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Abstract

In this paper, we study the controllability of the Vlasov—Poisson system in a periodic
domain, by means of an interior control located in an spatial subdomain.

The first result proves the local exact zero controllability in the two-dimensional torus
between two small acceptable distribution functions, with an arbitrary control zone.

A second result establishes the global exact controllability in arbitrary dimension, provided
the control zone satisfies the condition that it contains a hyperplane of the torus.
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1. Introduction

In this paper, we study the exact controllability problem for the Vlasov—Poisson
equation in the n-dimensional torus T” := R"/Z". The Vlasov—Poisson system reads,
for two functions f = f(z,x, &) and ¢ = ¢(¢, x):

O f +E-Vof+ Vi -Vef = Glt,x,8), for (5,x,8)e0,T] x T" x R",  (L.1)
_A¢(z, = fww F0,x,8) dxdé — [ f(t,x,8)dé = py — [ f(t,x,&) dE, (1.2)
S (6, x)dx =0 '
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Here 7 is the dimension; the variables are the time 7, the position x and the velocity &.
The unknown functions are the distribution of particles f and the potential ¢. The
symbols V. and V¢ stand, respectively, for the gradient with respect to x and to ¢.
The term p, stands for a constant neutralizing density, equal to fwxw fji=o- Finally,
G is a source term, used as a control in our problem.

The problem of exact controllability is the following: consider an arbitrary non-
empty regular open set @ in T”, and fix 7>0. Now consider two ‘‘reasonable”
distributions fy and f;. Is it possible to steer fy to fi when following (1.1)—(1.2)
between times 0 and T, by choosing a relevant function G = G(¢, x, £) whose support
according to the variable x is localized in w? Precisely, does there exist a solution of
(1.1)~(1.2), satisfying

f(0,x,8) =fo(x,&) in T" x R", (1.3)
S(T,x,8) =fi(x, ) in T" xR, (1.4)

and
G=0 in [0,7] x [T"w] x R". (L.5)

We answer this question in the affirmative in two cases. The first case concerns
n =2 and requires fy and f; to be small enough. The second one is valid in any
dimension, and does not require fy and f; to be small, but assumes that w contains
the image of a hyperplane of R" by the canonical surjection (which we call a
hyperplane of the torus). Precisely, we show the following results:

Theorem 1. Set n = 2. Consider y>2 and «,k' =0. Let fy and fi be two functions in
CH(T? x R)nWh*(T? x R?), satisfying the condition that for any (x,¢)eT? x R?
and i€{0, 1},

{|ﬁ<x,é>|<x<1+|¢>—"*"% (1.6)

IV fil + Ve fil </ (14 1E) 77,

and

Joiwh™ e )

Assume also that k and ' are small enough (in relation to w and T). Then there exists
GeC'([0, T] x T* x R?) satisfying (1.5), such that the solution of (1.1)~(1.2) and (1.3)
exists, is unique, and satisfies (1.4).

Theorem 2. Set n=2. Consider y>n and k, k' =0. Suppose that the regular open set »
contains the image of a hyperplane in R" by the canonical surjection. Let fy and f
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be two functions in C'(T" x R"), satisfying the conditions

{ | fi(x, )<l + &) 772, (1.8)

IVafil + [Vefil </ (T4 [E) 7,

and (1.7). Then there exists Ge C°([0, T] x T" x R") satisfying (1.5), such that the
solution of (1.1)~(1.2) and (1.3) exists, is unique, and satisfies (1.4).

Remark 1. Note that, because of the necessary global neutrality in the torus, one
cannot ask for G to be non-negative. On the contrary, it has to satisfy that for any
tel0, 7],

/ G(t,x, &) dé =0
T"xR"

Remark 2. In general, the function fy and f; are non-negative. We do not need it for
Theorems 1 and 2. However, the solution " is also usually asked to be non-negative,
which Theorems 1 and 2 do not ensure. But as will be clear during the proofs, one
has

Jo./i=0 = Viel0,T], f(£,x,£)=0 in (T"®) x R",

for some open set @& satisfying @< w, the non-negativeness being probably not
satisfied inside @.

To be more consistent with the model, one can replace the source by the sum of
two sources, corresponding to different species of particles (one of them never
leaving m), of opposite charge. Consider indeed f*, supported in (0,7) x o x R”,
non-negative, with the same type of regularity as f, and such that f + f*>0. Then
f# =f+f7 satisfies (1.1) with source

G* =G+ (Of " +&-Vif "+ V- Vef), (1.9)
and 7 satisfies (1.1) with source
G =0 " +& VifT+ Vi Ve fT, (1.10)
the corresponding potential being fixed by
-84 =po = [ SHexDdE+ [ F0x D
(One can even put a different mass for the new type of particle by putting a relevant

multiplicative coefficient before V¢ - V: £ in (1.10).) In this setting, both f# and f*
are non-negative.
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Remark 3. It is approximately equivalent to state that the control is given by the two
following data:

® the value of the potential ¢ on [0, 7] x dw,

® the (non-negative) value of f(¢,x,¢) at the points (z,x,&) of [0, 7] x dw x R"
where ¢ enters inside T"\w, i.e. satisfies £ - v(x) >0, if v is the unit outward normal
on Jw.

Remark 4. In fact, if we do not require uniqueness for the solution, one can replace
(1.6) or (1.8) by

pﬂxéKﬂ%Hwﬂy (1.11)

IVafil + Ve fil <7,
in both cases. By the way, only the smallness of (&, ') is required in Theorem 1.

The equivalent problem for the Euler system of incompressible inviscid fluids has
been studied by Coron and the author (see [6,7,9,10]). The controllability of the
Vlasov—Poisson equation shares certain properties with the Euler one. This is not so
surprising, since the Vlasov—Poisson system has in some way a comparable structure
with the Euler equation, and is even known to converge to it in a certain sense (see in
particular [4]).

One of the major problems for the controllability of this system is that, as
for the Euler equation, the linearized equation is not controllable in general.
For instance, consider the linearized equation around the solution given by

f=d=0
Of +&-Vif =G, (1.12)

This equation, which describes the free transport of particles, is not controllable
unless » = T" (take fo(x,0)#/1(x,0) for some xe T"\w).

As for the Euler system, the main idea is to use the “return method” introduced by
Coron (originally concerning a finite-dimensional stabilization problem, see [5]).
This method has also been used by Coron to establish an approximate controllability
result for the 2-D Navier—Stokes equations, see [8], and by Horsin to prove a
controllability result for the Burgers equation, see [12]. The principle is to find a
solution ( f, @) of the non-linear problem, which starts from 0 and goes back to 0 at
time 7', and around which the linearized equation is actually controllable. Then one
looks for a solution of the non-linear problem “close” to (£, ¢). In this paper, when
writing “‘start from 0" or ““go to 07, we will often refer to a configuration 0 except in
the control zone . Indeed, the distribution function f'(¢, -, -) has a constant weight in
our problem.

To use this method here, we will have to distinguish the high velocities from the
low ones. The treatment of each one is given in separated sections. To simplify the
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notations, we call 7" the time assigned for each part of the control process (instead of,
for instance, 7'/2 or T'/3).

The corresponding Cauchy problem (for strong solutions) has been solved in 2-D
by Ukai-Okabe [17], and in 3-D by Lions-Perthame [14], Pfaffelmoser [15] and
Schaeffer [16] (see also [2] in the periodic case). The construction of solutions to the
non-linear problem that we use here is essentially the one of Ukai and Okabe but
simplified because essentially the local in time existence is sufficient to our use, since,
if one can control the system in any time, one can steer the configuration to a stable
one (0 for example) before any possible blow up. Remark in particular that Theorem
2 guarantees the existence in the large of classical controlled solutions for n>4,
which is not necessarily the case for the uncontrolled one (see e.g. [13]).

In the next section, we give some notations and expose the principal tools for the
construction of a solution of the non-linear problem. Sections 3 and 4 prove
Theorem 1, and Sections 5 and 6 prove Theorem 2. Precisely, Section 3 is devoted to
the treatment of the high velocities of fy and f1. Then Section 4 gives an exposition of
the treatment of “‘small” velocities (precisely, it studies the case when fy and f; have
compact support in &), which allows to finish the proof of Theorem 1. Section 5 deals
with the case corresponding to fy and f; with bounded velocities in the direction of
the normal to the hyperplane in w. Section 6 shows how to restrict to the case of
Section 5, which finishes the proof of Theorem 2. Finally, the appendix in Section 7
gives the proofs of some lemmas, useful to construct the solution ( f, @).

2. Notations and machinery
2.1. Notations

We will generally agree with [17] on the notations. For 7>0, we denote Qr =
[0,7] x T" x R", and Q7 = [0, T] x T". For a domain Q, we write also B/(Q), for
leN, for the set C'(Q)n W"*(Q). All the same, B"*?(Q) for g€ (0, 1) stands for the
set of C! functions with uniformly o-Holder /-th derivatives. Also, B**7 (Qr) (resp.
B (Qr)), for IeN, 6,0’ €[0, 1) is the set of continuous functions in Q7 (resp. Q7),
which are C’ with respect to x (resp. to (x,¢)), and which /-th derivatives are all C”
with respect to # and C° with respect to x (resp. to (x, &)).

For xin T" and r>0, we denote by B(x, r) the open ball with center x and radius r,
and by S(x,r) the corresponding sphere. The radii will always be chosen small
enough in order that S(x,r) does not intersect itself (that is r<1/2 in the standard
torus). Let us agree to call v(x) the outward unit normal vector on this sphere when
there is no ambiguity. We will precise it by a subscript when we consider the ball in
the whole space R”. The unit zero-centered sphere in R” is also denoted by S. We will
denote the canonical surjection R”—T" by &.

Finally, we will denote by A the operator gi— .. g(£) d¢, which maps a function
in variable (x, &) to a function in variable x. For the sake of simplicity and without
losing generality, we suppose that T” is of measure 1.
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2.2. Characteristic equation

It is well known that, the function ¢ being fixed, solving (1.1) and (1.3) reduces to
solve the characteristic equation

d(x E
E(s) - <v¢(:,x)>’ @1

X X
() () &

Let us denote by (X (¢,s,x,&),E(t,s,x,&)) the solution of (2.1) at time ¢ with initial
conditions (2.2) at time s. One gets

with the initial condition

{ X(t,8,x,8) =x+ [ E(r,5,x,¢) dr, (23)

2(t,5,x,8) =&+ f:Vqﬁ(X(r,s, x, &) dr.

Then the classical solution of (1.1) and (1.3) is given by

f(t,x,8) = fo(X(0,2,x,8),2(0, 1, x,&)) +/0 G(s, X(s,2,x,8),E(s,t,x,8))ds. (2.4)

Let us recall that, the vector field (&, V¢(x)) being divergence-free with respect to
(x, &), this flow preserves measure. In the sequel, it may be useful to precise which
field V¢ generates the flow: when necessary, we will precise this by an exponent.

2.3. A lemma for the characteristic equation

Here, we state a Gronwall-type result. In the spirit of Lemma [17, Lemma 5.2], we
prove the following lemma:

Lemma 1. Fix 6¢(0,1). For pe B*(Qr) such that
/ p(t,x)dx =0 for all te]0,T],

there exists c(||p|| gos) such that, if (X, E) are the characteristics corresponding to the
potential ¢ given by

(2.5)

—A¢(1,x) = p,
[r b8, x) dx = 0,



338 O. Glass | J. Differential Equations 195 (2003) 332-379
then one has: for any (t,s,x,&) and (.5, x',&') in [0, T)* x T" x R" with | — &'|<1,
(X, B)(t,5,x, &) — (X, E)(1, 5, x', &)
<c(llpllpa) (L + 1EDI(E 5, x,8) = (5,5, &), (2.6)
and moreover

(X, E)(t,8,x,8) = (X, E) (1,5, X, )| <c(l[pll o) |(x, &) = (¥, ). (27)

Proof of Lemma 1. We follow [17, Lemma 5.2]. It is sufficient to study the case when
x=x,¢=¢ and s =, the case when s =& and ¢ = ¢ and the case when x = X/,
E=¢andt="1.

(i) The first case follows from

X (1,8,%,8) = X (£, 5,x, Q< |t = 7|(|&] + TV ),

12(8,8,x,&) — E(¢,5,x,8)|<|t — £| x ||[VP”|

L* <QT) )

and from usual elliptic estimates.
(i1) The second one is a consequence of Gronwall’s inequality. Indeed, one has

|Z(¢,5,x,8) — E(t,5,x,&)]
t
< |§ - é/l + C||V2¢p||L”/(QT) / |X(T7Sa X, 6) - X(‘E,S, xl7 é/)| dTa

and

|X(t, s, X, f) - X(l, S, x/7 6/)|
t
Sx =X+ TE=¢E|+ CT||V2¢p||L%(QT)/ X (t,5,x,&) — X (1,5,X, &) dr,
S

for which Gronwall’s inequality gives first the X part (again with elliptic estimates),
then the = one, of (2.7).
(ii1) The third case follows from
(X,5)(t,s,x,8) — (X,5)(¢,5,x, &)
= (X7 E)(t7 S7 X, é) - (X7 E)(t7 S7 X(Sa S/7 X, 6)7 E(S7 S/, X, é))?

and from the two previous cases.
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2.4. A remark concerning the scaling of the system
Let us first remark that system (1.1)—(1.2) is invariant by some change of scale,

precisely, when f" is a solution of (1.1)—(1.2) in [0, 7] x T" x R", then for 1#0, the
function

S, 8) = 1A (2, %, E/4), (28)

is still a solution of (1.1)—(1.2), in [0, T/4] x T" x R" for the following potential:
(1, x) = 2P (A1, x). (2.9)
Hence, using (2.8) with 4 = —1, we see that it is sufficient, in order to prove

Theorems 1 and 2, to restrict to the case where f; = 0 in [T"\w] x R". Indeed, treat
the cases:

® f; as initial value and 0 (in (T"\w) x R") as the final one,
® (x, &) fi(x,—¢&) as initial value and again 0 as the final one,

each in time 7'/3. We obtain two functions fo and f'l. Now consider the function f
partially defined in Q7 by

Ft,x,8) = fo(t,x, &), in [0,T/3] x T" x R,

f(t,x,8) =0, in[T/3,2T/3] x [T"\w] x R",

A~ A~

[, x,8) =f1(T —t,x,=¢) in 2T/3,T] x T" x R".

Then “fill” regularly f inside [7/3,27/3] x w x R", taking care to preserve for any
the value of fTI”xR”f(t’ x, &) dx dé. Then you get a relevant solution f. From now, we
consider hence that f; =0 (in (T"\w) x R", of course).

Let us remark also that if we can solve the controllability problem with initial data
F3(x, &) = 27 "fo(x, €/2), for 2€(0,1), then we can solve the problem with initial
data f (in smaller time).

2.5. Notations for Theorem 2

In Sections 5 and 6, the control zone w is supposed to contain a hyperplane H in
the torus, that is, the image by the canonical surjection & of an Euclidean
hyperplane # of R". Now, up to a translation, J# is a subgroup of R”, and there are

two cases for # + 7":

® cither # + 7" = R" and in that case, H is dense in T". Then, as w is a regular
open set, this implies @ = T". In that case, the problem is trivial since a “‘straight
line” between f and f] is a suitable solution of (1.1). From now, we suppose that
we are in the following opposite case;
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® or, # + Z" is a strict closed subgroup of R" (up to a translation). Then, see for
instance Bourbaki [3, VII, Corollary 1], # + Z" is composed of countably many
parallel hyperplanes, whose intersection with any complementary linear subspace
is a discrete group. For dimension reasons, see [3, VII, Corollary 1], such a
discrete group is of the form Zi. This implies that # + 7" is of the form # + Zi.

We call v a unit vector, orthogonal to s#. By the previous argument, we can define
deR"™ such that H + [-2d,2dJvcw and such that 2d is less than the distance
between two different hyperplanes in %~ !(H). We denote by H the linear vector
space corresponding to the directions of .

It may happen that in Sections 3 and 4, we conserve the notation n for the
dimension (instead of 2), for objects useful in next sections.

3. Theorem 1: the problem of high velocities

In this section, we study the way to ““suppress’ the particles at high velocity, viz. to
find a control such that, starting from an arbitrary f, the corresponding solution of
the Vlasov—Poisson system reaches a configuration with compact support in £ at time
T. Then, Section 4 shows how to reach exactly 0, which as we explained is sufficient
to establish the general case.

The proof relies on a special solution (f,¢) that we describe in the following
paragraph. Then, we construct an operator V;, using this function (£, ¢). We show
that this operator admits a fixed point for appropriate ¢. Finally, we will show that,
for ¢ small enough, the fixed point that we found is relevant, that is, satisfies system
(1.1)—~(1.2) with (1.3) and (1.5), and actually “treats” the high velocities, in the sense
that

f(T,-,-) is compactly supported. (3.1)

During the proof of the existence of solutions in Theorem 1, we will use only
(1.11)—see Remark 4. In Section 3.5, we use the stronger assumption (1.6) to get
uniqueness.

3.1. The function f

We have the following proposition:

Proposition 1. Given xo in T>, and ry a small positive number, there exist
peC*(Qr;R) and meR™ such that

Ap =0 in[0,T]x [Tz\B(xo,llorg)}, (3.2)

Supp 9= (0,T) x T2, (3.3)
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and such that, if one considers the characteristics (X, ) associated to ¢, then

Vae T2, VEeR? such that |&|=m,3te(T/4,3T/4), Y(t,O,x,f)eB(xo,%O). (3.4)

We prove this proposition in the appendix.
Now let us describe the function f. Consider a function Z € C;° (R"; R) satisfying
the following constraints:

#>0 in R",
Supp Z < Bg:(0, 1), (3.5)
[ =1.

Consider x( in w and ry a small positive number such that B(xy, 2ry) o (reducing o
if necessary, we now assume that B(xg,2rp) = w). Define a function ¢ as in
Proposition 1. Then we introduce f = f{(z, x, £) as

S, x, &) = Z(EAp(t, x). (3.6)
Of course, f satisfies (1.1) in [0, 7] x T? x R?, with source term
G(t,x,&) = Of + & Vif + Vo - Ve, (3.7)

which is supported in [0, T] x B(xo,7) x R%. Up to an additive function of z, the
function ¢ satisfies Eq. (1.2) corresponding to f (with £(0,-,-) = 0). We denote
o(t, x) = Af = Aop(t, x).

3.2. The operator V,

In this section, ¢ is a positive real number such that ¢<1. We first define the
domain &, of V; by

¥ ={geB*(0r)/

a) |l4(g —f)”cﬁl(gr) <,

(a)

() A +1ED"(g =Dl 0ny <etlllfollg 122y + 11+ E ol por2e) s (3.8)
( :
(

) llg—A pr0n) <l follp @ xme) + 11+ E)follporcme):
d) Vrel0,T], [, 9(t,x,8) dxdé = [o m fo(x, &) dx dE},
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with ¢|, ¢» depending only on 7, T, and o (and hence on (£, ¢)), but not on ¢. The
indices 9, <dy in (0, 1) are fixed as follows:

Y~ and 0, =

01 = .
TR0+ 1) 7+ 1

(3.9)

For fixed ¢; and ¢, large enough depending only on (£, ¢), and fy small enough, one
has 7, #0 (for instance, fy + f€ .7, in this case), and hence |py| <e. From now, this is
systematically supposed to be the case.

Now we introduce the following subsets of S(xg,7o) x R*:

7= {(x, & eS(xo,r0) x RP/|E)>5 and  &-v(x)< —3l¢l},  (3.10)
77 = {(x, &) eS(xo,r0) x R?/[E[=1 and  &-v(x)< —4[¢]}, (3.11)
7= {(x, &) eS(xo, 7o) x R?/|E]=2 and  &-v(x)< — €[}, (3.12)

7t = {(x, &) €S, o) x B2/ - v(x) >0}, (3.13)
It can be easily seen that
dist([S(xo, 7o) x R*\y*75777) >0.

We introduce a C* n B! regular function U : S(xo,r9) x R?— R, satisfying

0<U<lI,
U=1 in [S(xp,79) x R*\y>", (3.14)
U=0 iny*.

We also introduce a function Y : R" - R", of class C*, such that

Y is non-increasing,
Y=1 in [0,1/4], (3.15)
Y=0 in [3/4,4+ ).

Now, given ge.%;, we associate ¢/ by

(3.16)

7A¢g(xa 1)=py—Ag in [0,T] x T",
Sy @7(x,t)dx =0 in [0, T7].
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Then, we define ¥(g) = f to be the solution of the following system:
f0,x,8) =fo on T? x R,
Of +&-Vof + V7 Vef =0 in [0, 7] x [(T? x R)\y7],
fltxe) = [r(H) + r(Z) 1o~
+[1 - r(é) - Y(%)} U, &)f (1, x,8) on [0,T] x 7.

(3.17)

In the previous writing, /(7 x, £) is the limit value of f on the characteristic leading
to (x, &) as the time goes to ¢~. (For times before ¢, but close to 7, the corresponding
characteristic is not in y~.) Of course, (3.17) has to be understood in a characteristics
sense, that is, for each characteristic, f is ruled by (2.4) as long as the characteristic
curve does not meet y~. When the characteristic meets y~ at time ¢, then the value of
f at time ¢* is fixed according to the last equation in (3.17). Note that the set of
different times a characteristic curve meets y~ is discrete as seen from the definition
of y~.
We fix the parameter y as the following positive number:

1= (3.18)

We now consider a continuous linear extension operator
: CO(T?\B(xo,2r9); R) - C°(T* R), and which has the property that each C*-
regular function is continuously mapped to a C*-regular function, for any o€ [0, 1].
Moreover, we manage in order that for any f e C°(T?\B(x, 2r9)), one has

[an=[  fieara (3.19)
" T'xR"

The last condition can easily be obtained by considering a regular non-negative
function u with integral 1 in B(x,ry), and adding to (f) the function ( [{>, g fo —

S 7 (f))u.
We fix ¢, such that for any f'e C'(T?\B(xo, 2r¢)), one has

(3.20)

12N g <l /1l
2 L < all Sl

From this operator, we deduce a new one 7: C°((T?\B(xo,2r0)) x R*)— C%(T? x
R?) according to the rule

(1) (%, €)= [ (-, )] (). (3.21)
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Finally, we introduce the operator IT: C°(([0, T] x [T*\B(xo, 2r0)] x R*) ([0, /4] x
T? x R?)) > C°([0, T] x T? x R?) given by

4t

e = r(D)rexe s [1-r(Y)|memo. e2)
We now define V[g] by
VIgl =+ (0. 1x (1 B0 2r) < B) 0 (0,741 xTxg2) 10 [0, T x T2 x B2 (3.23)

It will be shown that the function f is C! regular at the neighborhood of any point
(t,x,6)e[0,T) x T?> x R* such that (x,&)¢y . This implies in particular that
J10, 1% [T\ B(xo 200)] x R? 18 C! regular. Another argument (see (3.26) below) proves the
C! regularity of Ji0,7/4x 12 xre- This will imply, together with the construction of II,
that Vg is in C'([0, T] x T? x R?).

Finally, we note W the same operator as J but without absorption, that is, where
the function U is replaced by 1. In other words, W satisfies

Wlg)mo = i (3.24)

OWlgl +&-VW[g]+V¢? - V:W[g] =0 in Qr. (3.25)

(Hence, W{g] is transported by the characteristics of ¢?.) Let us remark that, due to
(3.15) and (3.17), one has

Vigl(t, x,&) = Wg)(t,x,&) for te0,/4]. (3.26)

In the sequel, the goal is to find a fixed point to V;, for any ¢ small enough,
provided fj is chosen small enough in terms of . We may sometimes omit the index ¢
in V, and &,.

3.3. Finding a fixed point of V,

Here, the goal is to apply the Leray—Schauder Theorem. Let us check that its
assumptions are satisfied.

1. The first point, precisely that %, is a convex compact subset of C°([0, 7] x
T? x R?) is a consequence of Ascoli’s Theorem.

2. Let us check the continuity of ¥V, for the C° topology. Assume that a sequence ¢;
of elements of %, converges to g for the C° norm (set g, = ¢g). As .%, is compact,
one has that ge&,. Then, the corresponding sequence A¢? is bounded in
C% ([0, T] x T?). It follows that V% — V¢? for the C°(Q7) topology. Now consider
the characteristics (X¥,Z9) corresponding to the potential ¢, and (XY, Z9) those
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for ¢?. We have for any (z,s,x, ) €[0, T]2 x T? x R?, (in L* norm),

d
d[_+||(Xg‘<t7 8, X, 6)73%(1‘7 8, X, é)) - (Xg(ta §, X, 5)750(1‘7 8, X, é))”

<|1E%(,5,x,8) = E9(t,5,%, )| + [V (1, X") = V¥ (1, X)]|.
But one has
IV§% (2, X7) = Vi(z, X9)]|
<[V (1, X9) =V (1, X9)|| + [V (1, X) = Vi (2, X7)|
<|IVe? (1, X%) = V! (1, X I + [[VO?|| gor o, 1 X = X7,
<UIV9" ~ Vol o) + 1V s oy 1 X = X7

It follows from Gronwall’s lemma and elliptic estimates for ||[V$?||p. (q,), that for
ie{l, ..., 0},

(X%, 29) = (X, 29 | o 1w0n) S CIIVO" = VIl (3:27)
for C independent from i. Hence one has
(X7, 29) — (X7, E9)|goio, 7% 0,) 20 s i + 0. (3.28)
Let us prove that this involves that for (z,x,&)e Q7\([0, T] x y~), one has
Vigl(t,x,8)~ Vgl(1,x,8). (3.29)

Fix (t,x,&)e O7\([0, 7] x y7). In a first case: if the trajectory from (X7, 29)(0, ¢, x, &)
to (x,¢) does not meet >~ for a time s> y/4, then it is a clear consequence of (3.28)
that  V[gi](t,x,&) - V|g](t,x,&). Indeed, for i large enough, the trajectory
(X9, 59)(-, t, x, &) does not meet y>~ either for s> y/4, and we consequently have

V[g](l’ X, 5) :fo[(Xqv Eg)<07 1, x, g)} and

I}[g,‘]([,x7~’f> :f()[(Xgivggi)(Ovlvx’ f)] (3'30)

In particular this is valid for (z,x,¢)€[0, /4] x T x R2.

Now, let us study the case when the trajectory from (X7,29)(0,1,x,¢&) to (x,&)
meets 7>~ for a time s> y/4. Using (2.3), the value of & -v(x) on 7y, dist(y~,77)>0
and the uniform bound for [|V¢"||,.., for all e ¥,, one can see that there exists
m=m(|¢|]) such that, if s€[0,7) satisfies XY (s,t,x,&)ey™, then X%([s—
m,s), t,x,&) = TA\B(xq,r0) and X9 ((s,s +m),t,x, &) < B(xg,r) (for ie{l,...,0}).
It follows then that two different times for which (X9 Z9)(-,¢,x,&) meets y~



346 O. Glass | J. Differential Equations 195 (2003) 332-379

(a fortiori y*7), are distant at least from m(|¢|) >0 (independently from 7). We denote
by t1, ..., t,€[x/4, 1) the different times for which (X9, Z9)(-, ¢, x, ) belongs to y>~, in
increasing order.

Now we claim that, for i large enough, one has

A(sity .., 8in)€[0,2)" and 3It>0, Jo>0 such that

(i) (X9 29) ([sij — T, 80 + 7], 1%, &) ny™ = {(X9, E9) (i, 1, %, §)
(ii) for se[0,2), dist(s, {si1,...,8in}) =1 = dist((X%, E9)(s,1,x,&),7>7) >0,
(i) s;;—¢t asi— 4+ oo, forallj=1,...,n (3.31)

Indeed, consider two points (X9, 59)(¢; +71,¢,x,&) and (X9, 59)(t; — 1, ¢, x, &), with
t<m(|{|), the first one just after the point has left the circle S(x,ry) and the second
one just before. For i large enough, by (3.28), X% (¢; + 1, ¢, x, &) is inside B(xo, o) and
X9(t; — 1,t,x,&) is outside. Consequently, there is a point X9 (s;;, 1, x,&) (close to
the one for g) which cuts the circle at time s;; € [t; — 7, + 7]. Then, again by (3.28),
the corresponding point (X%, Z9)(s;;, ¢, x, ) is in y~ for i large enough, and by the
definition of m(|¢]) satisfies (3.31)(1).

Now consider (X9, 29)(-, 1, x,&) for times in [0, T)\U",[#; — 7, #; + 7]: the distance
of these points to y>~ is positive. Hence with (3.28), one gets (3.31)(ii) for i large
enough.

To get (3.31) (iii), it suffices to consider (XY,Z9)(¢; +1',t,x,&) and (X7, 59)
(tj —7,t,x,¢) for 7 <7, and arguing as previously, we obtain s;;e[t; — 7', t; + 7]
for i large enough.

This involves (3.29) in the general case. Indeed, if n = 0, this is the first case that
we have already treated. If n>1, one gets for i large enough

Plolto. ) =l 3 0.nx ) < [T {[r(2) + r(Fo22)]

= a

w1 r(2) - (T2 oo, 290000

(including for i = oo if we fix s5; o, = t;) which together with (3.28) and (3.31), leads
to (3.29).

Now we conclude in a standard way, using the property (yet to be proven) that
V(¥) =P, Indeed, if we admit this for the moment, we get that the

V1giljjo,7x(12w)xr2 are in a compact subset of ([0, T] x (T?\w) x R?). So the
previous pointwise convergence is in fact valid in C°([0, 7] x (T*\w) x R?). It is also
valid in C°([0, /4] x T* x R?) (as (3.30) applies in [0, /4] x T*> x R?). With the
continuity of I1, this involves the convergence of V[g;] to V[g] in C°(Qr).

3. Now we have to show that V,(¥,) <%, if fy is small enough.
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The fourth point in the definition of &, is observed as a consequence of the
construction of I1. So there are essentially three points to check. We establish points
b and c, before returning to the central point a. We may omit the indices g in the
sequel.

(b) We want to establish the second condition in V,(¥,) = ¥,. We recall f = V[g].
One has

Lf (2, %, O <[ fo[(X, E)(0, 1, x, O)]|.
This is due to the fact that, by (3.17), f is constant along a characteristic as long as it

does not meet y~, and when it does, then one gets | f (¢, x, &)|<| f (¢, x, &)|, thanks
to the choices of Y and U. Consequently, one gets

|/ (6, %, OI< [+ 1ED ol Lo (14120, 1,x,E)) 7,
<+ 1EDSfollp- T+ 1€ =&+ E(0,1,x,8)) 7.

Now we remark that for all 1€[0, 77,

1€ = 2(0,,x,8)| <TIIV*|| .. <CT(|Agll, +1). (3.32)
Using
(4 -2 < R (3.33)
1+ ||
we get for (¢,x,&)eQr,
[T+ 1D (6, x, QI+ ) ol [T+ CT(|A@][ L + 1))
Now using the construction of I1, we deduce
[(L+ ) Vgl(t, x, < exl|(1+ €D foll - [1 + CT(|[Ae]|L- + 1] (3.34)

We choose ¢; = ¢;[1 + CT(||A¢||;» + 1)]’. Then the second condition in V(%)=&
is established.

(c) Now we wish to have estimates on the derivatives of V[g]. First, we prove the
following lemma.

Lemma 2. For ge%,, one has Vigle C'(Q7\Zr), with X1 = [0, T] x y~. Moreover,
for any (t,x,&) and (¢,x', &) in [0, T] x [T?\w] x R*, with |é — &|<1, one has,

[V 1gl(t,x, &) = VIgl(t, X', &)< Clll ol g rmey + 1+ €D ol (r2re)]

< (L+ DI x, &) — (7, &), (3.35)
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and also
[Vlg)(,x, €) = Vg)(1,%', &)
<C“|f0||31(vzx[ﬁz2) +1(1+ ‘é|)yﬁ)||m(v2x[ﬁa2)”(xa &) — (x, &), (3.36)
the constant C being independent from f.

Proof. We begin with a remark concerning the number of times a particle can meet
y~. We fix (2, x, &) in [0, T] x T? x R?. Here, we denote 71, ..., t, the different times in
[x/4,1] for which (X, Z)(z;,t,x,&) belongs to y~ (sorted increasingly). Of course, n
depends on (x, £). As ge ¥, we get, at least if we have chosen ¢ small enough, that

E(1,0,x,9[< |+ TIVollcoo, + 1 for 10, T]. (3.37)
On another side, we remark that
dist(y*,y7)>0. (3.38)

From (3.37), (3.38) and the boundedness of the acceleration for ge.%,, we deduce
that for a certain ¢>0,

n(x, &) <c(l 4+ [&)). (3.39)

Now, let us briefly explain the continuity of f == V[g] in Q7\Z7 (this is proven
approximately as (3.29)). Locally around (¢,x,&)eQr\2r, f is constant along
characteristics, hence (with Lemma 1) it is sufficient to prove the continuity of
f(t,-,-) close to (x,&).

Given (t,x,8)eQr\X7, we consider the characteristic curve from
(X(0,¢,x,8),E(0,¢,x,&)) to (x,&). If this characteristic curve has not met y>~ after
time y/4 during the process, then for (x', &) close to (x, &), the characteristic from
(X(0,2,x',&),5(0,1,x',&)) to (X, &) is close (for the B°(T? x R?) norm) to the one
for (x,¢) (see (2.7)), and as a consequence, if |(x, &) — (x'E")| is small enough, this
characteristic does not meet y*>~ after y/4. Consequently one has

VIgl(t, x, ) = fol(X?, 29)(0,1,x,¢)]  and Vg)(t,x', &) = fo[(X?, E)(0,1,%',&)].

Then the continuity at point (x, &) follows from the regularity of the flow—see
Lemma 1.

If the characteristic curve for (x, &) has met 7>~ after x/4 (i.e. n(x, £)>1), then for
(x',&) close to (x,&), we consider the characteristic curve from
(X(0,6,x',&),2(0,£,x',&)) to (¥,&). For t small (in particular such that t<y/4
and 1<t — t,), one has X(t; + 1,1, x, &) € B(xo, r9) and X (t; — 7,1, x,&) e TA\B(x0, o).
We suppose that 7 is small enough in order that any characteristic corresponding to a
velocity & such that |&'| < |€| + 1 cuts 7~ at most once by time interval of length 27 (as
seen previously).



O. Glass | J. Differential Equations 195 (2003) 332-379 349

As for (3.31) we get that (X(0,z,x',¢&),Z(0,1,x',&")) cuts y~ once in each [f; —
7,4; + ] and that the characteristic corresponding to (x', ') cannot meet 7>~ outside
these intervals, if it is close enough to the one for (x, &). As (¥, &) tends to (x, &), the
place in y~ where (X (s,1,x',&),E(s,1,x',&)) cuts y~ during [t; — 7, + 7] tends to
the one for the (x, ¢)-characteristic. This gives again that V(¢,x', &) — V(t,x, ) as
(x', &) tends to (x, &), as for (3.29).

We now consider the derivatives of V[g]. We remark that if the characteristic curve
starting at (x,¢) at time s, does not meet y~ during the interval [s,7] then the
derivatives at time ¢ and s are linked by

deef(t,x,8) =dcef(s,X(1,5,x,8),E(t,5,x,8))ody : (X, 5). (3.40)

(Note that V,¢(X,Z)(¢,s,,-) is uniformly bounded for ge ¥, by Lemma 1.) Given
t;€(0,T), we define on 7y~ the functions f~(¢;, x, &) as

fi(l,‘,x,f) lim f(l7 (X’ E)(lv liaxvé))v

>t
v

and f* given similarly with the right limit. The functions /= and f* are related by
(3.17). We wish to compare |Vf ™ (t;, x,&)| and [V (1, x, &)|, for (x,&)ey~. Observe
that the surface y~ is not characteristic in our problem. Consider t one of tangen-
tial unit vector field on the circle S(xo, ro). The partial derivatives 9, f, 9. f T, Ve f+

and & - Vf™ can be easily derived on y~, and are continuous. Indeed, let us begin
with 0.:

O f " (t:,x,8) =
)2 ()

+ (1 - r(’) - r<T; ti>)f(ti,x,é)VxU~r. (3.41)

Now we have the same for the ¢ derivatives (consider /€ R?):

VefT(ti,x,8) - h=

o) o5 (- 0) o5t

+ (1 - r(%) - Y(T; li))f_(li,x,f)V§U(x, &) h. (3.42)
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Concerning the time direction, we have

A f (i, x, &)
() o) ) ot
. ;[r (;) . Y’(T; ’)} (1= UG, O (11,3, ). (3.43)

From (3.17), we finally get

(lnx )&=

[()” () () pwa v

—C(ti,x,)f~ (tnx ¢, (3.44)

with

a2 0)- (5ot
n [1 - r(’;) - Y<T; ”')}véU(x, &) - V! (1, x).

Consequently, at each time a characteristic curve meets y~, one has

vt,x,g“f+(li7x7 é) = Ocvt,x,éf_(tiaxv é) + B, (345)

with 0<a<1 and B; which coordinates in the basis (r,¢) are bounded by
Plf~(t;,x,&)|, with f independent from f. Note that when (x,¢) belongs to 7y,
the matrix of the transformation from the base (z, &) to the base (t,v) is bounded,
hence B; itself is bounded by | (¢, x, £)|, with f independent from f. With (3.40),

this leads to the relation valid for times rer;, ;| ]:

VaeeVlgl(t,x, &) = &V W9l (1, x,8) + > _ B, (3.46)

J=1

with 0<d; <1 and %, bounded (in L norm) by f| f; | || Vre(X, Z)||, where f; is given
by fi =f(t, X(t;,t,x,&),E(t, t,x,&)). Note that, thanks to Lemma 1, ||V, ¢(X, Z)|| is
uniformly bounded for ge.%,. Now using again (3.34), we get

[GI<E 1D TN+ 1ED ol r2r)-
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With (3.39), one gets, for (¢,x,&) e Qr\2r,
Ve Vlgl(t, %, I < [V Wgl(t,x, 8|

+ (Il 49| goan (@, N+ [ED Sol o r2.cm2)- (3.47)

Now, using Lemma 1, we have the estimate on W{g], for |¢ — &|<1 and t€]0, T):

Ve Wlgl(t, x, Ol < e[ A9l ar (0, [V oll cogrcme) (3.48)

where in fact ¢(||A4g||p (0,)) depends only on #;. We consequently get that for
(tu X, é) € QT\ZTa

Ve V1912, x, E)| < el 49 goar (o) IV ol oy + 111+ 1ED fol gz cge))-
Using (3.17), we deduce
10: 9] (1, x, &)< (|| 49| goar (@) (1 + 1€])

X [IIVfollcograxmey + 111+ €1 follgo (v wmey -

Now for x, x' e T?\w such that |x — x’| <ro (in order that [x, y] does not cut B(xo, r¢)),
we deduce that one has

[Plg)(r, x, &) = VIgl(7' ', &)< C(1 + [¢])
<(IVfoll poramey + 111+ 1ED ol po 2218, %, &) = (7,4, &)
and
[Vg)(t,x,8) = Plgl (1, X', &)]

< CIVAllporaare) + 1L+ 1EDSollporar2) )| (x, &) — (+, )]

Now for x,x e T?\w such that |x — x'|>r,, one gets the same type of inequality,
using the L® estimate. This ends the proof of Lemma 2. O

Remark 5. Note that if we use (1.6), we get all the same as for (3.34) that
| £ (2, %, O < KIN(1+1EN fol oy (1 +1€) 77
Then one can precise (3.47) by

Ve V1918, x, O < Ve WIGN(, x, O+ el (L 1D fol g pery (14 1) 77
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Using the boundedness of V, (X, &) and (3.32)-(3.33), one can also precise (3.48)
by

(L4 €D Ve W9l (2, x, ) < ([ gl goor (@, )N+ €D Vol o r20m2)

and one gets finally
(1 + 21V Vgl (2, %, O < e(l| Agl s o))

X (114 1D Vol poroemey + 11+ 1ED ollgore))-
(3.49)

This is important for uniqueness.

It follows from the construction of IT that the same estimates as in Lemma 2 hold
for any (x,x')e(T?)* for V[g]. Now to conclude about point ¢, it suffices to
interpolate (3.34) and (3.35) to get the desired estimate in [0, 7] x (T*\w) x R%.
Using the construction of IT, we get that for the index J, defined in (3.9), one has

1V1g] = MMl 0,y < 2lll foll g (12m2) + 11+ &) ol pogr2.ce) - (3.50)
(a) The last point is to prove that, if f; is small enough, one gets
1AV [g] = P)llen o) e (3.51)
Let us start with the L®-norm before the C® one. One has
LS (&%, O < [ Ao[(X7, E9)(0, 2, x, E)]].
It follows from (3.34) that

‘ [ dé\sclllfoa Wl oy [ (14187 de.
" R

Hence

[ A0y de <0+

One deduces from (3.23) that
1AV 9] = Dl 2o () < CISo (L + 1ED L (72 xm2) - (3.52)

Now let us deal with the C° -norm. We introduce the following notation:

B | plo(t,x,8) —g(7,x', &)
|:x j;’lg ( + |é|) |(l,x, 6) _ (ll,xl,él)r{

& st |E=¢|<1

lg
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Now it follows by interpolation between (3.34) and (3.50), that for a certain constant
C independent from f, for j = % and ¢, defined in (3.9), one has

1-0;

V1g] =5, < Cllfollgs g2y [0l vy + 11CE+ 1D Solleogre o))

We deduce that, for f; small enough,
NAVelg) =Nl @) <&

This finally proves V(%)< ., for fy small enough (depending on ¢).

We then conclude by Schauder’s Theorem, that there exists a fixed point g* €.%,
of the operator V,. We now have to prove that such a ¢g* answers to the problem (at
least for ¢ small enough).

3.4. The final state

From the construction, Egs. (1.1)~(1.2) and (1.3) are clearly satisfied by g* for a
certain G supported in [0, T] x o x R*:

Og* +¢-Veg* + V! - Veg*
=G+ (Vep” — V) VS
F [0+ & Vit V! - VII(Pg*)).

What we have left to establish is (3.1) (at least for small ¢). This is done in two steps:
first, we show that property (3.4) is still true for the perturbed system, that is when

the action of ¢? * @ is taken into account, at least if ¢ is small enough (and with a
slightly larger radius for the ball). Then in a second step, we show that particles in
B(xo,r0/2), if fast enough, do meet y>~ during the process, which allows to conclude.

Step 1: The first step is a consequence of the following Gronwall’s inequality (as
for (3.27)): for any s,1€[0, T,

= * g%
(X, 2) (25,6, &) = (X7, 507) (15, %, )| po )

<CY[Vp = V¢ [| g eIV 0nstce. (3.53)
This involves that for some ¢3 >0,

- o
HX"—X" HB‘)([O.T]X[O,T]xszRz)<C38' (3.54)
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It follows from (3.4) and (3.54) that, for relevant ¢,
IM >0,VxeT? VéeR*\{0} such that [¢|>M,3te(0,T),

{/*

X9 (¢,0,x,&) e B(xo,7r0/2). (3.55)

Step: 2 For xeB(xg,ro) and £eR*{0}, we introduce Pg(x,¢) as the point in
S(xo,70) last met by x + &, with 1<0. Let us prove that

V>0, IM,Vte[T/4,3T /4], VxeB(xq, 1), VEeR? s.t. |&|=M,3fe(0,1) s.t.
X7 (01, x,€) € S(x0, r0), | X7 (7,1, %, &) = Ps(x,&)| <n,
and Vse[f, 1], |29% (s,1,x,&) — &|<n. (3.56)

Indeed, as follows from (2.3), one has

X9 (5,4,%,8) — x — (s = )&+ |59 (5,1, x, &) = &| <e(||[Ag¥ ||, )ls — 2. (3.57)

Fix 1’ >0. For |¢| large enough (say |¢|> M), one has d(x + (s — 1)&, xo) =2, for a
certain s<t, with |s — ¢/ <#'. Reducing #’ if necessary (hence, enlarging M), we see
that (3.57) involves that | XY * (8,2, x,&) — x| >%ro. Hence, one gets the existence of 7.
Finally, we get |X~‘]* (7,t,x,&) — Ps(x, &) <n and |Eg* (s,8,x,&) — &|<n in [f,7] from
(3.57), reducing again #’ (and again enlarging M) if necessary.

Now, it is easy to show that a straight line arising from B(xo, ry/2) cuts S(xo, 7o)
with an angle to the normal at the circle of value at most 7/6. Consequently, using
again (3.57), one gets that, at least for small ¢,

IM'>0,VxeT?,VéeR?\{0} such that |&|>M',3te(0,3T/4),
(1\’9*,59*)(1,0,x7 ey, (3.58)
It follows then that for & large enough, one gets
g* (.8 =0,

which is what we wanted for this section. Besides, it follows from Lemma 2 and from
the construction that one has

||g*(T, g ')HB‘(TZX[R{Z) + {11+ If\)’g*(ﬂ > ')HL%(TZX[RZ)

<C[Hf0||Bl(T2><R2) + ||(1 + |‘f|>yﬁ)||Lfa(1r2xR2)]~ (3.59)



O. Glass | J. Differential Equations 195 (2003) 332-379 355
3.5. Uniqueness

The uniqueness of the solution for the system with interior control is proven
approximately the same way as for the “homogeneous” (uncontrolled) case. Indeed,
the source term disappears when doing the difference of two Egs. (1.1) computed for
two different potential solutions (see [17, Section §]).

The main point is that under assumption (1.6), the solution described above
satisfies

Vaxeg™ (6,5, )< C(fo) (1 + [E)

This follows from (3.49) and the construction of I1. Now g* is unique among the
solutions that satisfy

geC'(0r),
lg(t,xE)| + |Vieg(t,x, &)< C(1 + €))7,

VoeB™ (Qr),

as obtained in [17].

4. Theorem 1: the problem with compact velocities

In this section, we consider fy e B'(T? x R?), which moreover satisfies for a certain
M >0,

V(x,&)eT? x R, |E|=M = fy(x,&) =0, (4.1)

and moreover (1.6). Let us remark that (1.6) is not really a consequence of (4.1) since
x and x’ in (1.6) are supposed to be small; but it is satisfied by the final value of g* in
Section 3 if again fp is small enough—see (3.59).

The previous M can be given only in terms of w and 7', and is independent from
the choice of fj (in its neighborhood of 0)—see Section 3.

4.1. The idea of the treatment of low velocities

The principal idea is to reduce to the case studied in Section 3.

Indeed, by a control localized in w, one can ““accelerate’ all particles at velocity &
with |£|< M, in such a way that at the end of the process, f(¢,x,-) is supported in
{¢/|€|= M}. Then, one can apply again the control described in the previous section;
at the end one gets a distribution function supported in w in variable x.

In the next paragraph, we state a proposition that shows that such a process is
possible. Then we sketch the proof of the construction of f.
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4.2. The central proposition

Proposition 2. There exist t>0 and pe C*([0,1] x T*; R) satisfying

Supp(¢) = (0,7) x T?, (4.2)

Ap =0 in [0,7] x (T?\w), (4.3)

such that for any fye B'(T* x R?) satisfying (4.1), one has, if we denote by (X, E) the
characteristics corresponding to the potential ¢:

f()/(xa 5) :ﬁ)(X(()? Tvxv é)v 5(07 Ta xa é)) = O
for all (x,&) in (T?\w) x (R*\[B(0, M)\B(0, M + 1)]), (4.4)

for a certain M >0 independent from fy. For some K >0 independent from f one has
also:

{ 10+ 1)l oy <K+ Bllrgrneys

||ﬁ),||B‘(T2><R2) <K|‘f6||31(1r2xﬂ%e2)-

This proposition relies on the following lemma.

Lemma 3. For any nonempty open set O in the two-dimensional torus, there exists
0e C*(T?;R) satisfying

AO=0 in TAC, (4.6)

|VO(x)|>0 for any x in T?\C. (4.7)

We prove this lemma in the appendix.

Proof of Proposition 2. We introduce a 0 as in Lemma 3, with ¢ chosen as a ball
B(xq,r) such that B(x,2ry) cw. Define m as the lower bound of |[V6(x)| in T\¢.
Then, the idea is to fix ¢(t,x) = aA(bt)0(x), defined in [0,1/b] x T2, where

Ae Cy(]0, 1]) satisfies
A0,
SoyA=1,

and where @ and h>1 are to be chosen large enough, for fixed ¢ = a/b.
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With such a ¢ one gets that for any (x,&)eT? x By:(0, M), one has during [0,}]
that

15(,0,%,6) = &< Vell.,.
and it follows that, during [0, 4],
|X(2,0,x,&) — x| Sé(M +¢||VO]] ).
Hence for b large enough, one has X(1,0,x,¢&)eT?\B(xy,r) for any
(t,x,8)€[0,1/b] x (TA\w) x By2(0, M). Then one deduces that

:(; 0,x, 5) &4 V0| <COLM + €[ V0],), (4.8)

where C(6) depends on the derivatives of V6. Now we choose ¢ =242 and let b
become large in order that the right-hand side of (4.8) is less than 1/2. This gives
(4.4). One just has to check (4.5). The first part in (4.5) can be seen as a consequence
of (3.33). The second one is a consequence of the Lipschitzian character of the
characteristics (see Lemma 1). [

4.3. Sketch of the construction of f

Now we can describe the control used to “treat” fy such as described at the
beginning of the section. We define as previously fin [0, 7] x T? x R? by (3.6) (with
here ¢ defined as in Proposition 2).

From (4.7), we deduce that

Indg(y, ) (VO) = 0.

Hence, V0 can be extended inside B(xo, ry) in such a way that it does not vanish (call
V:T?-R? such an extension). Call again m the lower bound for |V(x)|. Now
arguing as previously, one gets the following for the flow of (& ¥7) (ie. the
characteristics for the field 77), with ¥~ defined by 7" (¢, x) = aA(bt) V(x): for suitable
>0,

f(.)/(xa é) :fO(Xaﬂ((L T, X, é>7 Ent/(o7 T, X, é)) = 0
for all (x,¢) in T2 x (R*\[B(0, M)\B(0, M + 1)]).
We consider ¢ e C*(T?) satisfying

0< 7<1,
J =1 in T?\B(x,3r),
4 =0 in B(xy,r0).
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We introduce n as in Section 3, and IT:C°(([0,1] x [T*\B(xo,2r0)] x
R?) - C°(]0, 1] x T? x R?) with a slight simplification:

(If)(t,x, &) = wlf (¢, ))(x, ). (4.9)
To ge ¥, we associate ¢ by (3.16), and then JY by
=7 (x)Ve! + (1 = 7(x))7].
We introduce the following operator W which maps ge %, to f satisfying

f\t:O :ﬁ)a

Of +E-Nof+J9-Vef =0 in [0,7] x T x R
We finally define V" as the operator given by
Vigl = f+ I(W([g)).

It can be proven to have a fixed point /* close to f, solution of the system, at least
for small fj, exactly as in the previous section (or as in [17]). We omit the details; let
us just underline that IT is employed here not to ensure the regularity of the solution
inside w, but in order that the resulting solution found here can be smoothly glued
with the one of Section 3.

Let us just check that, at least for ¢ small enough, the final value of this solution is
small and “well” supported in £. The first point is done as previously, using Lemma 1
and the point b in Section 3.3. The second one is a consequence of Gronwall’s lemma
which leads to

XX E%) = (X )l pogoxrcme) < Cey

where C can be described in terms of f, and where (X*,Z*) and (X, Z) stand,
respectively, for the flows of (¢,J/™) and (¢,J7) = (¢,7").

Once applied the control of this section, we apply again the control of Section 3
with f*(z,-,-) as initial condition to get a complete solution (as we explained,
f*(z,-,-) is small provided the original f, was small enough). In this second use of
the control of Section 3, one can use Il as in (4.9), since at the end of the
control process of Section 4 the distribution function is already of the form 7(fy) for
a certain fj.

Uniqueness is proven as in Section 3.5. This concludes the proof of Theorem 1.
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5. Theorem 2: the problem with compact velocities according to v

We now turn to the proof of Theorem 2. In this section, we consider fye B'(T" x
R") satisfying (1.8), which moreover satisfies for a certain M >0,

V(x, O)eT" x R, |& - o[> M = fo(x, &) = 0. (5.1)

Again, most of the time, we will use only the decreasing of fy in |¢|”” and the
boundedness of V. f;. We will also use a kind of compatibility condition on fy,
satisfied by any distribution function at the end of the process of Section 6, and
which we describe later.

Remark that one has

Vie(0,1),Y(x, &) eT" x R, |¢-v| =M = f(x,&) =0, (5.2)
as |&-v|=AM is sufficient. (We put A as an exponent for the scaled distribution

function, see Section 2.4.)
We first introduce a function £ which is central in the proof.

5.1. The function f
Consider a function # e C° (]0, T'[) satisfying

Supp # < (0,T/4),
=0, (5.3)
f[O,T] Y =1.

Before describing precisely the function f, we begin with a remark.
Remark 6. One can decompose T” into “slices”, each slice being obtained by

thickening hyperplanes parallel to H with an arbitrary length. In particular, one can
cut T” in the following way:

T = U S, (5.4)

with #; = x; + H+] — r,r[v, for some x;€ T" and with re R™ small enough to get
that

Vie{l,...,N}, X"O%t,,0,#,,0)c H +[-d/2,d/2]v, (5.5)

with & given by # .= Av for a certain 4eR™™ depending only on T, and with ¢ :=
T/4+iT/2N.
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Remark 7. Consequently, there exists g>0 such that
X010, #,,E)cH + [-2d/3,2d/3]v, Vie{l,...,N}, (5.6)
whenever |£ - v|<pu.

Remark 8. Remark that X?()? has also the following property: there exists ce R**
such that, for any x,yeT", one has

cx — y|<|X?08(1,0, x,0) — X7W8(1,0,y,0)|<c|]x — y|. (5.7)

Let us now describe the function f. In the domain T"\(H + [~d,d]v), x+>D
coincides with the gradient of a harmonic function. Call ¢ a function in C* (T"; R),
whose gradient coincides in T"\(H + [—d, d]v) with ; this function is harmonic in
T™w. Note that Remark 8 is no longer necessarily true when considering V¢ instead
of ¥.

Now consider a function 2 e C*(R";R) as in (3.5). Define f= f(¢,x,¢) as

ft,x,8) =W ()7 (E)Ap(x). (5.8)

Of course, f satisfies (1.1) in [0, 7] x T" x R" with a source term given by G =
Of +&-Vif + ¥ ()Ve(x) - Vef supported in [0,7] x o x R" and ¢(t,x) =
Y(t)p(x) satisfies Eq. (1.2) corresponding to f (and £0,-,-) = 0), up to a function
of 1.

5.2. The operator V*

&

Here we introduce a certain operator ¥/, which depends on two parameters / and
¢ (intended both to be small, and both systematically supposed to be in (0,1)). We
will show that, for any >0, V7 has a fixed point if 2 is small enough (in terms of ¢).
Then we show that for ¢ small enough, such a fixed point gives a solution to the
problem.

We introduce a function $e C*(T"; R) such that

0<$<l inT",
9=0 in H+ [-d,d]v, (5.9)
H=1 in T"\(H+ [-3d,3d]v).

We define again a subset & of B%(Qr) on which we will define the operator V/:

&

7, =1{9eB*(0r)/
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(@) l4(g =llen (@) S&

(b) N+ 1N (9 == (op S rlll S g rregry + 11+ EVSF pornsmn]s (5.10)
© 119 =Also 0 <2 1A a1 ey + 10+ Efe o '
(d) Ve[0T, [yn, g 9(t; X, &) dx dé = [ g fo(x, E) dx dE},

with ¢y, ¢, to be fixed later depending only on y, T and o (and hence on ( f, ¢)), but
not on A; here, 0; and J, are fixed as follows

y—n
5:— d 5: .
T+ )+ 0 2T

For fixed ¢; and ¢, large enough depending only on (£, ¢), one has Vﬁ #0 for 2 small
enough depending on ¢ (for instance f (¢, x, &) = fi(x, &) + ft, x, &) belongs to . for
A< p(e)—see (2.9)). From now, we suppose that this is the case; in particular, one
gets |pf|<e.

Consider geyi‘. To g, we first associate the corresponding solution ¢Y of the
Poisson equation, viz. (3.16) (with p, replaced by pé).

To ¢, we associate V,:[0,T] x T"—>R" by

Vy(t,x) = 9(x)V§? (1, x) + [1 = H(x)] % (1)3(x). (5.11)

We then define the functions f* for k = 0,1, ..., N defined recursively as follows:

f0(07x7 é) :f‘O;L on Tn X Rn7 (5 12)
OfO+E-Vof'4+V, - VefO=0 in [0,54] x T" x R", '
and then, for any ke{l,..., N},
FR e, x,8) = o) (tx,x,&) on T" x R", (5.13)
O ff+E-Voff+ V- Veff =0 in [tg, 1] x T" x R". '
(We set ty41 = T.) We now consider, as in Section 3, a continuous linear extension

operator 7 from CO(T"\(H+] — 2d,2d[v); R) to C°(T"; R), and which has the same
property that each C*-regular function is continuously mapped to a C*-regular
function, for any o€[0,1]. Moreover, we manage again in order that for any
feCUT"\(H + (-2d,2d)v)), (3.19) occurs. From this operator, we deduce a new
one 7: CO([T"\(H+] — 2d,2d[v)] x R")— C°(T" x R") the same way as in Section 3,
and we fix ¢, correspondingly. Note that = depends on A because of (3.19). But the
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constant ¢; can be made independent from A€ (0, 1), because
fi(x, &) dxdé =7 fo(x,8) dxdé.
T"xR" T"xR"

Finally, we introduce the operator IT as in (4.9).
We now define the functions

. £ in [0,4]) x T" x R",
Vilgl =19 " . o (5.14)
S oin |t e x T" x R, for ke{l,..., N},
Vj[g] =f+ H(Vi[g]\[O,T]><['[I'”\(H+[—2d+2d]v)]><[R€”)' (5.15)

Again, V is not necessarily continuous. As previously, we define W to be the same
operator as V, but where we replaced $ by 1, that is, W[g] is transported by the flow
of (£, V) (this makes Wg] continuous in Q7). In this section, we denote by (X7, Z9)
and (X, Z) the flows of (¢, V) and (&, V) = (& #(1)D).

5.3. Regularity of V*|g]
We have that, except at times ¢,
OVlg)+ & ViVlgl + V- VeVlg) = 0.

Consequently, the function V#[g] is given by the characteristic Eq. (2.4) during each
interval [t;, #;1). From the fact that Age B* (Qr), one deduces, together with (2.1),
(2.2), (2.4) and Lemma 1 that f* is of class C'(Q,,).

Of course, it follows from the construction that f°(¢y, -, -) coincides with f1(z, -, ")
on T"\(H + [-3,3Jv) x R". We have also that the support of V]g] in ¢ stays bounded
in the direction v. This follows from (2.3), (5.2) and from the fact that V is uniformly
bounded for g in %*. Hence, the function V[g] is of class C' in the domain [t —
o, t) + o] x T"\(H+] — 2d,2d[v) x R", for a certain o> 0.

By arguing similarly for times #,, ..., ¢y, we get that Vg is of class C' in the
domain [0, 7] x [T"\(H+] — 2d,2d[v)] x R", and hence, with (5.15) that
Vigle C(0r).

5.4. Finding a fixed point of V/

Now our goal is to check that, for any ¢>0 (small), there exists u(e) >0 such that
for any positive 2 <pu(e), the operator V* satisfies the assumptions for the Leray—
Schauder fixed point Theorem on the domain &%. In order to avoid too heavy
notations, we will sometimes forget the indices and exponents ¢ and 4.

1. Again, ¥ is a convex compact subset of C°(Qr).
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2. The continuity of V' can be proven in the same way as in Section 3. Consider a
sequence g; of .% converging to ge.#, for the C° topology (we write g., = g). Here,
we denote by (X9, 59%) the characteristics corresponding to the flow of (&, V). As
for (3.27), we have

||(ng759i) - (XgaEg)||co([0_r]2><1r"><[|qg”) < C|| V,L[ - V!JHCO(QT)
<CNV" = V|l o

where C depends only on f. Then it follows from the construction that V[g;] = V[g]
for the C° topology (first it converges pointwise in [0, 7] x [T"\(H + (—2d, 2d)v)] x
R”, then, using again the compactness of yj, uniformly, and finally one uses the
construction of IT).

3. Let us now verify the most problematic condition, viz. V(%)< %*. We have to

check the three first points in the definition of 5”? (the last one is again consequence
of the construction of IT).

It follows from the same Gronwall’s inequality as (3.27) that for a constant C
depending on %(¢)?, one has

10X, 29) = (2. 2)] o017 ey < C

where C does not depend on ge.. One can get a more precise inequality in the
following way (when it is not explicit, the norm considered is the L* one):

V000, 59)(1,5,%,) — Y E) (15,3,
<[[VE(1,5,x,8) = VE(,5,x, )]
+ IV V(8 X0(t,5,x,8))VXI(1,5,x,8) = Vi Vit X(t,5,x,8)) V(1,5 x, )],
where V stands either for V, or for V.. Now the last term is bounded as follows
V4V, (1, X015, ) VX (1,5, 8) = VA1, K15, ) VR (15,3, )|
<A+B+C,
with

A= ||V Vy(t,X9(t,5,x,8))VXI(t,sx,&)
=V V,(t, X9(t,5,x,&))VX(1,5,x,8)]|,

B= ||V V,(t,X9(t,8,x,8))VX(t,s5,x,&)
VLV X0 (15,3, )T R(1,5. %, ),

C= [V V5 (1, X9(2,5,x,))VX X(2,5,x,&)

t )

VLV (1, X(t9,%, E) V(L 5,3, 6.
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Now

AL ViVl IV X9 (2,5,x, &) = VX, 5,3, )| oo, 17y
B< IV ¥y = VaVlian IV 8 o v

C=0.
It follows then by Gronwall’s lemma that for a certain constant C, one has
(XY, 29) — (X, E)l o (0.1 vy < CIVg = Vil o)
<ClV! = V| poia,)-

Hence, if ¢ is small enough, then (5.7) is still valid when replacing (X, Z) by (X9, Z9),
precisely: 3¢’ >0 such that for any Ze (0, u(e)), for any ge. ¥, one has

V(x, ) e (T")?,viel0, ),
(C’)71|X 7y| < |Xg(t70ax7 0) - Xg(t707y70)| <cl|x - y‘ (516)

(Indeed, V, is close to #/(#)# in C'-norm, which is not the case of V¢?(¢,x).) From
now, we will systematically suppose ¢<1 small enough in order that (5.16) occurs.
We first check the points b and ¢ and then we treat point a.

(b) In this point, we shall not use (5.1) but only (1.8) and the fact that f == V[g] is
decreasing along characteristics. In the sequel, we omit in the writing the dependence
of the flow (X, Z) on g. We have

| (22, OIS E)(0, 2, O+ IE) A L (14 E(0,2,x,E)) 7
Now we have
&= E(0,4,x, )| < T||V,||,. <CT(|p| +1). (5.17)
Using (3.33) we get

[(T+]¢ )'fillp- 11+ CT(Jo] + 1))

) (6 x QI+ ¢

Now using (5.15), we get the same estimate for V[g] in Qr. We choose ¢| =
¢z[1 + CT(|5] + 1)]”. Then the second condition in V(%)<= ¥ is established.
(c) We use Lemma 1, and deduce that for any (z, x,¢) and (¢,x',¢&) in Q,,

1£0(t,x,8) =20, )< C+ [EDI(1,%,8) = (7,5, NI g1 (o
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and that

17001, Mg vty < CHI N oy

where C does not depend on A (but depends on ¢). It follows from the construction
then that

110 ey S €xCIG g (o -

Iterating the procedure N times, we get that, for a constant C independent from 4,
one has, for any i =0, ..., N,

/(- ')||BI(T”><R”)<CH}(();L||B‘(TI”><R”)7
and moreover, when (¢,7)€e]t;, t,-H]z,
|f(t,x,8) = f (¢, %, &)< CA+EDI, x,8) = (X NS g rosmey- (5:18)

It remains only to consider ¢ and ¢ in different intervals [¢;, #;11]. But we know that
for any (x, ¢) in the support of f(z,-,-), one has

|E-v|<M+ CT(|5| +1)

(independently from Ae (0, 1) thanks to (5.2)). This implies that f; and f;| coincide
during some time interval [t; — o, t; + o] independent from ¢ in 92“, on the domain
(T"\(H + [—3d,3d]v)) x R". This is sufficient to establish (5.18) for all times.

Now it remains only to interpolate (5.18) and point b to get point c¢. This fixes the
value of ¢, only in terms of ( f, @).

(a) One has to check that for appropriate 4,

1AV lg) = Dl oy < (5.19)

In this point a, we will not use the fact that f; is compactly supported in velocity in
direction v, but only points b and ¢, and the decreasing of V along characteristics. As
a consequence, the proof of that point will still be valid in the case treated in the next
section.

Let us treat the L*-norm before the C° one. From (5.16), we deduce that
X9(¢,0,-,0): T">T" is invertible; call X! its inverse, and define the function
M0, T] x T">R" by

M1, x) = 29(1,0, X9 (x),0).

Let us prove the following statement: for some k>0 independent from £, one has,
for any A and any geyﬁ,

V(t,x,8)€el0,T] x T" x R, |&—I(¢, x)| <k|Z9(0, ¢, x, E)|. (5.20)
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(i) It follows from x = X9(z,0,%Y(x),0) and XY(x) = X9(0,,x,MM(z,x)), (5.16)
that

() MX90, 1, x, M (1, x)) — X9(0,1,x, )| <|x — X9(1,0, X9(0, 1, x, £),0)].

(i) Besides, it follows from x = X9(¢,0, X9(0,¢,x,&),Z(0,¢,x,&)) and Lemma 1
that

|x — X9(¢,0, X9(0,2,x,&),0)| <K|E9(0, £, x, £)|.
(iii) From the two previous steps, we deduce that
|X9(0,2,x,M(,x)) — X9(0,¢,x,&)|<K'|29(0, £, x, )|
Now by applying the “Z part” of Lemma 1, we get
& — M(1,x)] =|29]1,0, X9(0, £, x, &), 29(0, 1, x, &)] — 21,0, X¢(x), 0]
< ClIX9(0,1,x,8) — X (x)| +129(0,1,x, £)]]
< k|E9(0,,x,&)|.

Hence we deduce (5.20). Now, one has

/0% 1< I, 20)0,0, .9
: 1 i
<A+ o (147270 05,8))

Using (5.20), we get that

b

|/ (2, OI< 227 fo (1 + (€)'

1
L (T"xR") <1 + H'é — M(z, x)|>
It follows that

f(1,x,9) dé‘

‘ R"

. ) 1 N
<R N e [ (1 0 = e )

We deduce that

/ Mgl(,x,¢) dﬁ] KA So (14 12D o (rcany k2"
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One deduces from the construction of V that
1AV 9] = )| o (@) < CE T fo(1 A+ 1ED [ Lo (e A" < C(S0) A2 (5.21)

Now we turn to the Holder estimate. It follows by interpolation between points b

and c, that for a certain constant C independent from 4, and for § = "?" and 0 =

7/(y + 1) one has

147 —fl§<C[IIJ’5'|IBI<vann> + (1 + |f|)>ﬁ)i||00(wr"xw)}-
We deduce that, for A<1 and another constant C (depending on f; but not on 4),
1AV 9] =)l ooy S CAT"
Now we interpolate again this inequality with (5.21). We get that for J;, one has
1AV 9] =Pl oo o) < K2,

which concludes point a, for it is sufficient to find a proper 4. This finally proves
V()=

5.5. The final state

Using the previous section and the Leray—Schauder fixed point theorem, we hence
find a fixed point, say g:‘e of the operator ¥/ in the domain Vf It is now to show

that, for (4, ¢) small enough, g* is a suitable solution, precisely that it satisfies (1.1)—

(1.5).
It follows directly from the construction that Egs. (1.1)(1.2) and (1.5) are
satisfied; in particular

0g* +E-Vg* + V" - Veg*
=0f+¢-Vf+ V" -Vef

O+ &V VTV TP + Vi = v Ve (Plg*)),

which is supported in [0, 7] x @ x R". Eq. (1.3) is satisfied provided that we suppose

that f; satisfies fy = n(fy) or equivalently that it is of the form n(fy); this is satisfied
for any final value of the control process of Section 6. We have to check (1.4). We use
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again Gronwall’s lemma: for any z€[0, T,

— *

= —_*
H( 7‘:)(t>0>x7€)_<Xg 7‘:‘g )(tvovxvé)HBO(T”x[R”)

Tl Wil 0,

<CVi= Vyxllpoope
- *
<AV =V g, (5.22)

for some constant " independent from ¢ and /. We can estimate V¢ — Vd)g* by
IV — V¢"*||C0<C(||A(g* — )= +1pk)). Now, if ¢ is small enough, then one
gets for any (¢, x,&)eQr

11X (1,0, x, &) — X(1,0,x, &)|| <1d. (5.23)
Now because of (5.1) and of (5.6), using Remark 7, one gets
X(1;,0,x,8)e H + [—4d, 1d)v,

for any (x, &) e #; x R" with |€ - v|<u. Reducing ¢ and A again if necessary, we can
ask that AM <pu. Using this scaling we see that each point in #; at time 0
corresponding to a non-zero value of f§ is transported in H + [—d, d]v at time #;, by
the flow (Xg*7Eg*).

At time #;, the construction makes f to be 0 in H + [—d, d]v. Hence it follows from
(5.4),(5.23) and (5.12)—(5.13) that one has

g*(T,-,)=0 in (T"w) x R". (5.24)

This gives a solution to the problem of controllability when f; is compactly
supported in velocity in direction v.

6. Theorem 2: the problem of high velocities (according to v)

In this section, we show how to “get rid” of particles at high velocity in the
direction v. Precisely, we find a control such that, starting from an arbitrary f;, the
corresponding solution of the Vlasov—Poisson system reaches a configuration which
satisfies

Supp(f(T,-,-)) =T" x {LeR"/|¢ - v|< M}, (6.1)

at time 7T, for a certain M >0. Then, the previous section proves that one can steer
any such configuration to 0, which completes the proof of Theorem 2.

As in the previous section, the proof relies on a special solution ( f, ¢): here it is the
trivial one:

(/s 9) = (0,0).
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Again, we construct an operator V7. We show that this operator admits a fixed point

for appropriate (g, 1) (still chosen in (0, 1)2). Finally, we show that the fixed point
that we find is relevant, that is, satisfies system (1.1)—(1.2) with (1.3) and (1.5), and

that its final value satisfies (6.1) (and is of the form n(ﬂ) for a certain ﬂ).

6.1. The operator V}

As in the previous section, we first define the domain Vé“ of Vj' by (3.8) (where
f=0), with the same constants J; and J, as in Section 5, and ¢; and ¢, to be
redefined. Again we suppose that A< p(e) in order that &, #0 and |p}| <e.

We write J .= H + {—dv,dv} (d is defined in Section 2.5). We introduce the
following subsets of 7 x R":

T ={(x,8)eT x RYE - v(x)< — 1}, (6.2)

where v is the unit outward (that is, pointing outside w) normal on I~

7 ={(x,8)eT x RYE - v(x)< —3/2), (6.3)
P = {(x e x RYE-v(x)< -2}, (6.4)
T ={(x,8)eT x RY/E-v(x)=0}. (6.5)

Again, we observe that

dist(7 x R"y*~;9°7)>0.

We introduce a C* n B! regular function U from 7 x R" to R the same way as
previously, by

0<U<l,
U=1 in 7 xRy, (6.6)
U=0 iny*.

The function Y is again introduced by (3.15), and y by (3.18). We define « as in
Section 5; then the operator IT is given by (3.22).
Now, given geyﬁ', we introduce f = V[g] as the solution of the following system:

f(0,x,&) =f; on T" x R",
O f +&-Vif +V¢! - Vef =0 in [0, T] x [(T" x R")\y~],

f(t,x,8) = [Y(i) + Y(%)}f(r,x, &) (6.7)
1= 7(2) = (2] x UG (%, ¢) on [0,7] x 7
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(The meaning of this equation is the same one as in Section 3). Then, as for Section 3,
we define V[g] by

Vgl = I fi{0,71x [T\ (H+]-2d 2d[0)] xR"} U {[0,7/4]x T" xR"} )

in [0,7] x T" x R". (6.8)
Again, fi(jo,7)x [T\ (H-+]-2d.2d[0)] xB"} U {[0,7/4]x T" x®"} 18 C'! regular, and, together with the
construction of I1, it will follow that V[g] is in C'([0, T] x T" x R").
Finally, we note ¥ the same operator as V without absorption, as in the previous
sections. In the sequel, the goal is to find a fixed point to V7, for any ¢ small enough,
provided 4 is chosen small enough in terms of e.

6.2. Finding a fixed point of V/

The goal here is again to apply the Leray—Schauder Theorem. Let us check that its
assumptions are satisfied.

1. &* is all the same a convex compact subset of C°([0, T] x T" x R").

2. Continuity of ¥/ for the C° topology: let g; be a sequence of Vﬁ converging to g
for the C° norm. Again, the sequence Ag; is bounded in some Hélder space, and one

gets gi =9i g =9 .
(X, 29) = (X9, ED oo, rp sy 20 @8 i + 0,

and one concludes as in Section 3.
3. Now we have to show that one has that V/(¥*)c.%* for suitable i< pu(e).

Again, the fourth point in the definition of Sﬂi‘ is guaranteed by the construction of
II. Let us check the three others. Again, we establish points b and c, before returning
to a.

(b) For the second condition in V‘j(yi) cyﬁ, the proof is Section 5 is again valid,
since we did not take into account the compactness of the support of fy, nor the
particular form of ¥, but only the decrease of V[g] along characteristics.

(c) Concerning Holder estimates on Vg], we have the following lemma:

Lemma 4. One has V(gle C'(Q7\Z7), with X1 = {(t,x,&) € Qr/(x,&) ey~ }. One has,
for any (t,x,&) and (¢,xX,&) in [0,T]x [T"\(H + (—d,d)v)] x R" satisfying
|x — X|<d and | - &|<1,
[Vg)(t,x,8) = Plgl(7 ', &)
<SC( A+ DG g rmsny + I+ 1EN Ao (rrce)

x |(t,x,&) — (£, x',&)], (6.9)

[Vlg)(,x,8) = Vlgl (1, X', &)]

< CU gy + N+ VS ol (6, 8) = (0] (6.10)
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The proof of Lemma 4 is approximately the same as the one of Lemma 2 up to
minor changes; in particular, we can derive the same calculus to Eq. (3.45). Let us
just underline the changing point: here, the matrix of the transformation from

(t1, oory Te1, &) to (11, ..., Ty—1,v) is no longer bounded, but of order |&|. Since here
we have the estimate

(0%, &) KN+ Dol L (g (116D 7,
we can estimate at each step 4 (see (3.46)) all the same by
1811 <KV e 11+ 1D foll o (mey (14 1D T,
or, when making use of (1.8), by
1] . <KV X, )z L+ 1ED ol ey (14 1E) 77
The lemma follows, with Remark 5 still true. (Remark that |x —x'|<d and
x,x' ¢ H + (—d, d)v imply that [x, x| does not cut H + (—d,d)v.)

Again, it follows from the construction of IT that estimates (6.9) and (6.10) are also

valid for V instead of V, on the whole domain Q7. Then we obtain again point ¢ by
interpolation between (6.9) and b, that is

(1 + \CD?V[Q]HL@(QT)<Cl[||fo)'||31(wxw) + (1 + é)yf()AHCO(‘[I'”xR”)]'

We get the desired estimate in [0, 7] x (T"\w) x R”". Using the construction of IT, we
get that

1V 19l 3520y S 215 M sy + 111+ A [ onnsrn -
(a) The last point is to prove that

14V 4|

Co1 (@) SE- (6.11)
The proof is exactly the same as its equivalent in Section 5, since we took care not to
use the compactness of the velocities in direction v at that time, but only points b and
¢, and the following remark:

Remark 9. For some ¢>0 (here ¢ = 1), one has

cMx = yI<[X0(2,0,x,0) = X°(2,0,»,0)| <clx — yl. (6.12)

We now have to prove that a fixed point g* answers to the problem (at least for
(&, 4) small enough).
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6.3. The final state

From the construction, Eqgs. (1.1)—(1.2),(1.3) and (1.5) are clearly satisfied by g*.
What we have to establish is (6.1) (at least for small ¢).
We begin with a remark.

Remark 10. One has the following property: there exists m>0 such that
VxeT",VéeR™{0} such that |&-v|=m,
e(T/4,3T/4), X°(1,0,x,8)e H + [—d/2,d/2)v. (6.13)

Now we proceed as in Section 3: first, we show that property (6.13) is still true
when V¢? is taken into account, at least if ¢ is small enough and if we widen a little
the “strip” H + [—d/2,d /2]v. Then, we show that particles in H + [—3d/4,3d/4]v, if
the v component of their velocity is large enough, have met >~ during the process,
which allows to conclude.

Step 1: The first step is again a consequence of Gronwall’s inequality (see (3.53)):

||Xf —x I coo, 71x[0, 7] T xRy < C3E-
It follows that, for relevant ¢, we get
IM>0,¥xeT" VEeR"{0} such that |£-v|=m+ 1,
3te(0,T), X" (1,0,x,&)e H + [3d,3d]v. (6.14)

Enlarging m if necessary, we can ask that |E"* (¢,0,x,&) - v| is large too (using (2.3)).
Step 2: We introduce, for xe H + [—3d, 3dJv and e R"\H, P (x, ) as the point in
J last met by x + £, with t<0. We get similarly as in Section 3 that

vn>0, IM, Vie[0,3T/4],Vxe H + [-3d,3dv,
VéeR"

s.t. |- v|=M,37e(0,1) st.:

X (Tt,x, e, | X (7,1,x,&) — Pr(x,&)|<n, and

self,d, |27 (s,1,x,8) — & <n. (6.15)

Indeed, (3.57) is still true here. But for |£ - v| large enough, one has, for a certain s<¢
with |s — ¢ <#, that d(x + (s — 1)&, H)>3d. Consequently, if ¢ is small enough, one

has d(X9™ (s, 1, x, &), H) >2d. Hence, one gets again the existence of 7. Finally, we get
| X9 (7,1,x,&) — P#(x, &)| <y and the estimate on = from (3.57), enlarging again M
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if necessary. Consequently, using again (3.57), one gets that

IM'>0,VxeT", VéeR"{0} such that |¢-v|>M',3re(0,3T/4),

]*

(X%, 597)(1,0,x,&) ey (6.16)
It follows then that for |£ - v| large enough, one gets
f(T,,&)=0 inT".

6.4. Uniqueness

Concerning uniqueness in both Sections 5 and 6, we refer to Section 3.5. This ends
the proof of Theorem 2.
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Appendix A
A.1. Proof of Proposition 1

Let us first construct the function ¢ and then show that it is convenient.

Given (xo,79)€T? x (0,1), we remark that there exist only a finite number of
directions ve S such that there exists a half-line in the torus with this direction, say
{¥(x+w), teR"}, that does not cut B(xg,ro/4). Indeed, consider veS, not
horizontal nor vertical (there are only four such vectors in S). Then, either v
corresponds to an irrational line (that is, the ratio of its coordinates is irrational),
then the corresponding half-line is dense in T2 and meets B(x,ro/4). Either it is
rational, say v is proportional to (p, ¢) with pe Z* and ge N* coprime integers. Then
the trajectory %(x+ tv) is periodic and hence {¥(x+ w), teR"} ={F(x+
tv), teR} =: L. When pulling up this straight line to R? by the canonical surjection,
we get a countable quantity of parallel straight lines in R?. Then one has

11
the distance between two parallel lines is inferior to min (— 5) (A.1)

I’
Indeed, when (x,y) belongs to one of these lines, (x+ (kp +k'q)/q,y + (kp +
k'q)/p) belongs also to it, for any (k,k’)eZ*, and then (x + kp/q,y + k'q/p) belongs
to another line in %~ !(L). Then by Bézout’s Theorem, (x + 1/¢,y) and (x,y + 1/p)
belong to other lines in .~ !(L). This gives (A.1).
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When mm(lp‘, 4)<ro/4, (A.1) implies that the half-line in the torus must meet the
ball B(xo,r9/4); of course, there are only a finite number of (p,g) satisfying

mm(w q) >rp/4. Let us remark that these v are symmetric in S (if v corresponds to

an irrational line, x + R v is already dense, and if v corresponds to a rational line the
curve is periodic).
Call vy, ..., vy these points in S (corresponding to a rational slope) for which there
exists a half-line of direction v;, which does not meet B(xy,ro/4). Then, for each i in
.,N, one can approximate x— vt in T?\[B(xo,1%) + Rv;]—note that this set
cannot be empty—for the C! norm, by the gradient of a harmonic function:

Lemma A.1. For any ie{l,...,N}, for all ¢>0, there exists 0'e C* (T?;R) such that
2
A =0 inT \B(xo, 1 o) (A.2)

IV (x) — (A.3)

07l o1 (2 8 LI A
This lemma follows from a harmonic approximation result of Bagby and Blanchet
(see [1, Theorem 9.2]), which is close to Runge’s Theorem of rational approximation
for holomorphic functions:

Theorem A.1 (Bagby-Blanchet). Let F be a closed subset of an orientable compact
Riemannian manifold Q, and U an open subset of Q\F. Suppose that U meets every
connected component of Q\F. For f harmonic in a neighborhood of F and ¢> 0, there is
a Newtonian function u on Q, which poles all lie in U, and such that

sup |u—f|<e.
F

In the previous theorem, a Newtonian function u is a function harmonic
everywhere but on its poles, and such that, for p one of its poles, there exists ce R
and a regular neighborhood R of p, such that u — ¢Gg(-,p)—where Gg(:,-) is the
Green function defined in R—is regularly defined and harmonic in R.

When regularizing u in U, we get a function harmonic in Q\U, regular on Q.

In our case, on T2\(B(xo, %) 4+ Ry;), the vector field v} can easily be seen as the
gradient of a harmonic function. It follows then that it can be approximated, in C°
norm, on the domain T2\[B(xo, 35) + Ru;], by the gradient a of function harmonic
everywhere but in B(xo,r/20). Then the C° convergence determines the CF
convergence in smaller sets for harmonic functions.

Once constructed the 0’ (we will fix ¢ later), we can describe the shape of ¢. We put

T+2 v for i€{0,...,4(N 4+ 1)}/4. We introduce a function ne Gy (]0, 1))

such that
n=0,
Jogn=1
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Then ¢ is defined as

r—1

A i+
cD(nX):—n( 4
v A

¢ =0 elsewhere in [0, T] x T?,

o' in [t 1,1 4] x T2,
R (A4)

N——

where v and 4 are fixed in order to satisfy v<T/8(N + 1) and A>[12(N + 1)/T] +
1. Hence, these constants depend only on w and 7.

Now we have to show that this ¢ is convenient. Call (X, Z) the characteristics for
¢. The only delicate point is to prove (3.4). We make a discussion according to the
direction of ¢&.

Ifl%gé S\{vi, ..., vy}, then there exists m = m(&/|£|) such that if |&| =m(&/|€|) then

for any xe T2, x + t& cuts B(xo, ro/4) for a certain te(ty, ;] (as seen by using a simple
compactness argument). Now let us suppose that ﬁ is close to v;. We are then
interested to what happens during the interval [#;, ;11].

Let us prove that for any ¢ such that £/|£| is in a neighborhood of v; in S and || is
large enough, then for any xe T2, X (1,0, x, ¢) meets B(xo,7o/4) during the interval
[t;,2i+1]. This is done in three steps.

(a) The first point is to observe that for any 7€t ti%] and any xe B(xg,ro/5) +
Ruv;, there exists se[t, t;1] such that X (s, 1, x, &) e B(xo,ro/4), at least if €] is large
enough, and &/|£| belongs to a neighborhood 77| of v; in S. Indeed, for /|| in a
neighborhood 77 of v;, if xeB(xo,79/5) + Ruv; then x + ¢ cuts B(xo,ro/%) for
t<C/|¢|. It follows then from

{ [X(s, 0,3, 8) = x = (s = )E[ < Cg)ls — 1, As)

|Z(s,t,x,&) — E|< C(op)]s — 1],

that for || large (say |&|=my), X (s, ¢, x, &) meets B(xg,ro/4) for some se(t;, tiv1].

(b) The second point consists in proving that for a (x, &) with xe T2, |¢|>m; and
¢/|¢] in a neighborhood 77 of v; in S, there exists te[t, IH%] such that
X(t,1;,x,8) € B(xo,r0/5) + Ru;. We discuss according to 2, (&), where Z,. is the
linear orthogonal projection on the direction v'. If 12,1 (E)|Z6(N + 1)/T then
during [t ZH_%], X(t,t;,x,8) =x+ (t — t;)& meets B(xg,r0/5) + Ru;.

If |2,.(&)|<6(N +1)/T, suppose that X(¢,1;,x,¢) does not meet B(xg,ro/5) +

Rv; during | |. Then

L1, 1
IZ ! 2
—t

IVo(t, X (1, t,x, &) — An(—2)vi || < Ae/v.

If ¢ is small enough in order that 4¢<1, then in that case one has
|°@vil (E([H-%’ ti, X, é))| 26(N + 1)/Ta
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and then for some ¢ in the time interval [z, i, ¢

RU,‘.

Moreover, by (A.S), if #7, is small enough and m; is large enough, then for any
xeT? and any ¢eR? satisfying &/|¢|e?”, and |é|>m,, then one has
|Z(¢, 1, x,&)|=my and E(¢,1;,x,&)/|2(¢, 1, x,&)| €7 at the time ¢ when the particle
belongs to the domain B(xy, ry/5) + Ro;.

(c) The last step is to prove that for some neighborhood 773 of v; in S and
some m3>0, if |é|>m3 and &/|¢|e€¥73, then for any x in T2, Z(£,0,x,&)/|
5(;,0,x,8)| €75, with |E(¢;,0, x, )| =my. This follows again from

1,t. 3] one has X (z,t;,x,&) e B(xp,r0/5) +
1+§ ’+Z

E“&x@)—§=/”VMLXﬁJJ£»dL

So m3 and 775 can easily be found in terms of m,, ¥, and ¢.
Now, using the compactness of S, one gets easily (3.4).

A.2. Proof of Lemma 3

The proof is close to [11, Proposition 1]. Let D be a horizontal line in T? that does
not cut @, and D+ be a vertical line in T? that does not cut ¢ (reduce € if this is not
possible). To prove Lemma 3, it suffices to find ve C* (T?; R?) satisfying:

curlv =0 in T?\0, (A.6)

divo=0 in T2, (A7)

lv(x)|>0 for any x in T?\0, (A.8)

/v-vdx:/v~dr:0, (A.9)
D D

where v stands for one of the two normal continuous unit vectors on D, and 7 for one
of the two tangent continuous unit vectors on D. Indeed, let us suppose that we have

found such a v. Denote p,, the rotation of center 0 and angle ¢ in R2. Then it follows
from (A.9) that for any ¢,

/ py(v) - dt =0, (A.10)
D

and it follows from (A.6) and (A.7) that p,,(v) still satisfies (A.6) and (A.7). Then for
a certain ¢ €[0, n], one has also

/ py(v) -dt =0, (A.11)
DJ.

But a p,(v) satisfying (A.6), (A.7),(A.10) and (A.11) is certainly of the form V0 in

T?\@. We extend it arbitrarily in ¢; then 6 satisfies the conclusions of Lemma 3.
From now, we look for v satisfying (A.6)—(A.9). The central point is that if v =

(v',v?) satisfies (A.6)~(A.7), then ¢ = v' — iv?> is a holomorphic function in T*\(¢,
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and conversely. By the way, v satisfies (A.9) if and only if the corresponding ¢
satisfies

/Dqﬁ(z) dz = 0. (A.12)

So we have left to find a holomorphic function ¢ defined on T?\¢, satisfying (A.12)
and ¢(x)#0 for any x in T?\@. For that, we introduce two nonempty open intervals
I, and I in D, with disjoints closures, and a function he C* (D, R?) satisfying

[lA(x)]|=1 on D, (A.13)
Indp(h) =0, (A.14)
h=t on [, (A.15)
h=v on b, (A.16)

/h-vdx:/h~d‘c:O. (A.17)
D D

It is elementary to construct such a . Now we use the following fact: given
heC*(D,R?), for any &>0, there exists fe#(7 (D)) (where 77 (D) is a
neighborhood of D) such that

1=l <.

Indeed, it follows from Dirichlet’s Theorem for Fourier series, that for some
constants ¢,, one has

L* (D)

Hence, z+— Zf\; N c;e*™  defined in a neighborhood of D, is relevant (for instance,
let us agree that D is given by the equation y = 0). Then it follows from the variant

Theorem 3 of Runge’s Theorem, that for a certain ¢ e #(T?\¢) one has
16 — Ally<2e.

So /i can be approximated on D in C° norm by the restriction of a holomorphic
function of T?\0.

The idea it to apply this remark to /4 :=logh (for a certain ¢€(0,1/2) small
enough), which is well defined thanks to (A.13) and to (A.14). We obtain this way a
f.. Then e/ is relevant, except that it does not necessarily satisfy (A.12) exactly;
however this integral satisfies

/ eli(z)dz
D

<Ke. (A.18)
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To ensure that we have this integral exactly nil, we introduce two regular functions
wy and w; from D to C in the following way: for ie{l,2},

Sm(w) =0 on D, (A.19)
Re(w;) =0 on D\, (A.20)
Re(w;) >0 on D, (A21)
/Qﬁ&@w):l. (A.22)

We approximate w; and w, by the restriction of a holomorphic function of T\ in
C%norm, with error at most ¢, obtaining this way Wf’ and WZS'. Then, by
considering

O, pn) = et e“W'

for suitable 4 and p in [-4(K + 1)¢,4(K + 1)¢] (K introduced in (A.18)), we will be
able to get (A.12). Indeed, we have

[fD ®—eli)dz] >(1 —e)l— C¢, for 2>0,
@ —el)dz| <(1 —e)e— Ce, for <0,
"m[fn —el)dz]=(1 —e)u— C¢  for u=0,
Im|[ [, (@ —ef)dz] <(1 —e)5— Ce  for u<0.
From now, we take ¢<1/2 and &' == {z Then we consider the application:
R2—> R?,
H
(2, 1) [Re( [, P(2)dz), Im( [, D(z)dz)].
We endow R’ with the norm ||(x,x2)|| = max(|x||,|x2|). If we restrict the

application # to the sphere (in fact, the square) with center 0 and radius
4(K + 1)g, say £ (0,4(K + 1)¢) (denote by B(0,4(K + 1)¢) the corresponding ball),
then from (A.23), we deduce that 0 is not reached. So we can define

F(0,4(K + 1)e) = 2(0,4(K + 1)e),

H o . H(2)
(4, 1) 4(K+1)s—||%(/1)“.



O. Glass | J. Differential Equations 195 (2003) 332-379 379

This application has a non-null degree (for instance, by (A.23), no point is sent to its
antipodal point). Hence,

37.€ B(0,4(K + 1)) such that # (1) = 0.

Finally, one finds a solution of the system.
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