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Abstract. The general theory on exact boundary controllability for general first order quasi-

linear hyperbolic systems requires that the characteristic speeds of the system do not vanish. This

paper deals with exact boundary controllability, when this is not the case. Some important models

are also shown as applications of the main result. The strategy uses the return method, which allows

in certain situations to recover non zero characteristic speeds.
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1. Introduction and main results. The general theory on exact boundary

controllability for general first order quasilinear hyperbolic systems requires that the

system has non vanishing characteristic speeds [21, 22]. Several papers have dealt

with hyperbolic systems having a vanishing or an identically zero characteristic speed,

under various assumptions. For systems with identically zero characteristic speeds,

general results on exact controllability have been obtained by using internal controls

[23, 24]. It is also possible to get in this case partial exact controllability by boundary

controls, if some eigenvalues of the system are equal to zero identically [26, 27]. A

steady state controllability holds for some special hyperbolic models with vanishing

characteristic speeds as Saint-Venant equations (or shallow water equations), see Gu-

gat [13]. For what concerns the system of isentropic gas dynamics (which contains

the Saint-Venant model), a general boundary controllability result for (non constant)

BV solutions was obtained by the second author in [12].

In this paper, we will discuss exact boundary controllability for a general hy-

perbolic system which admits a vanishing characteristic speed. Typically, the result
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applies to the control of physical systems admitting a critical speed: this contains the

case of the Saint-Venant equation (one can travel between sub-critical, super-critical

and critical states), the isentropic and full Euler equation for one-dimensional gas dy-

namics (one can travel between subsonic, supersonic and sonic states); see Section 4.

Consider the following first order quasilinear hyperbolic system

∂u

∂t
+ A(u)

∂u

∂x
= 0, (t, x) ∈ [0, T ]× [0, L], (1.1)

where u = (u1, · · · , un)tr(t, x) is the state of the system in some nonempty open set

Ω ⊂ Rn and the n× n matrix A belongs to C2(Ω;Rn×n).

Let u∗ ∈ Ω be fixed. Assume that A(u∗) has n real distinct eigenvalues:

λ1(u∗) < · · · < λm−1(u∗) < λm(u∗) = 0 < λm+1(u∗) < · · · < λn(u∗), (1.2)

for some m ∈ {1, · · · , n}, which are the characteristic speeds at which the system prop-

agates. Thus in a neighborhood of the equilibrium u = u∗, the system is strictly hy-

perbolic and A(u) has a complete set of left (resp. right) eigenvectors l1(u), · · · , ln(u)

(resp. r1(u), · · · , rn(u)):

li(u)A(u) = λi(u)li(u) (resp. A(u)ri(u) = λi(u)ri(u)), i = 1, · · · , n. (1.3)

Without loss of generality, let us assume that

li(u)rj(u) = δij , i, j = 1, · · · , n, (1.4)

where δij is Kronecker’s symbol. Reducing Ω if necessary, we assume that

∀j ∈ {1, . . . , m− 1}, λj(u) < 0 and ∀j ∈ {m + 1, . . . , n}, λj(u) > 0, ∀u ∈ Ω. (1.5)

Now the question is: is it possible to realize the local exact controllability near the

equilibrium u = u∗ only by using boundary controls?

In order to overcome the difficulty of a characteristic speed vanishing at u∗, we

assume the following hypothesis:

(H): for all ε > 0, there exists α = (α1, · · · , αm−1, αm+1, · · · , αn) ∈ L∞(0, 1;Rn−1)

with

‖α‖L∞(0,1;Rn−1) ≤ ε, (1.6)

such that the solution z ∈ C0([0, 1];Rn) of the ordinary differential equation

dz

ds
=

∑

j 6=m

αj(s)rj(z), z(0) = u∗, (1.7)

satisfies

λm(z(1)) 6= 0. (1.8)
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An additional difficulty when considering hyperbolic systems with characteristic speeds

whose sign may change is that it is difficult to describe the exact distribution of bound-

ary controls, since the number of boundary data to be imposed depends on the state

of the solution itself. To overcome this difficulty, we consider the system without

boundary conditions (which is consequently under-determined), and aim at finding

the solution u itself. Obviously, one can recover the boundary controls as the traces

of u afterwards.

The main result of this paper is the following theorem.

Theorem 1.1. Let (1.2) and (H) be true. Then, for any δ > 0, there exist T > 0

and ν > 0 such that, for all ϕ,ψ ∈ C1([0, L];Rn) satisfying

‖ϕ(·)− u∗‖C1([0,L]) ≤ ν, ‖ψ(·)− u∗‖C1([0,L]) ≤ ν, (1.9)

there exists u ∈ C1([0, T ]× [0, L];Rn) such that

∂u

∂t
+ A(u)

∂u

∂x
= 0, ∀(t, x) ∈ [0, T ]× [0, L], (1.10)

u(0, x) = ϕ(x), ∀x ∈ [0, L], (1.11)

u(T, x) = ψ(x), ∀x ∈ [0, L], (1.12)

‖u(t, ·)− u∗‖C1([0,L]) ≤ δ, ∀t ∈ [0, T ]. (1.13)

The hypothesis (H) seems quite difficult to check. However, we have some sufficient

conditions for (H) relying on Lie brackets.

Proposition 1.1. The following properties are sufficient conditions for (H) to

hold:

(H1): there exists j ∈ {1, · · · , n} \ {m} such that ∇λm(u∗) · rj(u∗) 6= 0,

(H2): there exist j, k ∈ {1, · · · , n} \ {m} such that ∇λm(u∗) · [rj , rk](u∗) 6= 0,

(H3): A ∈ C∞(Ω;Rn×n) and there exists h ∈ Lie{r1, · · · , rm−1, rm+1, · · · , rn}, such

that ∇λm(u∗) · h(u∗) 6= 0,

(H4): A ∈ C∞(Ω;Rn×n) and {h(u∗), h ∈ Lie{r1, · · · , rm−1, rm+1, · · · , rn}} = Rn

and u∗ is in the closure of {u ∈ Ω : λm(u) 6= 0}.
Here Lie{r1, · · · , rm−1, rm+1, · · · , rn} denotes the Lie algebra generated by the

smooth vector fields r1,. . . ,rm−1,rm+1,. . . ,rn.

Proof. It is a consequence of Chow and Rashevski’s connectivity Theorem (see

for instance [9, Theorem 3.19, p. 135]) that (H4) implies (H). Next we notice that

both (H1) and (H2) clearly imply (H3). So all we have left to prove is that (H3)

implies (H). From (H3) we deduce that there exists a direction b ∈ Rn obtained by p

successive Lie brackets and such that ∇λm(u∗) · b 6= 0. We use [16, Lemma 1, p. 456]

to deduce that there are controls α which are arbitrarily small in L∞ norm such that
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the corresponding solution of (1.7) satisfies z(4pt1/(1+p)) = u∗ + tb + o(t) as t → 0.

The conclusion follows.

Remark 1.1. Theorem 1.1 can be regarded as a local boundary controllability

result because one can drive any initial data ϕ to any desired data ψ near u = u∗

without using any internal controls. In the conservative case (where A(u) is a Jacobian

matrix Df(u)), the solution that we determine can enter the general theory of initial-

boundary problems for systems of conservation laws in the context of entropy solutions,

as it was introduced by Dubois and LeFloch [10]. The solution is not required to be

exactly equal to the boundary condition on x = 0 or x = L, but one requires that

the solution of the Riemann problem between the boundary condition and the value

of the solution at x = 0 (resp. x = L) has only waves of negative (resp. positive)

speed. For the study of the initial-boundary value problem in this framework, we refer

in particular to Amadori [1] and Amadori and Colombo [2]. Actually these papers

are concerned with the initial boundary problem on the half line, but due to the finite

speed of propagation of hyperbolic systems, the local in time theory can be transferred

to a bounded interval without additional effort.

Remark 1.2. One could ask whether the solution that we obtain in Theorem 1.1

requires a finite number of switches on the boundary, that is, of change of sign of the

characteristic speeds on the boundary, since this determines the number of boundary

conditions to be imposed. In particular in [13], one can pass from a sub-critical to a

super-critical steady state by using a single switch (hence one can move between two

super-critical states of opposite sign by using two switches). In the general case this

is not clear and depends on the geometry of the function A. But in particular cases

such as the one described in Section 4 (which all satisfy assumption (H1)), this will

be the case as it will be clear by following the lines of the proof.

Remark 1.3. Due to the hypothesis (H), one can drive the possible vanishing

characteristic speed λm to be nonzero after sufficiently long time by only using bound-

ary controls. However, if some characteristic speeds of the system are identically zero,

the approach of this paper is not valid anymore. Is boundary controllability possible in

such cases, even for some special models? Up to our knowledge, this question remains

open.

Remark 1.4. We could treat the case where A ∈ C1(Ω;Rn×n); see in particular

Remark 3.1 below.

The main idea to prove Theorem 1.1 is to use a constructive approach and the

return method [7]. In our framework this method consists in constructing a trajectory

u ∈ C2([0, T ]× [0, L];Rn) of the system (1.1), close to u∗, such that

u(0, x) = u(T, x) = u∗, ∀x ∈ [0, L], (1.14)
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and that the linearized equation around u is controllable. Note that the linearized

equation around u∗ is not controllable. Based on this, we can construct a solution

u ∈ C1([0, T ]× [0, L];Rn) to the system (1.1) which connects the initial and final data

(which have to be sufficiently close to u∗).

As a matter of fact, we will not use the linearized equation. Instead, we use

an argument of perturbation of the trajectory u and then reduce the original control

problem to a boundary control problem without vanishing characteristic speeds, which

has been solved by Li and Rao [22]. In the framework of systems of conservation

laws, the return method has also been used in [6, 8, 12, 18], see also [3]. For other

applications of the return method, see [9] and the references therein.

The organization of this paper is as follows: in Section 2 we construct the special

trajectory u ∈ C2([0, T ]× [0, L];Rn) of the system (1.1) which starts at u∗ and returns

to u∗, and such that the equation linearized around u is controllable. Then we prove

the main result, Theorem 1.1, in Section 3. Some important applications are shown in

Section 4, including Saint-Venant equations (shallow water equations), 1-D isentropic

gas dynamics equations, 1-D full gas dynamics equations and Aw-Rascle model on

traffic flow and its generalization. Finally, in Appendix A, we establish a technical

result.

Acknowledgements. The authors would like to thank the anonymous referees for

useful comments on a first version of the paper.

2. Construction of the trajectory u. We start this section with the following

definition.

Definition 2.1. Let j ∈ {1, · · · , n} and u0 ∈ Ω. Let s ∈ [−ε0, ε0] 7→ Uj(s) ∈ Ω

be the orbit of the eigenvector field rj starting at u0 (or rarefaction curves):

dUj

ds
= rj(Uj), Uj(0) = u0, (2.1)

where ε0 > 0 is a small constant. Let Φj(s, ·) be the corresponding flow map when s

varies, i.e.,

Φj(s, u0) := Uj(s), ∀s ∈ [ε0, ε0]. (2.2)

Remark 2.1. For all s ∈ [−ε0, ε0], one has

u+ = Φj(s, u−) ⇐⇒ u− = Φj(−s, u+).

Without loss of generality, we may assume the equilibrium u∗ to be 0, replacing u

by u−u∗ as the unknown in the system (1.1) if necessary. Until the end of this section
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we assume that u∗ = 0. For the convenience of statements, in the whole paper, we

denote by C various positive constants which may change from one line to another.

Our first proposition concerns simple waves which one can use to modify the state

in [0, L].

Proposition 2.1. Let j ∈ {1, · · · , n} \ {m} and

T >
L

|λj(0)| . (2.3)

There exist C > 0 and ε0 > 0, such that, for all ε ∈ (0, ε0] and all u−, u+ ∈ Ω

satisfying

|u−|, |u+| ≤ ε and u+ = Φj(s, u−) for some s such that |s| ≤ ε, (2.4)

there exists u ∈ C2([0, T ]× R;Rn) such that

∂u

∂t
+ A(u)

∂u

∂x
= 0, ∀(t, x) ∈ [0, T ]× R, (2.5)

u(0, x) = u−, ∀x ∈ [0, L], (2.6)

u(T, x) = u+, ∀x ∈ [0, L], (2.7)

‖u(t, ·)‖C1(R) ≤ Cε, ∀t ∈ [0, T ]. (2.8)

Proof. Without loss of generality, we may assume that j ∈ {1, · · · ,m − 1} (the

case where j ∈ {m + 1, · · · , n} can be treated similarly by symmetry in x, that is,

replacing x by L− x if necessary).

In view of (1.2) and (2.3), there exist ε1 > 0 and η > 0 small enough such that

T > max
|u|≤ε1

L + η

|λj(u)| . (2.9)

Let ε ∈ (0, ε1] and u−, u+ ∈ Ω be such that (2.4) holds. By Definition 2.1, it is

easy to see that

|Φj(s, u−)| ≤ Cε, ∀s ∈ [−|s|, |s|]. (2.10)

Let β ∈ C∞0 ((0, 1);R) be such that
∫ 1

0

β(θ)dθ = 1. (2.11)

Then we let

β(θ) :=
s

η
β(

θ

η
), (2.12)

which gives that β ∈ C∞0 ((0, η);R) and
∫ η

0

β(θ)dθ = s. (2.13)
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From the above, the ordinary differential equation

dy

dθ
= β(θ)rj(y), y(0) = u−, (2.14)

admits a unique solution y(·) = Φj(σ(·), u−) ∈ C2([0, η];Rn), where

σ(s) :=
∫ s

0

β(θ)dθ, ∀s ∈ [0, η]. (2.15)

Let

ϕ(x) :=





u−, x ≤ L,

y(x− L), L < x < L + η,

u+, x ≥ L + η.

(2.16)

In the following, we will denote by Ck(R) the space of functions of class Ck whose

derivatives up to order k are bounded on R (and the norm ‖ · ‖Ck(R) is in fact the

norm ‖ · ‖W k,∞(R)).

Then by (2.10), (2.12), (2.14) and (2.16), we obtain that

‖ϕ‖C0(R) := sup
x∈R

|ϕ(x)| ≤ Cε, (2.17)

‖ϕ′‖C0(R) := sup
x∈R

|ϕ′(x)| ≤ C
s

η
≤ Cε. (2.18)

Now we focus on the Cauchy problem of (2.5) on R with the initial condition

u(0, x) = ϕ(x), ∀x ∈ R. (2.19)

It is classical that there exists a unique C2 solution to the Cauchy problem (2.5) and

(2.19) in small time; see for instance [17, p. 55]. Let us prove that: for the fixed time

T > 0, if ε is sufficiently small, the Cauchy problem (2.5), (2.19) admits a unique

solution u ∈ C2([0, T ]× R;Rn) such that (2.6) to (2.8) hold.

To show that, it suffices to obtain a uniform a priori estimate of the solution in

C1 (see [17, Theorem 4.2.5, p. 55]). In order to obtain such an a priori estimate,

we assume that the Cauchy problem (2.5), (2.19) admits already a solution u ∈
C2([0, T0]× R;Rn) for some T0 ∈ (0, T ).

For any i ∈ {1, · · · , n} and any point (t, x) ∈ [0, T0]×R, we can define the i− th

characteristic curve ξ = ξi(τ) passing through (t, x) by

dξ

dτ
= λi(u(τ, ξ)), ξ(t) = x. (2.20)

Introducing

vi := li(u)u, wi := li(u)
∂u

∂x
, i = 1, · · · , n, (2.21)
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i.e.,

u =
∑

i

viri(u),
∂u

∂x
=

∑

i

wiri(u), (2.22)

we know that vi, wi (i = 1, · · · , n) satisfy the following (see [17, p. 47] and [19]):

dvi

dit
=

∑

j,k

βikl(u)vkwl, i = 1, · · · , n, (2.23)

dwi

dit
=

∑

k,l

γikl(u)wkwl, i = 1, · · · , n, (2.24)

where

d

dit
:=

∂

∂t
+ λi(u)

∂

∂x
(2.25)

denotes the derivative along the i-th characteristic, and where βikl, γikl ∈ C1(Ω;Rn)

satisfy in particular

γikk(u) = 0, ∀i, k ∈ {1, · · · , n}, k 6= i, (2.26)

γiii(u) = −∇λi(u)ri(u), i = 1, · · · , n. (2.27)

By (2.26)-(2.27), (2.24) can be written as

dwi

dit
=

∑

k 6=l

γikl(u)wkwl − (∇λi(u)ri(u))w2
i , i = 1, · · · , n. (2.28)

Combining (2.16)-(2.18) and (2.22), noticing (1.4), we have

|vi(0, x)| = |li(ϕ(x))ϕ(x)| ≤ Cε, ∀x ∈ R,∀i ∈ {1, · · · , n}, (2.29)

wi(0, x) = li(ϕ(x))ϕ′(x) = 0, ∀x ∈ R,∀i ∈ {1, · · · , n} \ {j}, (2.30)

|wj(0, x)| = |lj(ϕ(x))ϕ′(x)| ≤ Cε, ∀x ∈ R. (2.31)

As in the proof of [17, Theorem 4.2.5, p. 55], we first assume that

|vi(t, x)| ≤ 1, |wi(t, x)| ≤ 1, ∀(t, x) ∈ [0, T0]× R,∀i ∈ {1, · · · , n}. (2.32)

By (2.28) when i 6= j and (2.30) , we deduce that

wi(t, x) = 0, ∀(t, x) ∈ [0, T0]× R, ∀i ∈ {1, · · · , n} \ {j}, (2.33)

which then reduces (2.28) when i = j to

dwj

djt
= −(∇λj(u)rj(u))w2

j . (2.34)
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By comparing the norm of the solution (2.23) and (2.34) to the solution of the ordinary

differential equation ẋ = ‖∇λj .rj‖x2, noticing also (2.29) and (2.31), we deduce that

the following estimates hold

|vi(t, x)| ≤ Cε, ∀(t, x) ∈ [0, T0]× R, ∀i ∈ {1, · · · , n}, (2.35)

|wj(t, x)| ≤ Cε, ∀(t, x) ∈ [0, T0]× R. (2.36)

Combining (2.33) and (2.35)-(2.36), there exists ε0 ∈ (0, ε1] small enough such that,

for any ε ∈ (0, ε0], the assumption (2.32) is indeed satisfied, and the uniform a priori

estimate

‖u(t, ·)‖C1(R) ≤ Cε, ∀t ∈ [0, T0], (2.37)

holds for all T0 ∈ (0, T ). This proves the existence of the solution u ∈ C2([0, T ] ×
R;Rn) (see again [17, Theorem 4.2.5, p. 55]). Moreover, since (2.9) implies

T >
L + η

|λj(u+)| , (2.38)

we derive from the fact

wi(0, x) = 0, ∀x ∈ [L + η,∞),∀i ∈ {1, · · · , n}, (2.39)

that

wi(T, x) = 0, ∀x ∈ [0,∞),∀i ∈ {1, · · · , n}, (2.40)

which in turn implies that

u(T, x) = const. = lim
x→∞

u(T, x) = u+, ∀x ∈ [0,∞). (2.41)

This concludes the proof of Proposition 2.1.

Remark 2.2. In the proof above, the information travels from right to left through

the boundary x = L. For i ∈ {1, . . . , m− 1}, the information would travel from left to

right through the boundary x = 0.

Remark 2.3. Because (2.5) is an autonomous system, the conclusion of Propo-

sition 2.1 on [0, T ] can be achieved on [t0, t0 + T ] for any t0 ∈ R by translation in

time.

The next proposition proves that one can approximate the trajectory given by

(1.7) by a trajectory composed of simple waves.

Proposition 2.2. There exist C > 0 and ε0 > 0 such that the following holds.

For any ε ∈ (0, ε0], any α = (α1, · · · , αm−1, αm+1, · · · , αn) ∈ L∞(0, 1;Rn−1) satisfy-

ing

‖α‖L∞(0,1;Rn−1) ≤ ε, (2.42)
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we consider z ∈ C0([0, 1];Rn) the solution to the ordinary differential equation

dz

ds
=

∑

j 6=m

αj(s)rj(z), z(0) = 0, (2.43)

Then, for any η > 0, there exist p ∈ N, i1, · · · , ip ∈ {1, · · · , n}\{m} and t1, · · · , tp ∈ R
such that

p∑

l=1

|tl| ≤ Cε, (2.44)

|z(1)− Φip(tp, ·) ◦ · · · ◦ Φi2(t2, ·) (Φi1(t1, 0))| ≤ η. (2.45)

Proposition 2.2 will be established in Appendix A. The next proposition, which

establishes the existence of the special trajectory u, is the principal result of this

section.

Proposition 2.3. There exist C > 0 and ε0 > 0 such that the following holds.

For any ε ∈ (0, ε0], there exist T > 0, a state u∗ ∈ Ω satisfying

λi(u∗) 6= 0, ∀i ∈ {1, · · · , n}, (2.46)

a positive integer p and times 0 = τ0 < τ1 < · · · < τ2p+1 = T with

τp+1 − τp > max
i=1...n

L

|λi(u∗)| , (2.47)

and a function u ∈ L∞((0, T )× R;Rn) such that

u|[τl−1,τl]×R ∈ C2([τl−1, τl]× R;Rn), ∀l ∈ {1, . . . , 2p + 1}, (2.48)

u|[0,T ]×[0,L] ∈ C2([0, T ]× [0, L];Rn), (2.49)

∂u

∂t
+ A(u)

∂u

∂x
= 0, for (t, x) in each [τl−1, τl]× R, ∀l ∈ {1, . . . , 2p + 1}, (2.50)

u(0, x) = u(T, x) = 0, ∀x ∈ [0, L], (2.51)

u(t, x) = u∗, ∀t ∈ [τp, τp+1], ∀x ∈ [0, L], (2.52)

‖u(t, ·)‖C1(R) ≤ Cε, for t in each [τl−1, τl], ∀l ∈ {1, . . . , 2p + 1}. (2.53)

Proof. By Proposition 2.2 and the hypothesis (H), we can deduce that there

exist C > 0 and ε1 > 0 such that for any ε ∈ (0, ε1], one can find p ∈ N and

i1, · · · , ip ∈ {1, · · · , n} \ {m}, t1, · · · , tp ∈ R such that (2.44) applies and

λm(Φip(tp, ·) ◦ · · · ◦ Φi2(t2, ·)(Φi1(t1, 0))) 6= 0. (2.54)

And thus

λi(Φip
(tp, ·) ◦ · · · ◦ Φi2(t2, ·)(Φi1(t1, 0))) 6= 0, ∀i ∈ {1, · · · , n}. (2.55)
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We let

u∗ := Φip
(tp, ·) ◦ · · · ◦ Φi2(t2, ·)(Φi1(t1, 0)).

Now for every l ∈ {1, · · · , p}, let

Tl :=
L

|λil
(0)| + 1 (2.56)

and in addition




τl :=
l∑

k=1

Tk for l = 1, . . . , p,

τp+1 := τp + max
i=1...n

L

|λi(u∗)| + 1

τl := τp+1 +
p∑

k=2p+2−l

Tk for l = p + 2, . . . , 2p + 1.

(2.57)

Observe that there is a symmetry with respect to the central time interval [τp, τp+1],

that is, [τp−1, τp] is symmetric of [τp+1, τp+2], etc.

Applying Proposition 2.1 and Remark 2.2 with

u− := Φil−1(tl−1, ·) ◦ · · · ◦ Φi2(t2, ·)(Φi1(t1, 0)),

u+ := Φil
(tl, ·) ◦ · · · ◦ Φi2(t2, ·)(Φi1(t1, 0)),

for l = 1, . . . , p, we deduce that provided that ε0 is small enough, for any ε ∈ (0, ε0],

there exists ul ∈ C2([τl−1, τl]× R;Rn) such that

∂ul

∂t
+ A(ul)

∂ul

∂x
= 0, ∀(t, x) ∈ [τl−1, τl]× R, (2.58)

ul(τl−1, x) = u−, ∀x ∈ [0, L], (2.59)

ul(τl, x) = u+, ∀x ∈ [0, L], (2.60)

‖ul(t, ·)‖C1(R) ≤ Cε, ∀t ∈ [τl−1, τl]. (2.61)

Then, we let

T := τ2p+1. (2.62)

Finally, letting

u(t, x) :=





ul(t, x), (t, x) ∈ [τl−1, τl]× R, l = 1, · · · , p,

u∗, (t, x) ∈ [τp, τp+1]× R,

u2p+1−l(τl − t, L− x), (t, x) ∈ [τl−1, τl]× R, l = p + 2, · · · , 2p + 1,

we can see that u ∈ L∞((0, T )× R;Rn) satisfies the required properties.
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3. Proof of Theorem 1.1. We still denote by C various constants which may

vary from line to line. In order to conclude the proof, we will use a perturbation

argument together with a result by Li and Rao [22]. First, we have the following

perturbation result.

Proposition 3.1. Consider K ⊂ Ω a nonempty compact subset. Let T > 0. For

any ũ ∈ C2([0, T ]× R;K) satisfying

∂ũ

∂t
+ A(ũ)

∂ũ

∂x
= 0, ∀(t, x) ∈ [0, T ]× R, (3.1)

ũ(0, x) = ψ̃(x) ∀x ∈ R, (3.2)

there exist ν0 > 0 and C > 0 such that for any ν ∈ (0, ν0) and any ψ ∈ C1(R; Ω)

satisfying

‖ψ(·)− ψ̃‖C1(R) ≤ ν, (3.3)

the unique maximal solution u ∈ C1([0, T0]× R; Ω) of

∂u

∂t
+ A(u)

∂u

∂x
= 0, ∀(t, x) ∈ [0, T ]× R, (3.4)

u(0, x) = ψ(x), ∀x ∈ R, (3.5)

is defined on [0, T ]× R and satisfies

‖u(t, ·)− ũ(t, ·)‖C1(R) ≤ Cν, ∀t ∈ [0, T ]. (3.6)

Proof. Given ψ ∈ C1(R; Ω), there exists a local in time solution u ∈ C1([0, T0]×R)

of (3.4)-(3.5). We show in the same time that u does not blow up before T and that

(3.6) holds.

For that, let us make the difference of (3.1) and (3.4), we get

∂

∂t
(u− ũ) + A(u)

∂

∂x
(u− ũ) = (A(ũ)−A(u))

∂ũ

∂x
, ∀(t, x) ∈ [0, T ]× R, (3.7)

u(0, x)− ũ(0, x) = ψ(x)− ψ̃(x), ∀x ∈ R. (3.8)

By Gronwall’s inequality we deduce that

‖u(t, ·)− ũ(t, ·)‖C0(R) ≤ C‖ψ − ψ̃‖C0(R) ≤ Cν. ∀t ∈ [0, T ]. (3.9)

Differentiating (3.7) with respect to x and observing that ũ is of class C2, we can use

the same Gronwall argument to infer (3.6) and that the maximal solution is defined

on [0, T ].

Remark 3.1. We could use only a C1 regularity assumption on ũ provided that

this ũ has the particular structure given by Proposition 2.1. While the estimate (3.9)

should be replaced by a weaker one (but sufficient for the proof of Theorem 1.1):

‖u(T, ·)− ũ(T, ·)‖C1([0,L]) ≤ Cν. (3.10)
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This can be proved by using the wave decomposition formula (2.28) in the sense of

integral equations and the fact that ũ satisfies the properties (2.33), (2.36) and (2.39).

This technique is central in [20]. Hence A ∈ C1(Ω,Rn×n) is sufficient for Theorem

1.1.

Remark 3.2. As previously, the conclusion of Lemma 3.1 on [0, T ] can be

achieved on [t0, t0 + T ] for any t0 ∈ R by translation in time.

Proof of Theorem 1.1. As in the above section, we may assume the equilibrium

u∗ to be 0, otherwise we can replace u by u− u∗ as the unknown in the system (1.1).

By Proposition 2.3, we can deduce that: there exist C > 0, ε0 > 0 and T > 0,

such that for any ε ∈ (0, ε0], there exist u∗ ∈ Ω and u ∈ L∞((0, T )×R;Rn) such that

(2.46) to (2.53) hold.

For every l ∈ {1, · · · , p}, let τl be given by (2.57). Let

u0(0, x) = ϕ(x), ∀x ∈ [0, L]. (3.11)

The proof relies on a induction argument on l. By Proposition 3.1, we see that there

exist C > 0, ε
l
> 0 and ν

l
> 0, for any ε ∈ (0, ε

l
] and any ν ∈ (0, ν

l
], if

‖ul−1(τl−1, ·)− u(τl−1, ·)‖C1([0,L]) ≤ ν, (3.12)

then there exists ul ∈ C1([τl−1, τl]× R;Rn) such that

∂ul

∂t
+ A(ul)

∂ul

∂x
= 0, ∀(t, x) ∈ [τl−1, τl]× R, (3.13)

ul(τl−1, x) = ul−1(τl−1, x), ∀x ∈ [0, L], (3.14)

‖ul(t, ·)‖C1(R) ≤ Cε + Cν, ∀t ∈ [τl−1, τl], (3.15)

‖ul(τl, ·)− u(τl, ·)‖C1([0,L]) ≤ Cν. (3.16)

Therefore, there exist C > 0, εf > 0 and νf > 0, such that for any ε ∈ (0, εf ] and for

any ν ∈ (0, νf ], if

‖ϕ‖C1([0,L]) ≤ ν, (3.17)

then there exists uf ∈ C1([0, τp]× [0, L];Rn) such that

∂uf

∂t
+ A(uf )

∂uf

∂x
= 0, ∀(t, x) ∈ [0, τp]× [0, L], (3.18)

uf (0, x) = ϕ(x), ∀x ∈ [0, L], (3.19)

‖uf (t, ·)‖C1([0,L]) ≤ Cε + Cν, ∀t ∈ [0, τp], (3.20)

‖uf (τp, ·)− u(τp, ·)‖C1([0,L]) ≤ Cν. (3.21)

In the same way and in view of Remark 3.2, there exist C > 0, εb > 0 and νb > 0,

such that for any ε ∈ (0, εb] and for any ν ∈ (0, νb], if

‖ψ‖C1([0,L]) ≤ ν, (3.22)
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then there exists ub ∈ C1([τp+1, T ]× [0, L];Rn) such that

∂ub

∂t
+ A(ub)

∂ub

∂x
= 0, ∀(t, x) ∈ [τp+1, T ]× [0, L], (3.23)

ub(T, x) = ψ(x), ∀x ∈ [0, L], (3.24)

‖ub(t, ·)‖C1([0,L]) ≤ Cε + Cν, ∀t ∈ [τp+1, T ], (3.25)

‖ub(τp+1, ·)− u(τp+1, ·)‖C1([0,L]) ≤ Cν. (3.26)

Now we can apply the result of Li and Rao [22] near the equilibrium of u(τp, ·) =

u(τp+1, ·) = u∗ ∈ Ω: due to (2.47) there exists νm > 0, such that for any ν ∈ (0, νm],

if ‖u(τp, ·) − u∗‖C1([0,L]) and ‖u(τp+1, ·) − u∗‖C1([0,L]) are small enough, there exists

um ∈ C1([τp, τp+1]× [0, L];Rn) such that

∂um

∂t
+ A(um)

∂um

∂x
= 0, ∀(t, x) ∈ [τp, τp+1]× [0, L], (3.27)

um(τp, x) = uf (τp, x), ∀x ∈ [0, L], (3.28)

um(τp+1, x) = ub(τp+1, x), ∀x ∈ [0, L], (3.29)

‖um(t, ·)‖C1([0,L]) ≤ Cν, ∀t ∈ [τp, τp+1]. (3.30)

Combining all of the above, there exists C > 0 such that for any δ > 0, there

exist ε > 0 and ν > 0 small enough, such that for any ϕ,ψ ∈ C1([0, L];Rn) satisfying

‖ϕ‖C1([0,L]) ≤ ν, ‖ψ‖C1([0,L]) ≤ ν, (3.31)

one can construct u ∈ C1([0, T ]× [0, L];Rn) by

u(t, x) =





uf (t, x), ∀(t, x) ∈ [0, τp]× [0, L],

um(t, x), ∀(t, x) ∈ [τp, τp+1]× [0, L],

ub(t, x), ∀(t, x) ∈ [τp+1, T ]× [0, L].

(3.32)

Now this function u clearly satisfies

∂u

∂t
+ A(u)

∂u

∂x
= 0, ∀(t, x) ∈ [0, T ]× [0, L], (3.33)

u(0, x) = ϕ(x), ∀x ∈ [0, L], (3.34)

u(T, x) = ψ(x), ∀x ∈ [0, L], (3.35)

‖u(t, ·)‖C1([0,L]) ≤ Cε + Cν ≤ δ, ∀t ∈ [0, T ]. (3.36)

This finishes the proof of Theorem 1.1.

4. Some models. In this section, we give several examples of systems to which

the main result can be applied.
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Model 1: Saint-Venant equations (shallow water equations) [8, 13, 14, 15]:

∂H

∂t
+

∂

∂x
(HV ) = 0,

∂V

∂t
+

∂

∂x
(
V 2

2
+ gH) = 0,

(4.1)

where g > 0 is the gravity constant. Let U = (H, V )tr, (4.4) is reduced to

Ut + A(U)Ux = 0, (4.2)

with

A(U) =

(
V H

g V

)
. (4.3)

By the study of Model 2 (see below), Theorem 1.1 can be applied to (4.1) near the

equilibrium U∗ := (H∗, V ∗) where V ∗ =
√

gH∗ with H∗ > 0 or near the equilibrium

U? := (H?, V ?) where V ? = −√gH? with H? > 0.

Model 2: 1-D isentropic gas dynamics equations in Eulerian coordinates [12]:

∂ρ

∂t
+

∂m

∂x
= 0,

∂m

∂t
+

∂

∂x
(
m2

ρ
+ p) = 0,

(4.4)

where

p = Kργ (K > 0, 1 < γ < 3). (4.5)

We can see (4.1) is a special case of (4.4) when p = gρ2/2.

Moreover, let U = (ρ, u)tr, (4.4) is reduced to

Ut + A(U)Ux = 0 (4.6)

with

A(U) =

(
u ρ

p′(ρ)
ρ u

)
. (4.7)

The characteristic speeds and the corresponding eigenvectors are

λ1(U) = u−
√

p′(ρ), λ2(U) = u +
√

p′(ρ), (4.8)

r1(U) = (
ρ√
p′(ρ)

,−1)tr, r2(U) = (
ρ√
p′(ρ)

, 1)tr. (4.9)
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Let U∗ := (ρ∗, u∗) where u∗ =
√

p′(ρ∗) with ρ∗ > 0, that is, the fluid reaches the

sound speed. Then it is easy to check that

λ1(U∗) = 0 < λ2(U∗) = 2
√

p′(ρ∗) (4.10)

and the hypothesis (H1) is satisfied as:

∇λ1(U∗) · r2(U∗) =
3− γ

2
> 0. (4.11)

Similarly, if we let U? := (ρ?, u?) where u? =
√

p′(ρ?) with ρ? > 0 (which is the

symmetric case of the latter), one can see that

λ1(U?) = −2
√

p′(ρ?) < λ2(U?) = 0 (4.12)

and the hypothesis (H1) is satisfied as:

∇λ2(U?) · r1(U?) =
γ − 3

2
< 0. (4.13)

Therefore, Theorem 1.1 can be applied to (4.4) near the equilibrium U∗ or U?.

Model 3: 1-D full gas dynamics equations in Eulerian coordinates [25]:

∂ρ

∂t
+

∂

∂x
(ρu) = 0,

∂

∂t
(ρu) +

∂

∂x
(ρu2 + p) = 0,

∂

∂t

[
ρ(

u2

2
+ e)

]
+

∂

∂x

[
ρu(

u2

2
+ e) + pu

]
= 0.

(4.14)

Assume the gas is polytropic, so that

e = cvT =
cvRρ

p
(cv > 0, R > 0) (4.15)

and

p = ke
S

cv ργ (k > 0, 1 < γ < 3). (4.16)

Thus, on the domain of ρ > 0, we have pρ > 0, pρρ > 0 and p
S

> 0. Model 3

generalizes Model 2 if we let m := ρu and S ≡ S0 ∈ R.

Let U = (ρ, u, S)tr, then (4.14) can be rewritten as

Ut + A(U)Ux = 0, (4.17)

with

A(U) =




u ρ 0
pρ

ρ u
p

S

ρ

0 0 u


 . (4.18)
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The characteristic speeds and the corresponding eigenvectors are

λ1(U) = u− c, λ2(U) = u, λ3(U) = u + c, (4.19)

r1(U) = (ρ,−c, 0)tr, r2(U) = (p
S
, 0,−pρ)tr, r3(U) = (ρ, c, 0)tr, (4.20)

with c = √
pρ.

Let U∗ := (ρ∗, 0, S∗) where ρ∗ > 0, S∗ ∈ R, then it is easy to check that

λ1(U∗) < λ2(U∗) = 0 < λ3(U∗) (4.21)

and the hypothesis (H1) is satisfied as:

∇λ2(U∗) · r1(U∗) = −c(U∗) < 0 or ∇λ2(U∗) · r3(U∗) = c(U∗) > 0. (4.22)

Therefore, we can apply Theorem 1.1 to obtain boundary controllability for (4.14)

near the equilibrium U∗.

Model 4: AR and MAR traffic flow system [4, 5]:

∂ρ

∂t
+

∂

∂x
(ρu) = 0,

∂

∂t
(ρ(u + p(ρ))) +

∂

∂x
(ρu(u + p(ρ))) = 0,

(4.23)

with

p = ργ (γ > 0), (AR)

and

p = (
1
ρ
− 1

ρ0
)−γ (γ > 0, ρ0 > 0). (MAR)

We deduce system (AR) form system (MAR) by letting ρ0 = +∞.

Let U = (ρ, u)tr, (4.23) is reduced to

Ut + A(U)Ux = 0, (4.24)

with

A(U) =

(
u ρ

0 u− ρp′(ρ)

)
. (4.25)

The characteristic speeds and the corresponding eigenvectors are

λ1(U) = u− ρp′(ρ), λ2(U) = u, (4.26)

r1(U) = (1,−p′(ρ))tr, r2(U) = (1, 0)tr. (4.27)
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Let U∗ := (ρ∗, u∗) where u∗ = ρ∗p′(ρ∗) with 0 < ρ∗ < ρ0, then we have

λ1(U∗) = 0 < λ2(U∗) = ρ∗p′(ρ∗) > 0, (4.28)

and the hypothesis (H1) is satisfied as:

∇λ1(U∗)·r2(U∗) = −p′(ρ∗)−ρ∗p′′(ρ∗) = −γ(ρ∗)−3(
1
ρ∗
− 1

ρ0
)−γ−2(

ρ∗

ρ0
+γ) < 0. (4.29)

Similarly, if we let U? := (ρ?, 0) with 0 < ρ? < ρ0, then it is easy to check that

λ1(U?) = −ρ?p′(ρ?) < λ2(U?) = 0, (4.30)

and the hypothesis (H1) is satisfied as:

∇λ2(U?) · r1(U?) = −p′(ρ?) = −γ(ρ?)−2(
1
ρ?
− 1

ρ0
)−γ−1 < 0. (4.31)

Theorem 1.1 can thus be applied to (4.23) near the equilibrium U∗ or U?.

Appendix A. Proof of Proposition 2.2. Proposition 2.2 belongs to the folk-

lore of finite-dimensional control theory (see in particular Fillipov [11]). Since we have

not found the exact required formulation in the literature, we give the proof in details

for the sake of completeness.

We begin with a few notations.

Definition A.1. PN
(a,b) ⊂ L∞(a, b;RN ) is defined as the set consisting of all

piecewise constant vector functions on (a, b). Next FN
(a,b) ⊂ PN

(a,b) is defined as the

set consisting of all piecewise constant vector functions on (a, b) with at most one

nontrivial component, i.e., f = (f1, · · · , fN )tr ∈ FN
(a,b) if and only if there exist p ∈ N,

indices i1, · · · , ip ∈ {1, · · · , N}, constants f1
i1

, · · · , fp
ip
∈ R and a = t0 < t1 < · · · <

tp = b such that

f(t) = f l
il
eil

, ∀t ∈ (tl−1, tl), l = 1, · · · , p, (A.1)

where e1, · · · , eN denote the standard basis of RN .

Now we prove the following statement.

Proposition A.1. FN
(0,1) is dense in L∞(0, 1;RN ) with respect to the weak-∗

topology, more precisely, for any f ∈ L∞(0, 1;RN ), there exists a sequence {fk}∞k=1 ⊂
FN

(0,1) such that

lim
k→∞

∫ 1

0

fk(t) · h(t)dt =
∫ 1

0

f(t) · h(t)dt, ∀h ∈ L1(0, 1;RN ), (A.2)

‖fk‖L∞(0,1;RN ) ≤ C‖f‖L∞(0,1;RN ), ∀k ∈ N. (A.3)
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Proof. It is classical that PN
(0,1) is dense in L∞(0, 1;RN ) for the weak-∗ topology

(moreover one can require (A.3) to hold on an approximating sequence). Hence it

suffices to prove that FN
(0,1) is dense in PN

(0,1) with respect to weak-∗ topology. To do

this, we first prove (A.2) in the simpler case where f is a constant function:

f(t) = f = (f1, · · · , fN )tr ∈ RN , ∀t ∈ [0, 1].

For any k ∈ N, we let f
k ∈ FN

(0,1) be defined as

f
k
(t) := Nf iei, ∀t ∈

( (j − 1)N + i− 1
kN

,
(j − 1)N + i

kN

)
,∀j ∈ {1, · · · , k}, i = 1, · · ·N.

Clearly f
k

converges weakly-∗ to f in L∞(0, 1;RN ) as k tends to ∞. Now we treat

the general case where f ∈ PN
(0,1). We introduce times 0 = t0 < t1 < · · · < tp = 1

such that

f(t) = f
l
, ∀t ∈ (tl−1, tl), l = 1, · · · , p,

where the f
l
are constants.

From the previous arguments, we can obtain by translation and scaling that there

exists {f lk}∞k=1 ⊂ FN
(tl−1,tl)

such that f
lk

converges weakly-∗ to f
l
in L∞(tl−1, tl;RN )

as k tends to ∞. Finally, for any k ∈ N, we let

fk(t) := f
lk

(t), t ∈ (tl−1, tl), l = 1, · · · , p.

It is obvious that {fk}∞k=1 ⊂ FN
(0,1) and fk converges weakly-∗ to f in L∞(0, 1;RN )

as k tends to ∞, i.e., (A.2) holds. Observe that (A.3) holds.

Back to the proof of Proposition 2.2. Since α ∈ L∞(0, 1;Rn−1), the solution

z ∈ C0([0, 1];Rn) to the ordinary differential equation (2.43) is Lipschitz continuous,

since

z(s) =
∫ s

0

∑

j 6=m

αj(θ)rj(z(θ))dθ, ∀s ∈ [0, 1]. (A.4)

Let α be such that (2.42) holds. By Proposition A.1, there exists a sequence {αk}∞k=1 ⊂
Fn−1

(0,1) with the notation αk := (αk
1 , · · · , αk

m−1, α
k
m+1, · · · , αk

n), which converges weakly-

∗ to α in L∞(0, 1;Rn−1) and

‖αk‖L∞(0,1;Rn−1) ≤ C‖α‖L∞(0,1;Rn−1) ≤ Cε, ∀k ∈ N. (A.5)

Let zk ∈ C0([0, Sk];Rn) be the solution to the Cauchy problem

dzk

ds
=

∑

j 6=m

αk
j (s)rj(zk), zk(0) = 0, (A.6)
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where Sk ∈ (0, 1]. By (A.5), zk is uniformly Lipschitz continuous.

If ε is small enough, then by (2.42), we can deduce that

Sk = 1, (A.7)

that is, zk is defined on the whole time interval [0, 1], for all k ∈ N, and

‖zk‖W 1,∞(0,1;Rn) ≤ Cε, ∀k ∈ N. (A.8)

By the Arzelà-Ascoli Theorem, there exists a subsequence {zkl}∞l=1 ⊂ {zk}∞k=1

and z∞ ∈ C0([0, 1];Rn) such that zkl

converges to z∞ in C0([0, 1];Rn) as l tends to

∞. Now it is straightforward to pass to the limit in (A.4) (even, the limit is unique).

This concludes the proof of Proposition 2.2.
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