 332–379 351



Using the boundedness of rx;xðX ;XÞ and (3.32)–(3.33), one can also precise (3.48)
by

jð1þ jxjÞgrx;xW ½g(ðt; x; xÞjpcðjjLgjjB0;d1 ðOT ÞÞjjð1þ jxjÞgrf0jjB0ðT2)R2Þ;

and one gets finally

jð1þ jxjÞgrx;xṼ½g(ðt;x; xÞjp cðjjLgjjB0;d1 ðOT ÞÞ

) ðjjð1þ jxjÞgrf0jjB0ðT2)R2Þ þ jjð1þ jxjÞgþ1f0jjB0ðT2)R2ÞÞ:
ð3:49Þ

This is important for uniqueness.

It follows from the construction of P that the same estimates as in Lemma 2 hold

for any ðx; x0ÞAðT2Þ2 for V ½g(: Now to conclude about point c, it suffices to

interpolate (3.34) and (3.35) to get the desired estimate in ½0;T ( ) ðT2\oÞ ) R2:
Using the construction of P; we get that for the index d2 defined in (3.9), one has

jjV ½g( * %fjjBd2 ðQT Þpc2½jj f0jjB1ðT2)R2Þ þ jjð1þ xÞgf0jjB0ðT2)R2Þ(: ð3:50Þ

(a) The last point is to prove that, if f0 is small enough, one gets

jjLðV ½g( * %f ÞjjCd1 ðOT Þpe: ð3:51Þ

Let us start with the LN-norm before the Cd1 one. One has

j f ðt; x; xÞjpj f0½ðXg;XgÞð0; t; x; xÞ(j:

It follows from (3.34) that

Z

R2
f ðt; x; xÞ dx

+

+

+

+

+

+

+

+

pc1jj f0ð1þ jxjÞgjjLNðT2)R2Þ

Z

R2
ð1þ jxjÞ*g dx:

Hence

Z

R2
f ðt; x; xÞ dx

+

+

+

+

+

+

+

+

pc01jj f0ð1þ jxjÞgjjLNðT2)R2Þ:

One deduces from (3.23) that

jjLðV ½g( * %f ÞjjLNðOT ÞpCjj f0ð1þ jxjÞgjjLNðT2)R2Þ: ð3:52Þ

Now let us deal with the Cd1 -norm. We introduce the following notation:

jgjba :¼ sup
xax0

x;x0 s:t: jx*x0jp1

ð1þ jxjÞb jgðt; x; xÞ * gðt0;x0; x0Þj
jðt; x; xÞ * ðt0; x0; x0Þja

# $

:
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Now it follows by interpolation between (3.34) and (3.50), that for a certain constant

C independent from f0; for *g ¼ nþg
2 and d1 defined in (3.9), one has

jV ½g( * %fj*gd1pCjj f0jjd1B1ðT2)R2Þ½jj f0jjB1ðT2)R2Þ þ jjð1þ jxjÞgf0jjC0ðT2)R2Þ(
1*d1 :

We deduce that, for f0 small enough,

jjLðVe½g( * %f ÞjjCd1 ðOT Þpe:

This finally proves VðSÞCS; for f0 small enough (depending on e).
We then conclude by Schauder’s Theorem, that there exists a fixed point g%ASe

of the operator Ve: We now have to prove that such a g% answers to the problem (at
least for e small enough).

3.4. The final state

From the construction, Eqs. (1.1)–(1.2) and (1.3) are clearly satisfied by g% for a

certain G supported in ½0;T ( ) o) R2:

@g% þ x &rxg
% þrxfg% &rxg

%

¼ %Gþ ðrxfg% *rxjÞ &rx %f

þ ½@t þ x &rx þrxfg% &rx(PðṼ½g%(Þ:

What we have left to establish is (3.1) (at least for small e). This is done in two steps:
first, we show that property (3.4) is still true for the perturbed system, that is when

the action of fg% * j is taken into account, at least if e is small enough (and with a
slightly larger radius for the ball). Then in a second step, we show that particles in

Bðx0; r0=2Þ; if fast enough, do meet g3* during the process, which allows to conclude.
Step 1: The first step is a consequence of the following Gronwall’s inequality (as

for (3.27)): for any s; tA½0;T (;

jjð %X; %XÞðt; s; x; xÞ * ðXg% ;Xg%Þðt; s; x; xÞjjB0ðT2)R2Þ

pCjjrj*rfg% jjB0ðQT Þe
T jjrjjjB0ð½0;T (;B1ðT2)R2ÞÞ : ð3:53Þ

This involves that for some c340;

jjX %f * Xg% jjB0ð½0;T ()½0;T ()T2)R2Þoc3e: ð3:54Þ
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It follows from (3.4) and (3.54) that, for relevant e;

(M40; 8xAT2; 8xAR2\f0g such that jxjXM; (tAð0;TÞ;

Xg%ðt; 0; x; xÞABðx0; r0=2Þ: ð3:55Þ

Step: 2 For xABðx0; r0Þ and xAR2\f0g; we introduce PSðx; xÞ as the point in
Sðx0; r0Þ last met by xþ tx; with to0: Let us prove that

8Z40; (M̃; 8tA½T=4; 3T=4(; 8xABðx0; r0Þ; 8xAR2 s:t: jxjXM̃; (t̃Að0; tÞ s:t:

Xg%ðt̃; t; x; xÞASðx0; r0Þ; jXg%ðt̃; t; x; xÞ * PSðx; xÞjoZ;

and 8sA½t̃; t(; jXg%ðs; t; x; xÞ * xjoZ: ð3:56Þ

Indeed, as follows from (2.3), one has

jXg%ðs; t;x; xÞ * x* ðs* tÞxjþ jXg%ðs; t; x; xÞ * xjpcðjjLg%jjNÞjs* tj: ð3:57Þ

Fix Z040: For jxj large enough (say jxjXM̃), one has dðxþ ðs* tÞx; x0ÞX2r0; for a

certain sot; with js* tjoZ0: Reducing Z0 if necessary (hence, enlarging M̃), we see

that (3.57) involves that jXg%ðs; t; x; xÞ * x0jX3
2r0: Hence, one gets the existence of t̃:

Finally, we get jXg%ðt̃; t; x; xÞ * PSðx; xÞjoZ and jXg%ðs; t; x; xÞ * xjoZ in ½t̃; t( from
(3.57), reducing again Z0 (and again enlarging M̃) if necessary.

Now, it is easy to show that a straight line arising from Bðx0; r0=2Þ cuts Sðx0; r0Þ
with an angle to the normal at the circle of value at most p=6: Consequently, using
again (3.57), one gets that, at least for small e;

(M 040; 8xAT2; 8xAR2\f0g such that jxjXM 0; (tAð0; 3T=4Þ;

ðXg% ;Xg%Þðt; 0; x; xÞAg3*: ð3:58Þ

It follows then that for x large enough, one gets

g%ðT ; &; xÞ ¼ 0;

which is what we wanted for this section. Besides, it follows from Lemma 2 and from
the construction that one has

jjg%ðT ; &; &ÞjjB1ðT2)R2Þ þ jjð1þ jxjÞgg%ðT ; &; &ÞjjLNðT2)R2Þ

pC½jj f0jjB1ðT2)R2Þ þ jjð1þ jxjÞgf0jjLNðT2)R2Þ(: ð3:59Þ
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3.5. Uniqueness

The uniqueness of the solution for the system with interior control is proven
approximately the same way as for the ‘‘homogeneous’’ (uncontrolled) case. Indeed,
the source term disappears when doing the difference of two Eqs. (1.1) computed for
two different potential solutions (see [17, Section 8]).

The main point is that under assumption (1.6), the solution described above
satisfies

jrx;xg
%ðt; x; xÞjpCð f0Þð1þ jxjÞ*g:

This follows from (3.49) and the construction of P: Now g% is unique among the
solutions that satisfy

gAC1ðQTÞ;

jgðt; xxÞjþ jrx;xgðt; x; xÞjpCð1þ jxjÞ*g;

rfAB0;1ðOTÞ;

as obtained in [17].

4. Theorem 1: the problem with compact velocities

In this section, we consider f0AB1ðT2 ) R2Þ; which moreover satisfies for a certain
M40;

8ðx; xÞAT2 ) R2; jxjXM ) f0ðx; xÞ ¼ 0; ð4:1Þ

and moreover (1.6). Let us remark that (1.6) is not really a consequence of (4.1) since

k and k0 in (1.6) are supposed to be small; but it is satisfied by the final value of g% in
Section 3 if again f0 is small enough—see (3.59).

The previous M can be given only in terms of o and T ; and is independent from
the choice of f0 (in its neighborhood of 0)—see Section 3.

4.1. The idea of the treatment of low velocities

The principal idea is to reduce to the case studied in Section 3.
Indeed, by a control localized in o; one can ‘‘accelerate’’ all particles at velocity x

with jxjpM; in such a way that at the end of the process, f ðt; x; &Þ is supported in
fx=jxjXMg: Then, one can apply again the control described in the previous section;
at the end one gets a distribution function supported in o in variable x:

In the next paragraph, we state a proposition that shows that such a process is
possible. Then we sketch the proof of the construction of f :

ARTICLE IN PRESS
O. Glass / J. Differential Equations 195 (2003) 332–379 355



4.2. The central proposition

Proposition 2. There exist t40 and jACNð½0; t( ) T2;RÞ satisfying

SuppðjÞCð0; tÞ ) T2; ð4:2Þ

Dj ¼ 0 in ½0; t( ) ðT2\oÞ; ð4:3Þ

such that for any f0AB1ðT2 ) R2Þ satisfying (4.1), one has, if we denote by ðX ;XÞ the
characteristics corresponding to the potential j:

f 00ðx; xÞ :¼ f0ðX ð0; t; x; xÞ;Xð0; t; x; xÞÞ ¼ 0

for all ðx; xÞ in ðT2\oÞ ) ðR2\½Bð0; M̃Þ\Bð0;M þ 1Þ(Þ; ð4:4Þ

for a certain M̃40 independent from f0: For some K40 independent from f0 one has
also:

jjð1þ jxjÞgþ1f 00jjLNðT2)R2ÞpK jjð1þ jxjÞgþ1f0jjLNðT2)R2Þ;

jj f 00jjB1ðT2)R2ÞpK jj f0jjB1ðT2)R2Þ:

(

ð4:5Þ

This proposition relies on the following lemma.

Lemma 3. For any nonempty open set O in the two-dimensional torus, there exists

yACNðT2;RÞ satisfying

Dy ¼ 0 in T2\O; ð4:6Þ

jryðxÞj40 for any x in T2\O: ð4:7Þ

We prove this lemma in the appendix.

Proof of Proposition 2. We introduce a y as in Lemma 3, with O chosen as a ball

Bðx0; r0Þ such that Bðx0; 2r0ÞCo: Define m as the lower bound of jryðxÞj in T2\O:
Then, the idea is to fix jðt; xÞ :¼ aLðbtÞyðxÞ; defined in ½0; 1=b( ) T2; where

LACN
0 ð(0; 1½Þ satisfies

LX0;
R

½0;1( L ¼ 1;

(

and where a and bX1 are to be chosen large enough, for fixed c ¼ a=b:
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With such a j one gets that for any ðx; xÞAT2 ) BR2ð0;MÞ; one has during ½0; 1b(
that

jXðt; 0; x; xÞ * xjpa

b
jjryjjN;

and it follows that, during ½0; 1b(;

jXðt; 0; x; xÞ * xjp1

b
ðM þ cjjryjjNÞ:

Hence for b large enough, one has X ðt; 0; x; xÞAT2\Bðx0; r0Þ for any

ðt; x; xÞA½0; 1=b( ) ðT2\oÞ ) BR2ð0;MÞ: Then one deduces that

X
1

b
; 0; x; x

! "

* xþ cryðxÞ
+

+

+

+

+

+

+

+

pCðyÞ1
b
ðM þ cjjryjjNÞ; ð4:8Þ

where CðyÞ depends on the derivatives of ry: Now we choose c ¼ 2Mþ2
m and let b

become large in order that the right-hand side of (4.8) is less than 1=2: This gives
(4.4). One just has to check (4.5). The first part in (4.5) can be seen as a consequence
of (3.33). The second one is a consequence of the Lipschitzian character of the
characteristics (see Lemma 1). &

4.3. Sketch of the construction of f

Now we can describe the control used to ‘‘treat’’ f0 such as described at the

beginning of the section. We define as previously %f in ½0; t( ) T2 ) R2 by (3.6) (with
here j defined as in Proposition 2).

From (4.7), we deduce that

IndSðx0;r0ÞðryÞ ¼ 0:

Hence, ry can be extended inside Bðx0; r0Þ in such a way that it does not vanish (call

V :T2-R2 such an extension). Call again m the lower bound for jVðxÞj: Now
arguing as previously, one gets the following for the flow of ðx;VÞ (i.e. the
characteristics for the fieldV), withV defined byVðt; xÞ ¼ aLðbtÞVðxÞ: for suitable
t40;

f 00ðx; xÞ :¼ f0ðXVð0; t; x; xÞ;XVð0; t;x; xÞÞ ¼ 0

for all ðx; xÞ in T2 ) ðR2\½Bð0; M̃Þ\Bð0;M þ 1Þ(Þ:

We consider JACNðT2Þ satisfying

0pJp1;

J ¼ 1 in T2\Bðx0; 32r0Þ;
J ¼ 0 in %Bðx0; r0Þ:

8

>

<

>

:
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We introduce p as in Section 3, and P :C0ðð½0; t( ) ½T2\Bðx0; 2r0Þ( )
R2Þ-C0ð½0; t( ) T2 ) R2Þ with a slight simplification:

ðPf Þðt; x; xÞ :¼ p½f ðt; &; &Þ(ðx; xÞ: ð4:9Þ

To gASe; we associate fg by (3.16), and then Jg by

Jg ¼ ½JðxÞrfg þ ð1*JðxÞÞV(:

We introduce the following operator W which maps gASe to f satisfying

fjt¼0 ¼ f0;

@t f þ x &rx f þ Jg &rx f ¼ 0 in ½0; t( ) T2 ) R2:

We finally define V as the operator given by

V ½g( ¼ %fþPðW ½g(Þ:

It can be proven to have a fixed point f% close to %f; solution of the system, at least
for small f0; exactly as in the previous section (or as in [17]). We omit the details; let
us just underline that P is employed here not to ensure the regularity of the solution
inside o; but in order that the resulting solution found here can be smoothly glued
with the one of Section 3.

Let us just check that, at least for e small enough, the final value of this solution is
small and ‘‘well’’ supported in x: The first point is done as previously, using Lemma 1
and the point b in Section 3.3. The second one is a consequence of Gronwall’s lemma
which leads to

jjðX%;X%Þ * ð %X; %XÞjjB0ð½0;t()T2)R2ÞpCe;

where C can be described in terms of %f; and where ðX%;X%Þ and ð %X; %XÞ stand,

respectively, for the flows of ðx; J f%Þ and ðx; J %fÞ ¼ ðx;VÞ:
Once applied the control of this section, we apply again the control of Section 3

with f%ðt; &; &Þ as initial condition to get a complete solution (as we explained,

f%ðt; &; &Þ is small provided the original f0 was small enough). In this second use of
the control of Section 3, one can use P as in (4.9), since at the end of the

control process of Section 4 the distribution function is already of the form pðf̃0Þ for
a certain f̃0:

Uniqueness is proven as in Section 3.5. This concludes the proof of Theorem 1.
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5. Theorem 2: the problem with compact velocities according to v

We now turn to the proof of Theorem 2. In this section, we consider f0AB1ðTn )
RnÞ satisfying (1.8), which moreover satisfies for a certain M40;

8ðx; xÞATn ) Rn; jx & vjXM ) f0ðx; xÞ ¼ 0: ð5:1Þ

Again, most of the time, we will use only the decreasing of f0 in jxj*g and the
boundedness of rx;x f0: We will also use a kind of compatibility condition on f0;
satisfied by any distribution function at the end of the process of Section 6, and
which we describe later.

Remark that one has

8lAð0; 1Þ; 8ðx; xÞATn ) Rn; jx & vjXM ) f l0 ðx; xÞ ¼ 0; ð5:2Þ

as jx & vjXlM is sufficient. (We put l as an exponent for the scaled distribution
function, see Section 2.4.)

We first introduce a function %f which is central in the proof.

5.1. The function %f

Consider a function YACN
0 ð(0;T ½Þ satisfying

SuppYCð0;T=4Þ;
YX0;
R

½0;T ( Y ¼ 1:

8

>

<

>

:

ð5:3Þ

Before describing precisely the function %f; we begin with a remark.

Remark 6. One can decompose Tn into ‘‘slices’’, each slice being obtained by
thickening hyperplanes parallel to H with an arbitrary length. In particular, one can
cut Tn in the following way:

Tn ¼
[

N

i¼1

Hi; ð5:4Þ

with Hi :¼ xi þ %Hþ( * r; r½v; for some xiATn and with rARþ! small enough to get
that

8iAf1;y;Ng; XYðtÞ *vðti; 0;Hi; 0ÞCH þ ½*d=2; d=2(v; ð5:5Þ

with *v given by *v :¼ Av for a certain AARþ! depending only on T ; and with ti :¼
T=4þ iT=2N:
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Remark 7. Consequently, there exists m40 such that

XYðtÞ*vðti; 0;Hi; xÞCH þ ½*2d=3; 2d=3(v; 8iAf1;y;Ng; ð5:6Þ

whenever jx & vjpm:

Remark 8. Remark that XYðtÞ*v has also the following property: there exists cARþ!

such that, for any x; yATn; one has

c*1jx* yjpjXYðtÞ*vðt; 0; x; 0Þ * XYðtÞ*vðt; 0; y; 0Þjpcjx* yj: ð5:7Þ

Let us now describe the function %f: In the domain Tn\ðH þ ½*d; d(vÞ; x/*v
coincides with the gradient of a harmonic function. Call j a function in CNðTn;RÞ;
whose gradient coincides in Tn\ðH þ ½*d; d(vÞ with *v; this function is harmonic in
Tn\o: Note that Remark 8 is no longer necessarily true when considering rj instead
of *v:

Now consider a function ZACNðRn;RÞ as in (3.5). Define %f ¼ %fðt; x; xÞ as

%fðt; x; xÞ :¼ YðtÞZðxÞDjðxÞ: ð5:8Þ

Of course, %f satisfies (1.1) in ½0;T ( ) Tn ) Rn with a source term given by %G :¼
@t %fþ x &rx %fþYðtÞrjðxÞ &rx %f supported in ½0;T ( ) o) Rn and %fðt; xÞ :¼
YðtÞjðxÞ satisfies Eq. (1.2) corresponding to %f (and %fð0; &; &Þ ¼ 0), up to a function
of t:

5.2. The operator Vl
e

Here we introduce a certain operator V l
e ; which depends on two parameters l and

e (intended both to be small, and both systematically supposed to be in ð0; 1Þ). We

will show that, for any e40; V l
e has a fixed point if l is small enough (in terms of e).

Then we show that for e small enough, such a fixed point gives a solution to the
problem.

We introduce a function HACNðTn;RÞ such that

0pHp1 in Tn;

H + 0 in H þ ½*d; d(v;
H + 1 in Tn\ðH þ ½*3

2d;
3
2d(vÞ:

8

>

<

>

:

ð5:9Þ

We define again a subset Sl
e of Bd2ðQT Þ on which we will define the operator V l

e :

Sl
e :¼ fgABd2ðQT Þ=
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ðaÞ jjLðg* %f ÞjjCd1 ðOT Þpe;

ðbÞ jjð1þ jxjÞgðg* %f ÞjjLNðQT Þpc1½jj f l0 jjB1ðTn)RnÞ þ jjð1þ xÞgf l0 jjB0ðTn)RnÞ(;

ðcÞ jjg* %fjjBd2 ðQT Þpc2 jj f l0 jjB1ðTn)RnÞ þ jjð1þ xÞgf l0 jjB0ðTn)RnÞ

h i

;

ðdÞ 8tA½0;T (;
R

Tn)Rn gðt; x; xÞ dx dx ¼
R

Tn)Rn f l0 ðx; xÞ dx dxg;

ð5:10Þ

with c1; c2 to be fixed later depending only on g; T and o (and hence on ð %f;jÞ), but
not on l; here, d1 and d2 are fixed as follows

d1 ¼
g* n

2ðnþ 1Þðgþ 1Þ
and d2 ¼

g
gþ 1

:

For fixed c1 and c2 large enough depending only on ð %f;jÞ; one hasSl
ea| for l small

enough depending on e (for instance f ðt; x; xÞ ¼ f l0 ðx; xÞ þ %fðt; x; xÞ belongs to Sl
e for

lomðeÞ—see (2.9)). From now, we suppose that this is the case; in particular, one

gets jrl0jpe:
Consider gASl

e : To g; we first associate the corresponding solution fg of the

Poisson equation, viz. (3.16) (with r0 replaced by rl0).
To fg; we associate Vg : ½0;T ( ) Tn-Rn by

Vgðt; xÞ :¼ HðxÞrfgðt; xÞ þ ½1* HðxÞ(YðtÞ*vðxÞ: ð5:11Þ

We then define the functions f k for k ¼ 0; 1;y;N defined recursively as follows:

f 0ð0; x; xÞ ¼ f l0 on Tn ) Rn;

@t f 0 þ x &rx f
0 þ Vg &rx f

0 ¼ 0 in ½0; t1( ) Tn ) Rn;

(

ð5:12Þ

and then, for any kAf1;y;Ng;

f kðtk; x; xÞ ¼ HðxÞf k*1ðtk; x; xÞ on Tn ) Rn;

@t f k þ x &rx f
k þ Vg &rx f

k ¼ 0 in ½tk; tkþ1( ) Tn ) Rn:

(

ð5:13Þ

(We set tNþ1 :¼ T :) We now consider, as in Section 3, a continuous linear extension

operator %p from C0ðTn\ðHþ( * 2d; 2d½vÞ;RÞ to C0ðTn;RÞ; and which has the same
property that each Ca-regular function is continuously mapped to a Ca-regular
function, for any aA½0; 1(: Moreover, we manage again in order that for any

fAC0ðTn\ðH þ ð*2d; 2dÞvÞÞ; (3.19) occurs. From this operator, we deduce a new

one p :C0ð½Tn\ðHþ( * 2d; 2d½vÞ( ) RnÞ-C0ðTn ) RnÞ the same way as in Section 3,
and we fix cp correspondingly. Note that p depends on l because of (3.19). But the
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constant cp can be made independent from lAð0; 1Þ; because
Z

Tn)Rn
f l0 ðx; xÞ dx dx ¼ l2

Z

Tn)Rn
f 10 ðx; xÞ dx dx:

Finally, we introduce the operator P as in (4.9).
We now define the functions

Ṽl
e ½g( :¼

f 0 in ½0; t1( ) Tn ) Rn;

f k in (tk; tkþ1( ) Tn ) Rn; for kAf1;y;Ng;

(

ð5:14Þ

V l
e ½g( :¼ %fþPðṼl

e ½g(j½0;T ()½Tn\ðHþ½*2dþ2d(vÞ()RnÞ: ð5:15Þ

Again, Ṽ is not necessarily continuous. As previously, we define W to be the same

operator as Ṽ; but where we replaced H by 1, that is, W ½g( is transported by the flow
of ðx;VgÞ (this makes W ½g( continuous in QT ). In this section, we denote by ðXg;XgÞ
and ð %X; %XÞ the flows of ðx;VgÞ and ðx;V %fÞ ¼ ðx;YðtÞ*vÞ:

5.3. Regularity of Vl
e ½g(

We have that, except at times ti;

@tṼ½g( þ x &rxṼ½g( þ Vg &rxṼ½g( ¼ 0:

Consequently, the function Ṽl
e ½g( is given by the characteristic Eq. (2.4) during each

interval ½ti; tiþ1Þ: From the fact that LgABd1ðOT Þ; one deduces, together with (2.1),

(2.2), (2.4) and Lemma 1 that f 0 is of class C1ðQt1Þ:
Of course, it follows from the construction that f 0ðt1; &; &Þ coincides with f 1ðt1; &; &Þ

on Tn\ðH þ ½*3
2;

3
2(vÞ ) Rn: We have also that the support of Ṽ½g( in x stays bounded

in the direction v: This follows from (2.3), (5.2) and from the fact that Vg is uniformly

bounded for g in Sl
e : Hence, the function Ṽ½g( is of class C1 in the domain ½t1 *

a; t1 þ a( ) Tn\ðHþ( * 2d; 2d½vÞ ) Rn; for a certain a40:

By arguing similarly for times t2;y; tN ; we get that Ṽ½g( is of class C1 in the
domain ½0;T ( ) ½Tn\ðHþ( * 2d; 2d½vÞ( ) Rn; and hence, with (5.15) that

V l
e ½g(AC1ðQTÞ:

5.4. Finding a fixed point of Vl
e

Now our goal is to check that, for any e40 (small), there exists mðeÞ40 such that

for any positive lomðeÞ; the operator V l
e satisfies the assumptions for the Leray–

Schauder fixed point Theorem on the domain Sl
e : In order to avoid too heavy

notations, we will sometimes forget the indices and exponents e and l:
1. Again, S is a convex compact subset of C0ðQTÞ:
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2. The continuity of V can be proven in the same way as in Section 3. Consider a

sequence gi of S converging to gAS; for the C0 topology (we write gN ¼ g). Here,
we denote by ðXgi ;XgiÞ the characteristics corresponding to the flow of ðx;VgiÞ: As
for (3.27), we have

jjðXgi ;XgiÞ * ðXg;XgÞjjC0ð½0;T (2)Tn)RnÞpCjjVgi * VgjjC0ðOT Þ

pC0jjrfgi *rfgjjC0ðOT Þ;

where C depends only on %f: Then it follows from the construction that V ½gi(-V ½g(
for the C0 topology (first it converges pointwise in ½0;T ( ) ½Tn\ðH þ ð*2d; 2dÞvÞ( )
Rn; then, using again the compactness of Sl

e ; uniformly, and finally one uses the
construction of P).

3. Let us now verify the most problematic condition, viz. VðSl
e ÞCSl

e : We have to

check the three first points in the definition of Sl
e (the last one is again consequence

of the construction of P).
It follows from the same Gronwall’s inequality as (3.27) that for a constant C

depending on YðtÞ*v; one has

jjðXg;XgÞ * ð %X; %XÞjjB0ð½0;T (2)Tn)RnÞpCe;

where C does not depend on gAS: One can get a more precise inequality in the
following way (when it is not explicit, the norm considered is the LN one):

d

dtþ
jjrðXg;XgÞðt; s; x; xÞ *rð %X; %XÞðt; s; x; xÞjj

pjjrXgðt; s; x; xÞ *r %Xðt; s; x; xÞjj

þ jjrxVgðt;Xgðt; s; x; xÞÞrXgðt; s; x; xÞ *rxV %fðt; %Xðt; s; x; xÞÞr %Xðt; s; x; xÞjj;

where r stands either for rx or for rx: Now the last term is bounded as follows

jjrxVgðt;Xgðt; s; x; xÞÞrXgðt; s; x; xÞ *rxV %fðt; %Xðt; s; x; xÞÞr %Xðt; s; x; xÞjj

pAþ Bþ C;

with

A ¼ jjrxVgðt;Xgðt; s; x; xÞÞrXgðt; s; x; xÞ
*rxVgðt;Xgðt; s; x; xÞÞr %Xðt; s; x; xÞjj;

B ¼ jjrxVgðt;Xgðt; s; x; xÞÞr %Xðt; s; x; xÞ
*rxV %fðt;Xgðt; s; x; xÞÞr %Xðt; s; x; xÞjj;

C ¼ jjrxV %f ðt;Xgðt; s; x; xÞÞr %Xðt; s; x; xÞ
*rxV %f ðt; %Xðt; s; x; xÞÞr %Xðt; s; x; xÞjj:

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:
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Now

Ap jjrxVgjjB0ðOT ÞjjrXgðt; s; x; xÞ *r %Xðt; s; x; xÞjjB0ð½0;T (2)Tn)RnÞ;

Bp jjrxVg *rxV %fjjB0ðOT Þjjr %XjjB0ð½0;T (2)Tn)RnÞ;

C ¼ 0:

It follows then by Gronwall’s lemma that for a certain constant C; one has

jjðXg;XgÞ * ð %X; %XÞjjLNð½0;T (;B1ðTn)RnÞÞpCjjVg * V %fjjB0;1ðOT Þ

pCjjrfg *r %fjjB0;1ðOT Þ:

Hence, if e is small enough, then (5.7) is still valid when replacing ð %X; %XÞ by ðXg;XgÞ;
precisely: (c040 such that for any lAð0; mðeÞÞ; for any gASl

e ; one has

8ðx; yÞAðTnÞ2; 8tA½0;T (;

ðc0Þ*1jx* yjpjXgðt; 0; x; 0Þ * Xgðt; 0; y; 0Þjpc0jx* yj: ð5:16Þ

(Indeed, Vg is close to YðtÞ*v in C1-norm, which is not the case of rfgðt; xÞ:) From
now, we will systematically suppose ep1 small enough in order that (5.16) occurs.

We first check the points b and c and then we treat point a.

(b) In this point, we shall not use (5.1) but only (1.8) and the fact that f :¼ Ṽ½g( is
decreasing along characteristics. In the sequel, we omit in the writing the dependence
of the flow ðX ;XÞ on g: We have

j f ðt; x; xÞjpj f l0 ½ðX ;XÞð0; t; x; xÞ(jpjjð1þ jxjÞgf l0 jjLNð1þ jXð0; t; x; xÞjÞ*g:

Now we have

jx* Xð0; t; x; xÞjpT jjVgjjLNpCTðj *vjþ 1Þ: ð5:17Þ

Using (3.33) we get

jð1þ jxjÞgf ðt; x; xÞjpjjð1þ jxjÞgf l0 jjLN ½1þ CTðj*vjþ 1Þ(g:

Now using (5.15), we get the same estimate for V ½g( in QT : We choose c1 ¼
cp½1þ CTðj *vjþ 1Þ(g: Then the second condition in VðSÞCS is established.

(c) We use Lemma 1, and deduce that for any ðt; x; xÞ and ðt0; x0; x0Þ in Qt1 ;

j f 0ðt; x; xÞ * f 0ðt0; x0; x0ÞjpCð1þ jxjÞjðt; x; xÞ * ðt0; x0; x0Þjjj f l0 jjB1ðTn)RnÞ;
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and that

jj f 0ðt1; &; &ÞjjB1ðTn)RnÞpCjj f l0 jjB1ðTn)RnÞ;

where C does not depend on l (but depends on j). It follows from the construction
then that

jj f 1ðt1; &; &ÞjjB1ðTn)RnÞpcpCjj f l0 jjB1ðTn)RnÞ:

Iterating the procedure N times, we get that, for a constant C independent from l;
one has, for any i ¼ 0;y;N;

jj f iðti; &; &ÞjjB1ðTn)RnÞpCjj f l0 jjB1ðTn)RnÞ;

and moreover, when ðt; t0ÞA½ti; tiþ1(2;

j f ðt; x; xÞ * f ðt0; x0; x0ÞjpCð1þ jxjÞjðt; x; xÞ * ðt0; x0; x0Þjjj f l0 jjB1ðTn)RnÞ: ð5:18Þ

It remains only to consider t and t0 in different intervals ½ti; tiþ1(: But we know that
for any ðx; xÞ in the support of f ðt; &; &Þ; one has

jx & vjpM þ CTðj*vjþ 1Þ

(independently from lAð0; 1Þ thanks to (5.2)). This implies that fi and fiþ1 coincide

during some time interval ½ti * a; ti þ a( independent from g in Sl
e ; on the domain

ðTn\ðH þ ½*5
3d;

5
3d(vÞÞ ) Rn: This is sufficient to establish (5.18) for all times.

Now it remains only to interpolate (5.18) and point b to get point c. This fixes the

value of c2 only in terms of ð %f;jÞ:
(a) One has to check that for appropriate l;

jjLðV l
e ½g( * %f ÞjjCd1 ðOT Þpe: ð5:19Þ

In this point a, we will not use the fact that f0 is compactly supported in velocity in

direction v; but only points b and c, and the decreasing of Ṽ along characteristics. As
a consequence, the proof of that point will still be valid in the case treated in the next
section.

Let us treat the LN-norm before the Cd1 one. From (5.16), we deduce that
Xgðt; 0; &; 0Þ :Tn-Tn is invertible; call Xg

t its inverse, and define the function
Mg : ½0;T ( ) Tn-Rn by

Mðt; xÞ :¼ Xgðt; 0;Xg
t ðxÞ; 0Þ:

Let us prove the following statement: for some k40 independent from l; one has,
for any l and any gASl

e ;

8ðt; x; xÞA½0;T ( ) Tn ) Rn; jx*Mðt; xÞjpkjXgð0; t; x; xÞj: ð5:20Þ
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(i) It follows from x ¼ Xgðt; 0;Xg
t ðxÞ; 0Þ and Xg

t ðxÞ ¼ Xgð0; t; x;Mðt; xÞÞ; (5.16)
that

ðc0Þ*1jXgð0; t; x;Mðt; xÞÞ * Xgð0; t; x; xÞjpjx* Xgðt; 0;Xgð0; t; x; xÞ; 0Þj:

(ii) Besides, it follows from x ¼ Xgðt; 0;Xgð0; t; x; xÞ;Xð0; t; x; xÞÞ and Lemma 1
that

jx* Xgðt; 0;Xgð0; t; x; xÞ; 0ÞjpK jXgð0; t; x; xÞj:

(iii) From the two previous steps, we deduce that

jXgð0; t; x;Mðt; xÞÞ * Xgð0; t; x; xÞjpK 0jXgð0; t; x; xÞj:

Now by applying the ‘‘X part’’ of Lemma 1, we get

jx*Mðt; xÞj ¼ jXg½t; 0;Xgð0; t; x; xÞ;Xgð0; t; x; xÞ( * Xg½t; 0;Xg
t ðxÞ; 0(j

pC jXgð0; t; x; xÞ * Xg
t ðxÞjþ jXgð0; t; x; xÞj

( )

p kjXgð0; t; x; xÞj:

Hence we deduce (5.20). Now, one has

j f ðt; x; xÞjp j f l0 ½ðX
g;XgÞð0; t; x; xÞ(j

p l2*njj f0ð1þ jxjÞgjjLNðTn)RnÞ 1þ 1

l
jXgð0; t; x; xÞj

! "*g

:

Using (5.20), we get that

j f ðt; x; xÞjpl2*njj f0ð1þ jxjÞgjjLNðTn)RnÞ 1þ 1

kl
jx*Mðt; xÞj

! "*g

:

It follows that

Z

Rn
f ðt; x; xÞ dx

+

+

+

+

+

+

+

+

pl2*njj f0ð1þ jxjÞgjjLNðTn)RnÞ

Z

Rn
1þ 1

kl
jx*Mðt; xÞj

! "*g

dx:

We deduce that

Z

Rn
Ṽ½g(ðt; x; xÞ dx

+

+

+

+

+

+

+

+

pkl2*njj f0ð1þ jxjÞgjjLNðTn)RnÞk
nln:
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One deduces from the construction of V that

jjLðV ½g( * %f ÞjjLNðOT ÞpCl2*njj f0ð1þ jxjÞgjjLNðTn)RnÞl
npCð f0Þl2: ð5:21Þ

Now we turn to the Hölder estimate. It follows by interpolation between points b

and c, that for a certain constant C independent from l; and for *g ¼ nþg
2 and d ¼

g=ðgþ 1Þ one has

jV ½g( * %fj*gdpC½jj f l0 jjB1ðTn)RnÞ þ jjð1þ jxjÞgf l0 jjC0ðTn)RnÞ(:

We deduce that, for lp1 and another constant C (depending on f0 but not on l),

jjLðV l
e ½g( * %f ÞjjCdðOT ÞpCl1*n:

Now we interpolate again this inequality with (5.21). We get that for d1; one has

jjLðVl
e ½g( * %f ÞjjCd1 ðOT ÞpKl;

which concludes point a, for it is sufficient to find a proper l: This finally proves
VðSÞCS:

5.5. The final state

Using the previous section and the Leray–Schauder fixed point theorem, we hence

find a fixed point, say g%l;e of the operator V l
e in the domain Sl

e : It is now to show

that, for ðl; eÞ small enough, g% is a suitable solution, precisely that it satisfies (1.1)–
(1.5).

It follows directly from the construction that Eqs. (1.1)–(1.2) and (1.5) are
satisfied; in particular

@tg
% þ x &rxg

% þrfg% &rxg
%

¼ @t %fþ x &rx %fþrfg% &rx %f

þ @t þ x &rx þ Vg% &rx

h i

PðṼ½g%(Þ þ rxfg% * Vg%
h i

&rxPðṼ½g%(Þ;

which is supported in ½0;T ( ) o) Rn: Eq. (1.3) is satisfied provided that we suppose

that f0 satisfies f0 ¼ pð f0Þ or equivalently that it is of the form pðf̃0Þ; this is satisfied
for any final value of the control process of Section 6. We have to check (1.4). We use
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again Gronwall’s lemma: for any tA½0;T (;

jjð %X; %XÞðt; 0; x; xÞ * ðXg% ;Xg%Þðt; 0; x; xÞjjB0ðTn)RnÞ

pCjjV %f * Vg% jjB0ðOT Þe
T jjYðtÞ *vjjB0;1ðQT Þ

pKjjr %f*rfg% jjB0ðOT Þ; ð5:22Þ

for some constant K independent from e and l: We can estimate r %f*rfg% by

jjr %f*rfg% jjC0pCðjjLðg% * %f ÞjjLN þ jrl0jÞ: Now, if e is small enough, then one
gets for any ðt; x; xÞAQT

jjXg%ðt; 0; x; xÞ * %Xðt; 0; x; xÞjjo1
8d: ð5:23Þ

Now because of (5.1) and of (5.6), using Remark 7, one gets

%Xðti; 0; x; xÞAH þ ½*7
8d;

7
8d(v;

for any ðx; xÞAHi ) Rn with jx & vjpm: Reducing e and l again if necessary, we can
ask that lMpm: Using this scaling we see that each point in Hi at time 0

corresponding to a non-zero value of f l0 is transported in H þ ½*d; d(v at time ti; by

the flow ðXg% ;Xg%Þ:
At time ti; the construction makes f to be 0 in H þ ½*d; d(v: Hence it follows from

(5.4),(5.23) and (5.12)–(5.13) that one has

g%ðT ; &; &Þ ¼ 0 in ðTn\oÞ ) Rn: ð5:24Þ

This gives a solution to the problem of controllability when f0 is compactly
supported in velocity in direction v:

6. Theorem 2: the problem of high velocities (according to v)

In this section, we show how to ‘‘get rid’’ of particles at high velocity in the
direction v: Precisely, we find a control such that, starting from an arbitrary f0; the
corresponding solution of the Vlasov–Poisson system reaches a configuration which
satisfies

Suppð f ðT ; &; &ÞÞCTn ) fxARn=jx & vjpMg; ð6:1Þ

at time T ; for a certain M40: Then, the previous section proves that one can steer
any such configuration to 0, which completes the proof of Theorem 2.

As in the previous section, the proof relies on a special solution ð %f;jÞ: here it is the
trivial one:

ð %f;jÞ ¼ ð0; 0Þ:
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Again, we construct an operator V l
e :We show that this operator admits a fixed point

for appropriate ðe; lÞ (still chosen in ð0; 1Þ2). Finally, we show that the fixed point
that we find is relevant, that is, satisfies system (1.1)–(1.2) with (1.3) and (1.5), and

that its final value satisfies (6.1) (and is of the form pðf̃1Þ for a certain f̃1).

6.1. The operator Vl
e

As in the previous section, we first define the domain Sl
e of V l

e by (3.8) (where
%f ¼ 0), with the same constants d1 and d2 as in Section 5, and c1 and c2 to be

redefined. Again we suppose that lomðeÞ in order that Sea| and jrl0jpe:
We write T :¼ H þ f*dv; dvg (d is defined in Section 2.5). We introduce the

following subsets of T) Rn:

g* :¼ fðx; xÞAT) Rn=x & nðxÞo* 1g; ð6:2Þ

where n is the unit outward (that is, pointing outside o) normal on T

g2* :¼ fðx; xÞAT) Rn=x & nðxÞp* 3=2g; ð6:3Þ

g3* :¼ fðx; xÞAT) Rn=x & nðxÞp* 2g; ð6:4Þ

gþ :¼ fðx; xÞAT) Rn=x & nðxÞX0g: ð6:5Þ

Again, we observe that

distðT) Rn\g2*; g3*Þ40:

We introduce a CN-B1 regular function U from T) Rn to R the same way as
previously, by

0pUp1;

U + 1 in T) Rn\g2*;
U + 0 in g3*:

8

>

<

>

:

ð6:6Þ

The function U is again introduced by (3.15), and w by (3.18). We define p as in
Section 5; then the operator P is given by (3.22).

Now, given gASl
e ; we introduce f ¼ Ṽ½g( as the solution of the following system:

f ð0; x; xÞ ¼ f l0 on Tn ) Rn;

@t f þ x &rx f þrfg &rxf ¼ 0 in ½0;T ( ) ½ðTn ) RnÞ\g*(;

f ðt; x; xÞ ¼ U t
w

% &

þ U T*t
w

% &h i

f ðt*; x; xÞ

þ 1* U t
w

% &

* U T*t
w

% &h i

)Uðx; xÞf ðt*; x; xÞ on ½0;T ( ) g*:

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

ð6:7Þ
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(The meaning of this equation is the same one as in Section 3). Then, as for Section 3,
we define V ½g( by

V ½g( :¼Pð fjf½0;T ()½Tn\ðHþ(*2d;2d½vÞ()Rng,f½0;w=4()Tn)RngÞ

in ½0;T ( ) Tn ) Rn: ð6:8Þ
Again, fjf½0;T ()½Tn\ðHþ(*2d;2d½vÞ()Rng,f½0;w=4()Tn)Rng is C1 regular, and, together with the

construction of P; it will follow that V ½g( is in C1ð½0;T ( ) Tn ) RnÞ:
Finally, we note W the same operator as Ṽ without absorption, as in the previous

sections. In the sequel, the goal is to find a fixed point to V l
e ; for any e small enough,

provided l is chosen small enough in terms of e:

6.2. Finding a fixed point of Vl
e

The goal here is again to apply the Leray–Schauder Theorem. Let us check that its
assumptions are satisfied.

1. Sl
e is all the same a convex compact subset of C0ð½0;T ( ) Tn ) RnÞ:

2. Continuity of V l
e for the C0 topology: let gi be a sequence ofSl

e converging to g

for the C0 norm. Again, the sequence Lgi is bounded in some Hölder space, and one
gets

jjðXgi ;XgiÞ * ðXg;XgÞjjB0ð½0;T (2)Tn)RnÞ-0 as i-þN;

and one concludes as in Section 3.

3. Now we have to show that one has that V l
e ðSl

e ÞCSl
e for suitable lomðeÞ:

Again, the fourth point in the definition of Sl
e is guaranteed by the construction of

P: Let us check the three others. Again, we establish points b and c, before returning
to a.

(b) For the second condition in V l
e ðSl

e ÞCSl
e ; the proof is Section 5 is again valid,

since we did not take into account the compactness of the support of f0; nor the

particular form of V ; but only the decrease of Ṽ½g( along characteristics.
(c) Concerning Hölder estimates on V ½g(; we have the following lemma:

Lemma 4. One has Ṽ½g(AC1ðQT \STÞ; with ST :¼ fðt; x; xÞAQT=ðx; xÞAg*g: One has,
for any ðt; x; xÞ and ðt0; x0; x0Þ in ½0;T ( ) ½Tn\ðH þ ð*d; dÞvÞ( ) Rn satisfying

jx* x0jpd and jx* x0jp1;

jṼ½g(ðt; x; xÞ * Ṽ½g(ðt0; x0; x0Þj

pCð1þ jxjÞ½jj f l0 jjB1ðTn)RnÞ þ jjð1þ jxjÞgf l0 jjLNðTn)RnÞ(

) jðt; x; xÞ * ðt0; x0; x0Þj; ð6:9Þ

jṼ½g(ðt; x; xÞ * Ṽ½g(ðt; x0; x0Þj

pC½jj f l0 jjB1ðTn)RnÞ þ jjð1þ jxjÞgf l0 jjLNðTn)RnÞ(jðx; xÞ * ðx0; x0Þj: ð6:10Þ
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The proof of Lemma 4 is approximately the same as the one of Lemma 2 up to
minor changes; in particular, we can derive the same calculus to Eq. (3.45). Let us
just underline the changing point: here, the matrix of the transformation from
ðt1;y; tn*1; xÞ to ðt1;y; tn*1; nÞ is no longer bounded, but of order jxj: Since here
we have the estimate

j f ðt; x; xÞjpK jjð1þ jxjÞgf0jjLNðTn)RnÞ ð1þ jxjÞ*g;

we can estimate at each step B (see (3.46)) all the same by

jjBjjLNpK jjrðX ;XÞjjLN jjð1þ jxjÞgf0jjLNðTn)RnÞð1þ jxjÞ*gþ1;

or, when making use of (1.8), by

jjBjjLNpK jjrðX ;XÞjjLN jjð1þ jxjÞgþ2f0jjLNðTn)RnÞð1þ jxjÞ*g*1:

The lemma follows, with Remark 5 still true. (Remark that jx* x0jpd and
x; x0eH þ ð*d; dÞv imply that ½x; x0( does not cut H þ ð*d; dÞv:)

Again, it follows from the construction ofP that estimates (6.9) and (6.10) are also

valid for V instead of Ṽ; on the whole domain QT : Then we obtain again point c by
interpolation between (6.9) and b, that is

jjð1þ jxjÞgV ½g(jjLNðQT Þpc1½jj f l0 jjB1ðTn)RnÞ þ jjð1þ xÞgf l0 jjC0ðTn)RnÞ(:

We get the desired estimate in ½0;T ( ) ðTn\oÞ ) Rn: Using the construction of P; we
get that

jjV ½g(jjBd2 ðQT Þpc2½jj f l0 jjB1ðTn)RnÞ þ jjð1þ xÞgf l0 jjC0ðTn)RnÞ(:

(a) The last point is to prove that

jjLV ½g(jjCd1 ðOT Þpe: ð6:11Þ

The proof is exactly the same as its equivalent in Section 5, since we took care not to
use the compactness of the velocities in direction v at that time, but only points b and
c, and the following remark:

Remark 9. For some c40 (here c ¼ 1), one has

c*1jx* yjpjX 0ðt; 0; x; 0Þ * X 0ðt; 0; y; 0Þjpcjx* yj: ð6:12Þ

We now have to prove that a fixed point g% answers to the problem (at least for
ðe; lÞ small enough).
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6.3. The final state

From the construction, Eqs. (1.1)–(1.2),(1.3) and (1.5) are clearly satisfied by g%:
What we have to establish is (6.1) (at least for small e).

We begin with a remark.

Remark 10. One has the following property: there exists m40 such that

8xATn; 8xARn\f0g such that jx & vjXm;

(tAðT=4; 3T=4Þ; X 0ðt; 0; x; xÞAH þ ½*d=2; d=2(v: ð6:13Þ

Now we proceed as in Section 3: first, we show that property (6.13) is still true
when rfg is taken into account, at least if e is small enough and if we widen a little
the ‘‘strip’’ H þ ½*d=2; d=2(v: Then, we show that particles in H þ ½*3d=4; 3d=4(v; if
the v component of their velocity is large enough, have met g3* during the process,
which allows to conclude.

Step 1: The first step is again a consequence of Gronwall’s inequality (see (3.53)):

jjX %f * Xg% jjC0ð½0;T ()½0;T ()Tn)RnÞoc3e:

It follows that, for relevant e; we get

(M40;8xATn; 8xARn\f0g such that jx & vjXmþ 1;

(tAð0;TÞ; Xg%ðt; 0; x; xÞAH þ ½*3
4d;

3
4d(v: ð6:14Þ

Enlarging m if necessary, we can ask that jXg%ðt; 0; x; xÞ & vj is large too (using (2.3)).

Step 2: We introduce, for xAH þ ½*3
4d;

3
4d(v and xARn\ %H; PTðx; xÞ as the point in

T last met by xþ tx; with to0: We get similarly as in Section 3 that

8Z40; (M̃; 8tA½0; 3T=4(; 8xAH þ ½*3
4d;

3
4d(v;

8xARn

s:t: jx & vjXM̃; (t̃Að0; tÞ s:t: :

Xg%ðt̃; t; x; xÞAT; jXg%ðt̃; t; x; xÞ * PTðx; xÞjoZ; and

8sA½t̃; t(; jXg%ðs; t; x; xÞ * xjoZ: ð6:15Þ

Indeed, (3.57) is still true here. But for jx & vj large enough, one has, for a certain sot
with js* tjoZ; that dðxþ ðs* tÞx;HÞX3d: Consequently, if e is small enough, one

has dðXg%ðs; t; x; xÞ;HÞX2d: Hence, one gets again the existence of t̃: Finally, we get

jXg%ðt̃; t; x; xÞ * PTðx; xÞjoZ and the estimate on X from (3.57), enlarging again M̃
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if necessary. Consequently, using again (3.57), one gets that

(M 040; 8xATn; 8xARn\f0g such that jx & vjXM 0; (tAð0; 3T=4Þ;

ðXg% ;Xg%Þðt; 0; x; xÞAg3*: ð6:16Þ

It follows then that for jx & vj large enough, one gets

f ðT ; &; xÞ ¼ 0 in Tn:

6.4. Uniqueness

Concerning uniqueness in both Sections 5 and 6, we refer to Section 3.5. This ends
the proof of Theorem 2.
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Appendix A

A.1. Proof of Proposition 1

Let us first construct the function j and then show that it is convenient.

Given ðx0; r0ÞAT2 ) ð0; 1Þ; we remark that there exist only a finite number of
directions vAS such that there exists a half-line in the torus with this direction, say
fSðxþ tvÞ; tARþg; that does not cut Bðx0; r0=4Þ: Indeed, consider vAS; not
horizontal nor vertical (there are only four such vectors in S). Then, either v
corresponds to an irrational line (that is, the ratio of its coordinates is irrational),

then the corresponding half-line is dense in T2 and meets Bðx0; r0=4Þ: Either it is
rational, say v is proportional to ðp; qÞ with pAZ! and qAN! coprime integers. Then
the trajectory Sðxþ tvÞ is periodic and hence fSðxþ tvÞ; tARþg ¼ fSðxþ
tvÞ; tARg ¼: L: When pulling up this straight line to R2 by the canonical surjection,

we get a countable quantity of parallel straight lines in R2: Then one has

the distance between two parallel lines is inferior to min
1

jpj;
1

q

! "

: ðA:1Þ

Indeed, when ðx; yÞ belongs to one of these lines, ðxþ ðkpþ k0qÞ=q; yþ ðkpþ
k0qÞ=pÞ belongs also to it, for any ðk; k0ÞAZ2; and then ðxþ kp=q; yþ k0q=pÞ belongs
to another line in S*1ðLÞ: Then by Bézout’s Theorem, ðxþ 1=q; yÞ and ðx; yþ 1=pÞ
belong to other lines in S*1ðLÞ: This gives (A.1).
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When minð 1
jpj;

1
qÞor0=4; (A.1) implies that the half-line in the torus must meet the

ball Bðx0; r0=4Þ; of course, there are only a finite number of ðp; qÞ satisfying

minð 1
jpj;

1
qÞXr0=4: Let us remark that these v are symmetric in S (if v corresponds to

an irrational line, xþ Rþv is already dense, and if v corresponds to a rational line the
curve is periodic).

Call v1;y; vN these points in S (corresponding to a rational slope) for which there
exists a half-line of direction vi; which does not meet Bðx0; r0=4Þ: Then, for each i in

1;y;N; one can approximate x/v>i in T2\½Bðx0; r010Þ þ Rvi(—note that this set

cannot be empty—for the C1 norm, by the gradient of a harmonic function:

Lemma A.1. For any iAf1;y;Ng; for all e40; there exists yiACNðT2;RÞ such that

Dyi ¼ 0 in T2\B x0;
r0
10

% &

; ðA:2Þ

jjryiðxÞ * v>i jj
C1ðT2\½Bðx0;

r0
10ÞþRvi (Þ

pe: ðA:3Þ

This lemma follows from a harmonic approximation result of Bagby and Blanchet
(see [1, Theorem 9.2]), which is close to Runge’s Theorem of rational approximation
for holomorphic functions:

Theorem A.1 (Bagby-Blanchet). Let F be a closed subset of an orientable compact
Riemannian manifold O; and U an open subset of O\F : Suppose that U meets every
connected component of O\F : For f harmonic in a neighborhood of F and e40; there is
a Newtonian function u on O; which poles all lie in U ; and such that

sup
F

ju* f joe:

In the previous theorem, a Newtonian function u is a function harmonic
everywhere but on its poles, and such that, for p one of its poles, there exists cAR
and a regular neighborhood R of p; such that u* cGRð&; pÞ—where GRð&; &Þ is the
Green function defined in R—is regularly defined and harmonic in R:

When regularizing u in U ; we get a function harmonic in O\U ; regular on O:
In our case, on T2\ðBðx0; r020Þ þ RviÞ; the vector field v>i can easily be seen as the

gradient of a harmonic function. It follows then that it can be approximated, in C0

norm, on the domain T2\½Bðx0; r020Þ þ Rvi(; by the gradient a of function harmonic

everywhere but in Bðx0; r0=20Þ: Then the C0 convergence determines the Ck

convergence in smaller sets for harmonic functions.

Once constructed the yi (we will fix e later), we can describe the shape of j:We put
ti ¼ T

4 þ
iT

2ðNþ1Þ for iAf0;y; 4ðN þ 1Þg=4: We introduce a function ZACN
0 ð(0; 1½Þ

such that
ZX0;
R

½0;1( Z ¼ 1:

(
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Then j is defined as

jðt; xÞ ¼ A

n
Z

t* t
iþ1

4

n

 !

yiðxÞ in ½t
iþ1

4
; t

iþ1
2
( ) T2;

j + 0 elsewhere in ½0;T ( ) T2;

8

>

>

<

>

>

:

ðA:4Þ

where n and A are fixed in order to satisfy noT=8ðN þ 1Þ and A4½12ðN þ 1Þ=T ( þ
1: Hence, these constants depend only on o and T :

Now we have to show that this j is convenient. Call ðX ;XÞ the characteristics for
j: The only delicate point is to prove (3.4). We make a discussion according to the
direction of x:

If x
jxjeS\fv1;y; vNg; then there exists m ¼ mðx=jxjÞ such that if jxjXmðx=jxjÞ then

for any xAT2; xþ tx cuts Bðx0; r0=4Þ for a certain tA½t0; t1( (as seen by using a simple

compactness argument). Now let us suppose that x
jxj is close to vi: We are then

interested to what happens during the interval ½ti; tiþ1(:
Let us prove that for any x such that x=jxj is in a neighborhood of vi in S and jxj is

large enough, then for any xAT2; X ðt; 0; x; xÞ meets Bðx0; r0=4Þ during the interval
½ti; tiþ1(: This is done in three steps.

(a) The first point is to observe that for any tA½ti; tiþ3
4
( and any xABðx0; r0=5Þ þ

Rvi; there exists sA½t; tiþ1( such that Xðs; t; x; xÞABðx0; r0=4Þ; at least if jxj is large
enough, and x=jxj belongs to a neighborhood V1 of vi in S: Indeed, for x=jxj in a

neighborhood V1 of vi; if xABðx0; r0=5Þ þ Rvi then xþ tx cuts Bðx0; r0= 9
40Þ for

toC=jxj: It follows then from

jXðs; t; x; xÞ * x* ðs* tÞxjpCðjÞjs* tj;
jXðs; t; x; xÞ * xjpCðjÞjs* tj;

(

ðA:5Þ

that for jxj large (say jxjXm1), Xðs; t; x; xÞ meets Bðx0; r0=4Þ for some sA½ti; tiþ1(:
(b) The second point consists in proving that for a ðx; xÞ with xAT2; jxjXm2 and

x=jxj in a neighborhood V2 of vi in S; there exists tA½ti; tiþ3
4
( such that

Xðt; ti; x; xÞABðx0; r0=5Þ þ Rvi: We discuss according to Pv>i
ðxÞ; where Pv>i

is the

linear orthogonal projection on the direction v>i : If jPv>i
ðxÞjX6ðN þ 1Þ=T then

during ½ti; tiþ1
4
(; Xðt; ti; x; xÞ ¼ xþ ðt* tiÞx meets Bðx0; r0=5Þ þ Rvi:

If jPv>i
ðxÞjo6ðN þ 1Þ=T ; suppose that Xðt; ti; x; xÞ does not meet Bðx0; r0=5Þ þ

Rvi during ½t
iþ1

4
; t

iþ1
2
(: Then

jjrjðt;X ðt; ti;x; xÞÞ * A
nZð

t*t
iþ
1
4

n Þv>i jjpAe=n:

If e is small enough in order that Aeo1; then in that case one has

jPv>i
ðXðt

iþ1
2
; ti; x; xÞÞjX6ðN þ 1Þ=T ;
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and then for some t in the time interval ½t
iþ1

2
; t

iþ3
4
( one has Xðt; ti; x; xÞABðx0; r0=5Þ þ

Rvi:
Moreover, by (A.5), if V2 is small enough and m2 is large enough, then for any

xAT2 and any xAR2 satisfying x=jxjAV2 and jxjXm2; then one has
jXðt; ti; x; xÞjXm1 and Xðt; ti; x; xÞ=jXðt; ti; x; xÞjAV1 at the time t when the particle
belongs to the domain Bðx0; r0=5Þ þ Rvi:

(c) The last step is to prove that for some neighborhood V3 of vi in S and

some m340; if jxjXm3 and x=jxjAV3; then for any x in T2; Xðti; 0; x; xÞ=j
Xðti; 0;x; xÞjAV2; with jXðti; 0; x; xÞjXm2: This follows again from

Xðt; s; x; xÞ * x ¼
Z t

s

rjðt;Xðt; s; x; xÞÞ dt:

So m3 and V3 can easily be found in terms of m2; V2 and j:
Now, using the compactness of S; one gets easily (3.4).

A.2. Proof of Lemma 3

The proof is close to [11, Proposition 1]. Let D be a horizontal line in T2 that does

not cut O; and D> be a vertical line in T2 that does not cut O (reduce O if this is not

possible). To prove Lemma 3, it suffices to find vACNðT2;R2Þ satisfying:

curl v ¼ 0 in T2\O; ðA:6Þ

div v ¼ 0 in T2\O; ðA:7Þ

jvðxÞj40 for any x in T2\O; ðA:8Þ
Z

D

v & n dx ¼
Z

D

v & dt ¼ 0; ðA:9Þ

where n stands for one of the two normal continuous unit vectors on D; and t for one
of the two tangent continuous unit vectors on D: Indeed, let us suppose that we have

found such a v: Denote rj the rotation of center 0 and angle j in R2: Then it follows

from (A.9) that for any j; Z

D

rjðvÞ & dt ¼ 0; ðA:10Þ

and it follows from (A.6) and (A.7) that rjðvÞ still satisfies (A.6) and (A.7). Then for

a certain jA½0; p(; one has also Z

D>
rjðvÞ & dt ¼ 0; ðA:11Þ

But a rjðvÞ satisfying (A.6), (A.7),(A.10) and (A.11) is certainly of the form ry in

T2\O: We extend it arbitrarily in O; then y satisfies the conclusions of Lemma 3.

From now, we look for v satisfying (A.6)–(A.9). The central point is that if v ¼
ðv1; v2Þ satisfies (A.6)–(A.7), then f ¼ v1 * iv2 is a holomorphic function in T2\O;
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and conversely. By the way, v satisfies (A.9) if and only if the corresponding f
satisfies

Z

D

fðzÞ dz ¼ 0: ðA:12Þ

So we have left to find a holomorphic function f defined on T2\O; satisfying (A.12)

and fðxÞa0 for any x in T2\O: For that, we introduce two nonempty open intervals

I1 and I2 in D; with disjoints closures, and a function hACNðD;R2Þ satisfying

jjhðxÞjjX1 on D; ðA:13Þ

IndDðhÞ ¼ 0; ðA:14Þ

h + t on I1; ðA:15Þ

h + n on I2; ðA:16Þ
Z

D

h & n dx ¼
Z

D

h & dt ¼ 0: ðA:17Þ

It is elementary to construct such a h: Now we use the following fact: given

h̃ACNðD;R2Þ; for any e40; there exists fAHðVðDÞÞ (where VðDÞ is a
neighborhood of D) such that

f * h̃
+

+

+

+

+

+

+

+

0
pe:

Indeed, it follows from Dirichlet’s Theorem for Fourier series, that for some
constants cn; one has

h̃ðxÞ *
X

N

i¼*N

cie
2ipx

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

LNðDÞ

pe:

Hence, z/
PN

i¼*N cie
2ipz; defined in a neighborhood of D; is relevant (for instance,

let us agree that D is given by the equation y ¼ 0). Then it follows from the variant

Theorem 3 of Runge’s Theorem, that for a certain #fAHðT2\OÞ one has

jj #f* h̃jj0p2e:

So h̃ can be approximated on D in C0 norm by the restriction of a holomorphic

function of T2\O:
The idea it to apply this remark to h̃ :¼ log h (for a certain eAð0; 1=2Þ small

enough), which is well defined thanks to (A.13) and to (A.14). We obtain this way a

fe: Then e fe is relevant, except that it does not necessarily satisfy (A.12) exactly;
however this integral satisfies

Z

D

e feðzÞdz
+

+

+

+

+

+

+

+

pKe: ðA:18Þ
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To ensure that we have this integral exactly nil, we introduce two regular functions
w1 and w2 from D to C in the following way: for iAf1; 2g;

ImðwiÞ ¼ 0 on D; ðA:19Þ

ReðwiÞ ¼ 0 on D\Ii; ðA:20Þ

ReðwiÞX0 on D; ðA:21Þ

Z

D

ReðwiÞ ¼ 1: ðA:22Þ

We approximate w1 and w2 by the restriction of a holomorphic function of T2\O in

C0-norm, with error at most e0; obtaining this way W e0
1 and W e0

2 : Then, by
considering

Fðl; mÞ :¼ e feelW
e0
1 emW

e0
2 ;

for suitable l and m in ½*4ðK þ 1Þe; 4ðK þ 1Þe( (K introduced in (A.18)), we will be
able to get (A.12). Indeed, we have

Re
R

DðF* e feÞ dz
( )

Xð1* eÞl* Ce0; for lX0;

Re
R

DðF* e feÞ dz
( )pð1* eÞl2 * Ce0; for lp0;

Im
R

DðF* e feÞ dz
( )

Xð1* eÞm* Ce0 for mX0;

Im
R

DðF* e feÞ dz
( )

pð1* eÞm2 * Ce0 for mp0:

8

>

>

>

>

<

>

>

>

>

:

ðA:23Þ

From now, we take eo1=2 and e0 :¼ e
10C: Then we consider the application:

H :
R2-R2;

ðl; mÞ/ Reð
R

D FðzÞdzÞ;Imð
R

D FðzÞdzÞ
( )

:

(

We endow R2 with the norm jjðx1; x2Þjj :¼ maxðjx1j; jx2jÞ: If we restrict the
application H to the sphere (in fact, the square) with center 0 and radius
4ðK þ 1Þe; say Sð0; 4ðK þ 1ÞeÞ (denote by Bð0; 4ðK þ 1ÞeÞ the corresponding ball),
then from (A.23), we deduce that 0 is not reached. So we can define

H0 :

Sð0; 4ðK þ 1ÞeÞ-Sð0; 4ðK þ 1ÞeÞ;

ðl; mÞ/4ðK þ 1Þe HðlÞ
jjHðlÞjj

:

8

>

<

>

:

ARTICLE IN PRESS
O. Glass / J. Differential Equations 195 (2003) 332–379378



This application has a non-null degree (for instance, by (A.23), no point is sent to its
antipodal point). Hence,

(%lABð0; 4ðK þ 1ÞeÞ such that Hð%lÞ ¼ 0:

Finally, one finds a solution of the system.
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