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Abstract. We investigate the problems of exact controllability and asymptotic stabilization of the Camassa-Holm
equation in the circle, by means of a distributed control. The results are global, and in particular the control prevents
the solution from blowing up.
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1 Introduction

1.1 Statement of the problem

In this paper, we are interested in two control problems concerning the Camassa-Holm equation in the circle
T := R/Z:

ut − utxx + 2κux + 3uux = 2uxuxx + uuxxx for (t, x) ∈ [0, T ]× T. (1)

The Camassa-Holm equation describes one-dimensional surface waves at a free surface of shallow water under
the influence of gravity. The function u(t, x) represents the fluid velocity at time t and position x, and the
constant κ is a nonnegative parameter. Equation (1) was first introduced by Fokas and Fuchssteiner [18] as
a bi-Hamiltonian model, and was derived as a water wave model by Camassa and Holm [3]. It turns out
that this equation was also obtained as a model of propagating waves in cylindrical elastic rods, see Dai [14].

We investigate this equation from the point of view of distributed control. Consider ω a nonempty open
set in T. The problems under view concern equation (1) with an additional force term, supported in ω, used
as a control:

ut − utxx + 2κux + 3uux = 2uxuxx + uuxxx + g(t, x)1ω(x) for (t, x) ∈ [0, T ]× T. (2)

Note that it is essentially equivalent to control the equation on T\ω (which can typically be an interval), via
boundary controls on ∂ω (typically both sides of the interval), but without making the boundary conditions
explicit.

We consider the two following problems.

• Controllability problem: given u0 and u1 in some functional space, given T > 0, can one find g such
that the solution of (2) with initial state u0 is defined until time T and satisfies u|t=T = u1?

• Asymptotic stabilizability: can one define a stationary feedback law g = g[u(t, ·)] such that the closed-
loop system (2) obtained with this g is globally well defined and asymptotically stable at an equilibrium
point?

We prove the following results.
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Theorem 1 (Global exact controllability of the Camassa-Holm equation) Consider s > 3/2. Let
u0, u1 ∈ Hs(T) and T > 0. Then there exists g ∈ C0([0, T ];Hs−3(ω)) such that equation (2) has a unique
solution u ∈ C0([0, T ];Hs(T)) ∩ C1([0, T ];Hs−1(T)) satisfying

u|t=0 = u0 in T, (3)

and moreover this solution satisfies that
u|t=T = u1 in T. (4)

Theorem 2 (Global asymptotic stabilization by stationary feedback law of (2)) There exists a sta-
tionary feedback law g = g[u] (g : H2(T) → H−1(ω) is made explicit below — see (45)) such that one has

• for any u0 ∈ H2(T), there exists a solution of (2) and (3) belonging to C0([0, T ];H2(T))∩C1([0, T ];H1(T)),
moreover any such maximal solution is global in time,

• for any u0 ∈ H2(T), any maximal solution u satisfies

u(t, x) −→
t→+∞

−κ in H2(T), (5)

• for any η > 0, there exists ε > 0 such that any maximal solution u of the closed-loop system for some
initial state u|t=0 = u0 satisfying

‖u0 + κ‖H2(T) < ε,

satisfies
‖u(t, ·) + κ‖H2(T) < η, ∀t ∈ R+. (6)

Remark 1 It is a known fact that the solutions of the Camassa-Holm equation generally develop singularities
in finite time in Hs(T), s > 3/2, see in particular [5, 6]. Hence the above control also prevents the blow-up
from occurring. In the context of the three-dimensional Euler equation for incompressible inviscid fluids [19],
the control has a similar role (although, as a matter of fact, the possibility of a blow-up in the 3D Euler
equation is still an open problem).

Remark 2 It should be noted that equation (2) is obtained in [3] after going to a reference frame moving
with speed κ (see [3, p. 1662]). Hence the constant −κ in (5) is natural since it corresponds to the rest state
in the original frame.

The Camassa-Holm equation has been intensively investigated lately from the point of view of the Cauchy
problem, see for instance [2, 4, 5, 6, 7, 15, 16, 17, 22, 23, 24, 27, 33] and references therein. Other important
issues such as blow-up mechanism, solitary waves structures, stability properties, geometric approaches, etc.
have also been widely analyzed. On the other hand, it seems to the author that the study of this equation
from the point of view of control theory was a completely open field.

Finally, concerning the controllability of other equations modelling surface water waves, let us mention
[1, 12, 13, 28, 29, 30, 32, 34] for what concerns the Korteweg-de Vries equation, [26] for the linearized
Benjamin-Bona-Mahony equation and [25] for the linearized Benjamin-Ono equation.

1.2 Preliminaries

Before establishing Theorems 1 and 2, let us make some transformations on the equation. It is elementary
to see that equation (2) can also be written in the following frequently used form:

ut + uux = −∂x(1− ∂2
xx)−1

[
u2 +

1
2
u2

x + 2κu+ g
]
. (7)
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Another form of the equation is given by the following{
∂ty + 2κ∂xu+ ∂x(uy) = −y∂xu+ g
y = (1− ∂2

xx)u. (8)

The equivalence of (8) with (2) is straightforward when u has a space regularity Hs(T) with s ≥ 3; in the
case s > 3/2, this can be shown by using paradifferential calculus, see Section 2 (and in particular Lemma
2) below.

It should be noted that (8) has some similarities with the three dimensional Euler equation for incom-
pressible inviscid fluids: here in some sense y plays the role of the vorticity, which satisfies a transport
equation (with a stretching term), the corresponding velocity field being recovered from the vorticity though
an elliptic equation.

1.3 Strategies

Let us briefly discuss the strategies that we use to establish Theorems 1 and 2.
Both the results stated in the previous paragraph rely on the so-called return method, introduced by

J.-M. Coron in [8] in the context of finite-dimensional control systems. This method consists in finding a
particular trajectory of the system, typically starting and ending at 0, such that the linearized equation
around this particular solution has good controllability properties.

Here when considering the linearized equation around u ≡ 0, we get

ut − utxx + 2κux = g(t, x)1ω(x) for (t, x) ∈ [0, T ]× T. (9)

This equation is clearly not controllable (nor stabilizable) when κ = 0, since in that case u− uxx is constant
outside ω. For κ 6= 0, we set y as in (8) and write (9) as follows:

yt = (1− ∂2
xx)−1(−2κyx + 1ωg).

It follows in particular that outside ω, yt is more regular than y, which proves that the equation is not
controllable in this case either. Note that a stronger result on the non-controllability of equation (9) was
established by Micu [26] (since the Benjamin-Bona-Mahony equation has the same linearized equations
around constant states as the Camassa-Holm equation.)

To overcome the bad behaviour of the linearized equation around 0, the general idea is hence to introduce
a particular solution of the system, close to which the system has good controllability (or stabilization)
properties. In both problems, the corresponding solution u has a somewhat trivial form (it is in some sense
close to the one used for the Vlasov-Poisson equation, see [20]):

u = (1− ∂2
xx)−1y with y satisfying Supp y(t, ·) ⊂ ω, ∀t ∈ [0, T ]. (10)

In fact, one can more or less imagine the functions u and y as constant in time. The function u will be
roughly the same for both problems, but two different effects are in order in these two results; let us briefly
sketch the main ideas.

Controllability problem. As for the incompressible Euler equation (see in particular Coron [9], see also
[19]), the plan concerning the controllability problem is to rely on the effect of transport. Indeed, if one
chooses the function y properly, in particular, in order to make sure that the first equation in (8) has
characteristics which all reach the control zone, one can hope that the linearized system around u(t, x) is
controllable. This is due to the fact that inside the control zone, one can in some sense “replace” the value
of y with a suitable one (typically 0). Then one can hope to obtain a control for the nonlinear system, in the
case of a small initial data and zero final value, via a fixed-point scheme. The construction of the solution
of the nonlinear system is inspired by Danchin’s work [15].

Two arguments are in order to deduce the general case from this local to zero controllability property
(as for the incompressible Euler equation, see in particular [9]).
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First, a simple argument of translation will allow to ignore the term κ∂xu, and to work only with

ut − utxx + 3uux = 2uxuxx + uuxxx + g(t, x)1ω(x) for (t, x) ∈ [0, T ]× T. (11)

When we ignore this term, the equation becomes completely reversible with respect to time, i.e.

u(t, x) is a solution of (11) =⇒ −u(T − t, x) is a solution of (11) (with control g(T − t, x)). (12)

One can rely on this reversibility to restrict to the case where u1 = 0 (one can first reach 0 from u0, then u1

from 0).
Next, we will see that the smallness of the initial data is not restrictive either, because of the scale

invariance of the solutions of the equation. This particular invariance, which affects only the variable t, is
given by the following property: for λ > 0,

u(t, x) is a solution of (11) defined in [0, T ]× T
=⇒ uλ(t, x) := λu(λt, x) is a solution of (11) defined in [0, T/λ]× T (with control λ2g(λt, x)). (13)

Hence using this invariance, we see that we can control larger states in smaller times (if needed, one can
complete the solution by 0, if the “new” time is too short). This is also an important ingredient in the
controllability of the Euler equation, see [9, 19]. In particular, this means that in order to control and
prevent blow-up when the initial state is large, one has to act fast and strongly. This will complete the
argument.

Stabilization problem. Concerning the stabilization problem, we will not quite rely on the transport effect
in equation (8), but rather on the stretching effect of the equation. It is indeed rather clear from equation
(8) that if one could ensure that

∂xu ≥ c > 0, (14)

then the solution of the equation would naturally decrease, presumably sufficiently fast (if c is large enough)
to prevent any possible blow-up. Of course, due to the periodic structure of T, one clearly cannot expect
(14) to be valid on the whole domain T. However, one can choose u satisfying (14) outside the control zone
ω, so that, should we be able to force the solution of the system to be close to u (or to a multiple of u), the
solution would naturally decrease outside ω. Hence, one has to design a feedback law which

• forces in some sense the system to be close to a multiple of u (this is done by adding a term of the
form ĝ[u(t, ·)]y on the right hand side of the transport equation (8)),

• apply a strong damping on the quantity y inside ω, to compensate the fact that u does not satisfy (14)
inside ω, and obtain the decrease of the quantity y inside the control zone.

Finally, one can construct a Lyapunov functional that yields the conclusion of Theorem 2, and which reflects
the fact that

• either the state of the system is already close to a multiple of u and the function decreases due to the
joint effects of the stretching outside ω and the damping inside ω,

• or the feedback law is indeed making the system move towards a state close to a multiple of u.

Concerning the problem of stabilization for the bidimensional Euler equation, which relies on the transport
effect of the equation and on the return method, let us cite Coron [11] (see also [21]).

Structure of the paper. Section 2 is devoted to the proof of Theorem 1, while in Section 3 we establish
Theorem 2.
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2 Controllability

In this section, we prove Theorem 1. At the end of the section, a slightly more general result is discussed
(when the Sobolev spaces are replaced with Besov spaces).

To simplify the description of the control zone, we describe the circle T by the interval [0, 1) (with periodic
conditions), and we consider ω as the nonempty open interval [0, a) ∪ (1 − a, 1], for some a ∈ (0, 1/2) (we
can always assume this, shrinking ω and translating the problem if necessary).

2.1 Reduction

As we explained in Paragraph 1.3, it will be sufficient to prove Theorem 1 in the case where

κ = 0, (15)
u1 = 0, (16)

‖u0‖Hs(T) < ε, (17)

for a given ε > 0.
Let explain how one can reduce the problem to this case: let us assume temporarily that we have proven

the following weaker statement.

Proposition 1 Consider s > 3/2 and T > 0. There exists ε > 0, such that, for all u0 ∈ Hs(T) satisfying
(17), there exists g ∈ C0([0, T ];Hs−3(ω)), vanishing in some neighborhood of T , such that equation (2) with
κ = 0 has a unique solution u ∈ C0([0, T ];Hs(T)) ∩ C1([0, T ];Hs−1(T)) satisfying (3), and moreover this
solution satisfies (4) with u1 = 0.

Then Theorem 1 is deduced as follows.

Proof of Theorem 1. First, the scaling and reversibility arguments give us Theorem 1 for κ = 0. Indeed,
given T > 0, u0 and u1 in Hs(T), we introduce ε > 0 given by Proposition 1 for time T/3. Then we introduce
λ > 1 such that

max(‖u0‖Hs(T), ‖u1‖Hs(T)) < λε.

Then by Proposition 1, 1
λu0 and − 1

λu1 can be driven to 0 in a time T/3, via controls g1 and g2 respectively;
call U0 and U1 the corresponding solutions of (2). Now, from (12)-(13), the function

u(t, x) :=

 Uλ
0 (t, x) for t ∈ [0, T/(3λ)],

0 for t ∈ [T/(3λ), T − T/(3λ)],
−Uλ

1 (T − t, x) for t ∈ [T − T/(3λ), T ],

where the exponents λ refer to the notation in (13), answers to Theorem 1.

Now let us discuss the case where κ 6= 0. The standard ingredient is that if u is a solution of (2) with
κ 6= 0, then

uκ(t, x) := κ+ u(t, x− κt),

is a solution of (2) with κ = 0. However, by making this transformation we modify the problem, since ω is
not invariant by the above change of space variable.

Now given ω ⊂ T, for which [1−a, 1]∪ [0, a] ⊂ ω, T > 0, u0 and u1, we solve the problem of controllability
with

T̃ := min(T, a/(2|κ|)),
ũ0 := κ+ u0,

ũ1(t, x) := κ+ u1(x− κT̃ ),
ω̃ := (1− a/2, 1] ∪ [0, a/2).
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One can check that returning to the variables (t, x + κt), we get a solution of the original problem, with a
control located in ω. Of course the time of controllability may be shorter, but this is not a problem (bring
u0 to 0 and wait some time if necessary). This ends the proof that Proposition 1 implies Theorem 1. �

For the rest of Section 2, we will consider that (15), (16) and (17) are satisfied (with ε to be chosen later),
and hence we aim at proving Proposition 1. Now the construction of solutions to Proposition 1 is done in
three consecutive steps:

• In a first time, we construct a solution that starts from u0 and reaches at time T/3 a state which is in
some sense close to u (which is yet to be defined).

• Then we construct a solution (close to u), which starts at time T/3 from the previous state, and which
satisfies (1− ∂xx)u(2T/3, ·) = 0 in T \ ω.

• In a last (easy) step, we bring the latter state to 0.

Moreover, We expose these three steps in separate paragraphs.

2.2 First step

Let us first describe u more precisely. Consider

µ := 4/T. (18)

Then u(x) is any function satisfying:  u ∈ C∞(T),
u = µex in [a/3, 1− a/3],
u ≥ µ in T.

(19)

Note that (10) is clearly satisfied, that is the “vorticity”

y := (1− ∂2
xx)u, (20)

is supported in ω.
Now during the first time interval [0, T/3], we construct a solution of (11), starting from u0 at t = 0 and

reaching a state close to u at t = T/3 in the sense that we have

‖u(T/3, ·)− u‖Hs(T) ≤ η1, (21)

for some η1 which we are going to choose later, and moreover

(1− ∂2
xx)
[
u(T/3, ·)− u

]
= 0 in [0, a/2] ∪ [1− a/2, 1]. (22)

This is done through a Schauder fixed point scheme. First, consider ψ ∈ C∞([0, T/3]; R) satisfying{
ψ ≥ 0, ψ′ ≥ 0,
ψ ≡ 0 in [0, T/9] and ψ ≡ 1 in [2T/9, T/3]. (23)

and M ∈ C∞(T; R) satisfying{
0 ≤M ≤ 1,
M ≡ 1 in [0, a/2] ∪ [1− a/2, 1] and M ≡ 0 in [a, 1− a]. (24)

6



We consider the set

X1 :=
{
u ∈ C0([0, T/3];Hs(T)) ∩ C1([0, T/3];Hs−1(T))

/
‖u− ψ(t)u‖L∞([0,T/3];Hs(T)) + ‖u− ψ(t)u‖Lip([0,T/3];Hs−1(T)) ≤ η1

}
,

with η1 ∈ (0, 1) small enough to be defined. We embed X1 in the space L∞([0, T/3];Hs′(T)) for some
3
2 < s′ < s. Then it is a classical matter to observe that X1 is a (nonempty) convex compact subset of
L∞([0, T/3];Hs′(T)).

Now, we first define the operator S1 on X1 as follows:

S1 : X1 3 u 7−→ the solution y ∈ C0([0, T ];Hs−2(T)) of the transport equation:{
y|t=0 = y0 := (1− ∂2

xx)(u0) in T,
∂ty + u∂xy = −2y∂xu in [0, T/3]× T. (25)

That the solution of the above equation (25) is well-defined follows by regularization: for regular initial data
(u, y0), these solutions are well-defined through characteristics (since Hs(T) ↪→ Lip(T) for s > 3/2); next
the passage to the limit is for instance ensured by Lemma 1 below. The uniqueness of this solution also
comes for instance from Lemma 1.

Then the operator T is given by

T : X1 3 u 7→ (1− ∂2
xx)−1

[(
1− ψ(t)M(x)

)
S1(u)

]
+ ψ(t)u(x).

We have to prove that, provided that ‖u0‖Hs(T) is small enough, T maps X1 to X1 and that it is continuous;
then we have left to prove that a fixed point is a solution to (11) (for some g) satisfying (21).

T maps X1 into itself. We use the following estimates for the solutions of linear transport equations:

Lemma 1 Let σ > −1/2. Consider v a vector field in L1(0, T ; (H
3
2 ∩Lip)(T)) if σ ≤ 3/2, in L1(0, T ;Hσ(T))

if σ > 3/2, and a ∈ L∞(0, T ;Hσ(T)) ∩ C([0, T ];S ′(T)) the solution of the transport equation

∂ta+ v∂xa = f, a|t=0 = a0,

where a0 ∈ Hσ(T) and f ∈ L1(0, T ;Hσ(T)). Then a ∈ C0([0, T ];Hσ(T)) and the following estimate holds
for t ∈ [0, T ] and some constant C > 0:

‖a(t)‖Hσ ≤ eCV (t)
(
‖a0‖Hσ +

∫ t

0

e−CV (τ)‖f(τ)‖Hσdτ
)
, (26)

where

V (t) :=

{ ∫ t

0
‖∂xv(τ, ·)‖(H1/2∩L∞)(T) dτ if σ ≤ 3/2,∫ t

0
‖∂xv(τ, ·)‖Hσ−1(T) dτ if σ > 3/2.

(27)

This result is rather classical in this form (and for positive indices); one can find a much more general
statement in Danchin [15, Proposition A.1] (see Lemma 3 below).

Also, we will need the following product lemma.

Lemma 2 Consider s, t ∈ R such that s ≤ 1/2, t > 1/2 and s+ t > 0. Then the map{
Hs(T)×Ht(T) −→ Hs(T)

(u, v) 7−→ uv,
if s ≤ 1/2 and t > 1/2,

is well-defined and continuous.

7



This result is also classical and can be proven by means of paradifferential calculus. See for instance [31].
Recall also that Hs(T) is an algebra for s > 1/2.

Remark that the condition s > 3/2 implies that the products y∂xu and u∂xy (for u ∈ Hs(T) and hence
y ∈ Hs−2(T)) are well-defined in Hs−2(T) and Hs−3(T), respectively. (Distinguish the cases s ≤ 5/2 and
s > 5/2.)

Now using Lemmas 1 and 2 on (25) yields that for u ∈ X1, we have for all t ∈ [0, T/3],

‖S1(u)(t)‖Hs−2 ≤ eCV (t)
(
‖y0‖Hs−2 +

∫ t

0

e−CV (τ)‖S1(u)∂xu‖Hs−2dτ
)

(28)

≤ eCV (t)
(
‖y0‖Hs−2 +

∫ t

0

e−CV (τ)‖S1(u)‖Hs−2‖∂xu‖Hs−1dτ
)
, (29)

where we have denoted as in Lemma 2

V (t) :=
∫ t

0

‖∂xu(τ, ·)‖(H1/2∩L∞)(T)dτ is s ≤ 7/2 and V (t) :=
∫ t

0

‖∂xu(τ, ·)‖Hs−3(T)dτ if s > 7/2. (30)

Using Gronwall’s lemma and the definition of X1 immediately yields the following estimate on S1(u):

‖S1(u)‖L∞(0,T/3;Hs−2(T)) ≤ C‖y0‖Hs−2(T), (31)

where the constant depends on u and ψ but is independent of η1 ∈ (0, 1).
Now using the continuity of (1 − ∂2

xx)−1 from Hs−2(T) to Hs(T), and the one of the multiplication by
(1−ψ(t)M(x)) in L∞(0, T/3;Hs−2(T))∩Lip(0, T/3;Hs−3(T)), we see that for any η1 > 0, there exists ε > 0
such that under the assumption ‖u0‖Hs(T) < ε, T maps X1 into itself.

The operator T is continuous. Consider u ∈ X1 and a sequence un ∈ X1 converging to u for the
L∞(0, T/3;Hs′(T)) norm; introduce together with these y := S1(u) and yn := S1(un). Then using Lemma
2 it is not difficult to see that the equation{

yn|t=0 = y0 := (1− ∂2
xx)(u0) in T,

∂tyn + un∂xyn = −2yn∂xun in [0, T/3]× T.

passes to the limit. This ensures that T is continuous.

Conclusion. It follows from Schauder’s fixed point theorem that T admits a fixed point in X1, which clearly
satisfies that

(1− ∂2
xx)u = (1− ψM)S1(u) + ψy

and consequently, keeping the notation y := S1(u),

y = (1− ∂2
xx)u− ψ(t)y(x) + ψ(t)M(x)y in [0, T/3]× T. (32)

On another side, we have from (25) that

∂ty + u∂xy = −2y∂xu in [0, T/3]× T. (33)

Plugging (32) into (33) and recalling (10) and (23) yields that this fixed point satisfies (11) for some g
supported in ω. The continuity in time is a direct consequence of Lemma 1. Note that (22) is satisfied.

Uniqueness. This is done exactly as [15, Proposition 2.1]. To see that uniqueness holds at this level or
regularity, it is easier to consider the equation in “integrated form” (7). Then considering two solutions u
and u′, and their difference w := u′ − u, we see that the following holds

∂tw + u∂xw = −w∂xu
′ − ∂x(1− ∂2

xx)−1
(
w(u+ u′) +

1
2
∂xw∂x(u+ u′) + 2κw

)
.
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Now using Lemmas 1 and 2, and taking into account that the operator ∂x(1 − ∂2
xx)−1 continuously maps

Hs−2(T) into Hs−1(T), we reach the following estimate in Hs−1(T):

‖w(t, ·)‖Hs−1(T) ≤ exp
{
CV (t)

}
×
(
‖w(0, ·)‖Hs−1(T) +

∫ t

0

C exp{−CV (τ)}
(
‖w‖Hs−1‖∂xu

′‖Hs−1(τ) + ‖w‖Hs−1(τ)‖u+ u′‖Hs−1(τ)
)
dτ
)
,

(34)

where again V (t) is given by (30).
Using the uniform estimate in Hs(T) for u and u′ and Gronwall’s lemma, we clearly reach the uniqueness.

2.3 Second step

Here we construct a solution u during [T/3, 2T/3], which starts from the above

ũ0 := u(T/3, ·)

and reaches at time 2T/3 a state satisfying

(1− ∂2
xx)u(2T/3, ·) = 0 in T \ ω. (35)

The idea is to use as an intermediate step a problem defined on the whole real line. When considering the
real line as the domain, it is easy to construct a solution which makes the “vorticity” leave the domain [0, 1];
from this we can deduce a solution of our problem on T, modulo errors which are located inside ω. The
solution is obtained again as a Schauder’s fixed-point.

First we introduce Λ ∈ C∞(T; R) such that{
Λ ≥ 0,
Λ ≡ 0 in [0, a/3] ∪ [1− a/3, 1] and Λ ≡ 1 in [a/2, 1− a/2],

Define Λ̂ as the operator which maps functions on T to functions on R in the following way:

Λ̂u :=
{

Λ(x)u in [a/3, 1− a/3],
0 in R \ [a/3, 1− a/3].

In the same way, given a function u defined on [0, 1] or on R, we can define Λ̌(u) as a function on T by
considering Λ(x)u|[0,1], and extending it into a 1-periodic function.

We introduce

X2 :=
{
u ∈ C0([T/3, 2T/3];Hs(T)) ∩ C1([T/3, 2T/3];Hs−1(T))

/
‖u− u‖L∞([T/3,2T/3];Hs(T)) + ‖u− u‖Lip([T/3,2T/3];Hs−1(T)) ≤ η2

}
,

with η2 > 0 to be determined. Again X2 is a nonempty compact convex subset of L∞([T/3, 2T/3];Hs′(T))
for s′ ∈ (3/2, s). The operator T2 defined on X2 is constructed as follows. First introduce the operator Π:

Π : X2 3 u 7−→ µ+ Λ̂(u− µ) ∈ u ∈ C0([T/3, 2T/3];Hs(R)) ∩ C1([T/3, 2T/3];Hs−1(R)).

Introduce
ỹ0 := Λ̂

[
(1− ∂2

xx)(ũ0 − u)
]
, (36)

and

S2 : u 7−→ the solution y on R of the transport equation{
y|t=T/3 = ỹ0 in R,
∂ty + Π[u]∂xy = −2y∂xΠ(u) in [T/3, 2T/3]× R. (37)
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T2 : X2 3 u 7→ (1− ∂2
xx)−1

[
Λ̌y + y

]
. (38)

That T2 admits a (unique) fixed point is done as in the previous paragraph: one needs to have that

‖u|t=T/3 − u‖Hs(T) is small enough,

hence one uses (31) (or equivalently chooses η1 small enough) and restricts to smaller y0 if necessary. This
can be done for any η2 > 0. We omit the details.

Such a fixed point starts from the state u(T/3) as seen from (22), (36), (37) and (38). Moreover, it
satisfies equation (11) for some g, because, in [a,1− a], one has

Π(u) = u, y∂xΠ(u) = y∂xu and (1− ∂2
xx)u = y.

Hence injecting the last identity in (37) yields that u fulfills the equation for some g which satisfies g = 0 in
[a, 1− a]. The regularity of the corresponding function g in T can be check from the other terms in (37).

Let us briefly explain why this fixed point (that we still call u) satisfies (35). By construction, using (19),
(38), the Sobolev embedding of Hs(T) into L∞(T) and the definition of X2, Π[u] satisfies

Π[u] ≥ µ− cη2 on R,

for some c > 0. We choose η2 > 0 such that µ− cη2 ≥ 3/T (recall (18)). It follows then from (36) and (37)
that

Supp (y(2T/3, ·)) ⊂ R \ [0, 1]. (39)

Then (35) follows easily.

2.4 Final step

This step is obvious, since, because of (39),

[2T/3, T ] 3 t 7−→ ψ(T − t)u(2T/3, ·), (40)

is a solution of (2) for some g, which drives the state of the system to 0. Note in particular that indeed the
solution and the control are zero in a neighborhood of T .

The conclusion of Proposition 1 follows, except for what concerns the regularity in time. Indeed, as we
glue three different parts of solutions, we obtain for the solution the regularity C0([0, T ];Hs(T)), but merely
the regularity Lip([0, T ];Hs−1(T)), instead of C1([0, T ];Hs−1(T)) as claimed. To get this regularity, we
observe that, due to the fact that all the three parts of the solution satisfy

∂ty + u∂xy = −2y∂xu outside ω, (41)

the “reconnections” of y at times T/3 and 2T/3 yield a function in C1([0, T ];Hs−3(T \ ω)) outside ω.
Hence it is sufficient to consider this function and to extend it in ω into a function of C0([0, T ];Hs−2(T)) ∩
C1([0, T ];Hs−3(T)), in such a way that one keeps the old values of y during [0, T/9] and [8T/9, T ] (in these
intervals, the “old” y has the correct regularity). The “new” y satisfies (41) with

y = (1− ∂2
xx)u outside ω, (42)

and hence fulfills all the requirements.
This concludes the proof of Proposition 1, and hence of Theorem 1.
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2.5 Remark on the result in Besov spaces

In fact it is not more difficult (due do the results already proved in [15] and [31]) and a little more general
to establish the above result in the context of Besov spaces. We sketch here how the above results can be
extended in this context.

Let us first briefly recall the definition of Besov spaces. Introduce (χ, ϕ) ∈ C∞0 (R; R)2 such that

Supp (χ) ⊂ {ξ ∈ R / |ξ| ≤ 4/3}, Supp (ϕ) ⊂ {ξ ∈ R / 3/4 ≤ |ξ| ≤ 8/3}

and χ(ξ) +
∑
q∈N

ϕ(2−qξ) = 1 on R.

The Littlewood-Paley decomposition is introduced as follows: for u a distribution on T decomposed in Fourier
series

u =
∑
α∈Z

ûαe
2iπα,

we consider the localization operators:

∆qu = 0 for q < −1, ∆−1u =
∑
α∈Z

χ(α)ûαe
2iπα = û0,

and ∆qu =
∑
α∈Z

ϕ(2−qα)ûαe
2iπα for q ≥ 0.

The Littlewood-Paley decomposition of a distribution u is

u =
∑

q≥−1

∆qu.

Now for (s, p, r) ∈ R× [1,+∞]2, the Besov space Bs
p,r(T) is defined as the Banach space of distributions on

T satisfying

‖u‖Bs
p,r(T) :=

( ∑
q≥−1

[
2sq‖∆qu‖Lp(T)

]r)1/r

< +∞.

The Sobolev spaces correspond to Hs(T) = Bs
2,2(T).

It turns out that the whole construction before can be extended in the context of Besov spaces; it suffices
to explain why the above fixed-point strategies can still apply. This is a consequence of the fact that Lemmas
1 and 2 can be generalized as follows (we refer to [15] and [31] respectively).

Lemma 3 Consider (p, r) ∈ [1,+∞]2. Let σ > −1/p. Consider v a vector field in L1(0, T ; (B
1+ 1

p
p,r ∩Lip)(T))

if σ ≤ 1 + 1
p , in L1(0, T ;Bσ

p,r(T)) if σ > 1 + 1
p , and a ∈ L∞(0, T ;Bσ

p,r(T)) ∩ C([0, T ];S ′(T)) the solution of
the following transport equation

∂ta+ v∂xa = f, a|t=0 = a0,

where a0 ∈ Bσ
p,r(T) and f ∈ L1([0, T ];Bσ

p,r(T)). Then a ∈ L∞([0, T ];Bσ
p,r(T)) ∩ C0([0, T ];S ′) and the

following estimate holds for t ∈ [0, T ] and some constant C > 0:

‖a(t)‖Bσ
p,r
≤ eCV (t)

(
‖a0‖Bσ

p,r
+
∫ t

0

e−CV (τ)‖f(τ)‖Bσ
p,r
dτ
)
,

where

V (t) :=

{ ∫ t

0
‖∂xv(τ, ·)‖(B1/p

p,∞∩L∞)(T)
dτ if σ ≤ 1 + 1

p ,∫ t

0
‖∂xv(τ, ·)‖Bσ−1

p,r (T)dτ if σ > 1 + 1
p .

Moreover a ∈ C0([0, T ];Bσ
p,r(T)) when r < +∞.
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Lemma 4 For (s, t, p, r) ∈ R2 × [1,+∞]2, the following holds:

Bs
p,r(T) is an algebra when s > 1/p,

and the map {
Bs

p,r(T)×Bt
p,r(T) −→ Bs

p,r(T)
(u, v) 7−→ uv,

if s+ t > 0, s ≤ 1/p and t > 1/p,

is well-defined and continuous.

Finally, the Besov spaces satisfy the following classical embedding results (see [31]).

Lemma 5 The following properties hold:
i. For (s, p, r) ∈ R× [1,+∞]2 such that s > 1 + 1/p, Bs

p,r(T) ↪→ Lip(T).
ii. For (s1, s2, p, r) ∈ R2 × [1,+∞]2 with s1 < s2 the injection Bs2

p,r(T) ↪→ Bs1
p,r(T) is compact.

iii. The operators ∂x and (1− ∂2
xx)−1

T map Bs
p,r(T) to Bs−1

p,r (T) and Bs+2
p,r (T) respectively.

Once this is taken into account, Theorem 1 can be extended as follows (compare with [15, Theorem 2.3] for
the Cauchy problem):

Theorem 3 Consider (p, r) ∈ [1,+∞]2. Let s > max(3/2, 1 + 1/p). Let u0, u1 ∈ Bs
p,r(T) and T > 0.

Then there exists g ∈ C0([0, T ];Bs−3
p,r (ω)) if r < +∞ (respectively in L∞([0, T ];Bs−3

p,r (ω)) if r = +∞)
such that equation (2) has a unique solution u ∈ C0([0, T ];Bs

p,r(T)) ∩ C1([0, T ];Bs−1
p,r (T)) if r < +∞ (in

L∞([0, T ];Bs
p,r(T))∩Lip([0, T ];Bs−1

p,r (T)) if r = +∞) satisfying (3), and moreover this solution satisfies (4).

The main point is the product estimates used in (29) and in (34). One has to be able to define the products
of the type Bs−1

p,r ×Bs−2
p,r in Bs−2

p,r —hence s > 3/2—, and to apply Lemma 3 —hence s > 1 + 1/p.

3 Stabilization

Here we establish Theorem 2. We begin by giving the explicit form of our feedback law.

3.1 Design of the feedback law

As in the previous section, we introduce a > 0 such that [0, a) ∪ (1 − a, 1) ⊂ ω, when considering [0, 1) ⊂
T = R/Z, translating ω if necessary. We introduce u and y approximately as in (19):

u ∈ C∞(T),
u = µex in [a/3, 1− a/3],∫

T
u = 0,

(43)

and
y := (1− ∂2

xx)u.

Here µ > 0 is chosen in order to allow that

‖y‖L2(T) = 1. (44)

The last condition in (43) is not really necessary (and in fact we could have used the same u as in Section
2), but it will reduce the computations in the sequel, because it involves that both u and y are orthogonal
to constant states in L2(T).

We introduce the following functions M and N in C∞(T) such that{
0 ≤M ≤ 1 in T,
M≡ 0 in [0, a/3] ∪ [1− a/3, 1] and M≡ 1 in [a/2, 1− a/2],{

0 ≤ N ≤ 1 in T,
N ≡ 1 in [0, a/2] ∪ [1− a/2, 1] and N ≡ 0 in [a, 1− a].
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We introduce in L2(T) the orthogonal projectors π and π⊥ on Span{y} and (Span{y})⊥ respectively. By
(44), these are given by:

π(y) :=< y, y >L2 y and π⊥(y) := y − π(y).

The feedback law g = g[u] is given by the following formula: denote as previously y := (1− ∂2
xx)u; then

g[u] := (1−M(x))u(x)yx(x) + 2(1−M(x))ux(x)y(x) + 2κ(1−M(x))ux(x)
+ κ(1−M(x))yx(x) + κ < y, yx >L2 y(x)− κ < y, y >L2 yx(x)

− β‖y + κ‖L2

[
< y, y >L2 −K‖π⊥(y) + κ‖L2

]
y(x)

− γ‖y + κ‖L2(π⊥(y) + κ)(x)N (x), (45)

where the positive constants K, β and γ are to be determined later. One can easily check (using in particular
Lemma 2) that g : u 7→ g[u] is continuous from H2(T) to H−1(T), and that all the terms in the above
expression are supported in ω.

Remark 3 We recall that for κ = 0, the system is naturally endowed with the scale invariance described in
Paragraph 1.2. In that case, the feedback law (45) shares the same scale invariance (for λ > 0) as the other
terms of the equation.

Taking (45) into account, the “closed loop system”, that is, equation (8) in which g is given by (45), is
precisely the following system:

∂ty + 2κMux +Muyx + 2Myux = κ(1−M)yx + κ < y, yx >L2 y − κ < y, y >L2 yx

−β‖y + κ‖L2

[
< y, y >L2 −K‖π⊥(y) + κ‖L2

]
y − γ‖y + κ‖L2(π⊥(y) + κ)N ,

y = (1− ∂2
xx)u.

(46)

In fact it will be simpler to work with a slightly transformed version of equation (46). This is done by
changing of unknown:

ǔ(t, x) := u(t, x) + κ, y̌(t, x) := y(t, x) + κ. (47)

The system now reduces to
∂ty̌ − κy̌x +Mǔy̌x + 2My̌ǔx = κ < y̌, yx >L2 y − κ < y̌, y >L2 yx

−β‖y̌‖L2

[
< y, y̌ >L2 −K‖π⊥y̌‖L2

]
y(x)− γ‖y̌‖L2Nπ⊥y̌,

y̌ = (1− ∂2
xx)ǔ.

(48)

Note indeed that the convention
∫

T u = 0 involves that

< y, κ >= 0 and π⊥(κ) = κ.

Hence it is clear that proving Theorem 2 is reduced to proving the following proposition.

Proposition 2 The system (48) is globally 0-asymptotically stable.

In order to reduce the notations, we will from now on use u and y to refer in fact to ǔ and y̌.

The main idea yielding the result is the following: given the above parameter K > 0, which we will
choose large enough later, we distinguish two situations for the state u:

• Favorable situation: we will refer to the situation as favourable when

< y, y >L2≥ K

2
‖π⊥y‖L2 . (49)

In this situation, the part of u determined by π(y) dominates in some sense the part π⊥(y). Hence
outside ω, u is somewhat close to µ < y, y >L2 ex, and one can rely on the stretching effect of the
equation to get some decrease on y. To get a decrease inside ω, one has to extend u in a proper way
and to rely on an additional damping term (the last one in (45)).
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• Unfavourable situation: we consider that the situation is unfavourable when on the contrary

< y, y >L2<
K

2
‖π⊥y‖L2 . (50)

In that case, one would like to move towards the previous situation. This motivates the β term in (45).
The form given to this term is intended to make the “additional amount” of y naturally disappear
afterwards, when the favourable situation has been reached.

Finally, the other terms in (45) are intended to decouple the evolution of π(y) (which is central in particular
in the unfavourable situation) from the rest of the equation.

It will be convenient to introduce the following convex cones in H2(T) depending on χ ∈ R+:

Ωχ =
{
u ∈ H2(T); < y, y >L2> χ‖π⊥y‖L2

}
,

Ωχ =
{
u ∈ H2(T); < y, y >L2≥ χ‖π⊥y‖L2

}
.

The behaviour of the solutions which we described above will be established by introducing the following
functional of the state u(t) ∈ H2(T):

L(u) :=
(
K‖π⊥y‖L2− < y, y >L2

)
+

+K‖π⊥y‖L2 +
1
2
| <y, y>L2 |, (51)

and proving that it is a continuous Lyapunov functional. This is done in Paragraph 3.4.

Remark 4 Of course, the corresponding Lyapunov functional for the original system (46) is given by

L̃(u) :=
(
K‖π⊥(y) + κ‖L2− < y, y >L2

)
+

+K‖π⊥(y) + κ‖L2 +
1
2
| <y, y>L2 |.

3.2 Local existence for the closed-loop system

The local-in-time existence of a solution of (48) is given by the following proposition.

Proposition 3 There exists c? > 0 such that, for any u0 in H2(T), there exists T = T (u0) ≥ c?/max(1, ‖u0‖H2),
and a function u in C0([0, T ],H2(T)) ∩ C1([0, T ],H1(T)), which satisfies equation (48) with initial value
u|t=0 = u0.

Proof of Proposition 3.

Rewriting the system. We begin by rewriting the system: the main point is to separate in the equation
the part of y in Span{y} and the part in (Span{y})⊥.

Note that in the functional framework of Proposition 3, all the terms in (48) are (at least) in C0([0, T ];H−1(T)).
We take the H−1(T)×H1(T) duality product of (48) with y. Noting that

Supp(y) ∩ Supp(M) = ∅ and N ≡ 1 on Supp(y), (52)

that
< yx, y >L2= 0, (53)

and that of course y ⊥ π⊥y, we easily arrive at

d

dt
< y, y >L2= −β‖y‖L2

[
< y, y >L2 −K‖π⊥y‖L2

]
. (54)
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It follows immediately that

∂

∂t
π(y) = −β‖y‖L2

[
< y, y >L2 −K‖π⊥y‖L2

]
y.

Withdrawing this from (48) one gets, using again (52),

∂tπ
⊥(y)− κyx +M(x)u

[
π⊥(y)

]
x

+ 2M(x)π⊥(y)ux =

− γ‖y‖L2N (x)π⊥(y) + κ < yx, y >L2 y − κ < y, y >L2 yx.

It follows that

∂tπ
⊥(y) + (M(x)u− κ)

[
π⊥(y)

]
x

= −
[
2M(x)ux + γ‖y‖L2N (x)

]
π⊥(y) + κ < yx, y >L2 y. (55)

From now we will work either with (48) or with the system (54)-(55).

The operator T . Now as in Section 2 we prove Proposition 3 by means of a fixed-point scheme of
Schauder’s type. To u ∈ C0([0, T ];H2(T)), we associate y := (1 − ∂2

xx)u ∈ C0([0, T ];L2(T)), and then
< y, y >L2∈ C0([0, T ]; R) and y⊥ := π⊥(y) ∈ C0([0, T ];L2(T)). Then the operator T maps a couple (u,Υ)
in C0([0, T ];H2(T))× C0([0, T ]; R+) to (ũ, Υ̃) in the following way:

ũ := (1− ∂2
xx)−1(ỹ⊥ + α(t)y) (56)

and
Υ̃(t) := ‖ỹ⊥(t, ·)‖2L2(T), (57)

where α and ỹ⊥ are the solutions of
d

dt
α := −β‖y‖L2(α−K‖y⊥‖L2),

α(0) :=< (1− ∂2
xx)u0, y >L2 ,

(58)

and {
∂tỹ

⊥ + (Mu− κ)ỹ⊥x = Q(u,Υ, ỹ⊥) + L(y),
ỹ⊥|t=0 = y⊥0 := π⊥(1− ∂2

xx)u0,
(59)

where Q is the “quadratic” map

H2(T)× R× L2(T) 3 (w, ν, z) 7→ −
[
2M∂xw + γ

√
|ν|+ < (1− ∂2

xx)w, y >2 N
]
z,

and L is the linear map
L2(T) 3 y 7→ κ < yx, y > y.

It is clear that L and Q are continuous from L2(T) and H2(T)×R×L2(T) respectively to L2(T); moreover
Q also satisfies

‖Q(w, ν, z)‖L2 . max(‖w‖H2 , |ν|1/2)‖z‖L2 , (60)

as follows easily from Sobolev inclusions.

Estimates. Now to prove that the operator T : (u,Υ) 7→ (ũ, Υ̃) admits a fixed point, we need some
estimates to determine a relevant domain for T . Set

v(t) :=
∫ t

0

max
[
‖y(τ)‖L2 ,Υ(τ)1/2

]
dτ.

15



First, from (58), one can see that for some C > 0,

|α(t)| ≤ |< y0, y >L2|+ C

∫ t

0

‖y(τ)‖2L2 dτ. (61)

Next, one clearly has for some C > 0, ∫ t

0

‖∂x[Mu(τ)]‖H1dτ ≤ Cv(t).

Using Lemma 1 and (59)-(60), we reach the following estimate on ỹ⊥, for some C > 0:

‖ỹ⊥(t)‖L2 ≤ eCv(t)
(
‖y⊥0 ‖L2 + C

∫ t

0

e−Cv(τ)
[
max

{
‖y(τ)‖L2 ,Υ(τ)1/2

}
‖ỹ⊥(τ)‖L2 + ‖y(τ)‖L2

]
dτ
)
.

(As a matter of fact, the Υ term is not really necessary due to the sign of the second term in Q, but this has
no importance.) We use the following form of Gronwall’s lemma: for non-negative functions,

y(t) ≤ y(0) +
∫ t

0

f(τ)dτ +
∫ t

0

g(τ)y(τ)dτ on [0, T ]

=⇒ y(t) ≤ exp
[ ∫ t

0

g(τ)dτ
](
y(0) +

∫ t

0

f(τ) exp
[
−
∫ τ

0

g(s)ds
]
dτ
)

on [0, T ].

Applying this on exp[−Cv(t)]‖ỹ⊥(t)‖H2 yields that

‖ỹ⊥(t)‖L2 ≤ e2Cv(t)
(
‖y⊥0 ‖L2 + C

∫ t

0

e−2Cv(τ)‖y(τ)‖L2dτ
)
.

Finally with (56) and (61) this leads to the following estimate on ũ: for some (new) constant C > 0, one has

max
[
‖ũ(t)‖H2 , Υ̃(t)1/2

]
≤ eCv(t)

(
2‖u0‖H2 + C

∫ t

0

e−Cv(τ)‖u(τ)‖H2dτ
)

+
C

2

∫ t

0

‖u(τ)‖2H2dτ. (62)

Set
N := max(2‖u0‖H2 , 1) and ρ(t) :=

2N
1− 2CNt

for 0 ≤ t < 1/(2CN). (63)

It is then elementary to check that for any T > 0 such that

2CTN < 1, (64)

the set

Y :=
{

(u,Υ) ∈ L∞(0, T ;H2(T))× C0([0, T ]; R+) / ∀t ∈ [0, T ], max
[
‖u(t)‖H2 ,Υ1/2(t)

]
≤ ρ(t)

}
,

is stable by the process (59) (just inject (63) into (62)). We suppose from now on that (64) is satisfied.
Using this and (56)-(58)-(59), we see that for some C∗ > 0, we can reach an estimate

‖∂tũ(t)‖H1(T) ≤ C∗(ρ(t) + ρ2(t)), (65)

for u in Y .
We will need another estimate, provided by the following elementary lemma.

Lemma 6 Consider v ∈ L1(0, T ;Lip(T)), f ∈ L∞(0, T ;L2(T)) and a ∈ C0([0, T ];L2(T)) the solution of the
transport equation

∂ta+ v∂xa = f, a|t=0 = a0.

Then the following holds for all s, t ∈ [0, T ]:

‖a(t)‖2L2 − ‖a(s)‖2L2 =
∫ t

s

∫
T
vxa

2 + 2fa.
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Of course, Lemma 6 is clear for regular a, and is easily established by regularizing (a0, f).

Now we infer from Lemma 6 and (59) that the following estimate holds for s, t > 0:∣∣∣‖ỹ⊥(t)‖2L2 − ‖ỹ⊥(s)‖2L2

∣∣∣ ≤ C|t− s|
(
‖u‖L∞t Lipx‖ỹ⊥‖2L∞t L2

x
+
[
‖y‖L∞t L2

x
‖ỹ⊥‖L∞t L2

x
+ ‖y‖L∞t L2

x

]
‖ỹ⊥‖L∞t L2

x

)
.

It follows from what precedes that for any (u,Υ) ∈ Y , we have also T (u,Υ) ∈ Y , and hence for a suitable
constant R1 > 0, the inequality holds for all (u,Υ) ∈ Y and (s, t) ∈ [0, T ]2:∣∣∣‖ỹ⊥(t)‖2L2 − ‖ỹ⊥(s)‖2L2

∣∣∣ ≤ R1|t− s|. (66)

Also from (58), one can see that the following inequality is obtained for some R2 > 0, for any (u,Υ) ∈ Y :∣∣∣ < ỹ, y > (t)− < ỹ, y > (s)
∣∣∣ ≤ R2|t− s|. (67)

Fixed point and conclusion. Let us fix

X :=
{

(u,Υ) ∈ C0(0, T ;H2(T))× C0([0, T ]; R) / ∀t ∈ [0, T ], ‖u(t)‖H2 ≤ ρ(t) and

i. ‖∂tũ(t)‖H1(T) ≤ C∗(ρ(t) + ρ2(t)),
ii. Υ ≥ 0 and

∣∣Υ∣∣Lip(0,T )
≤ R1,

iii.
∣∣< ỹ(·), y >L2>

∣∣
Lip(0,T )

≤ R2

}
,

where
∣∣ · ∣∣Lip(0,T )

is the semi-norm on Lip(0, T ):

∣∣h∣∣Lip(0,T )
:= sup

0≤s<t≤T

|h(t)− h(s)|
|t− s|

.

Clearly X is a nonempty closed convex subset of C0([0, T ];H2(T)) × C0([0, T ]). We have already proved
that T (X) ⊂ X, since we obtained conditions i. to iii. by relying only on the estimate on ‖u(t)‖H2 . Hence,
by Schauder’s fixed-point theorem, it remains to prove that T is continuous and that T (X) is relatively
compact in C0(0, T ;H2(T))× C0([0, T ]), in order to get that T has a fixed point.

The continuity of T in the C0([0, T ];H2(T))×C0([0, T ]) topology is rather straightforward: let (un,Υn)n∈N ∈
XN converging to (u,Υ) ∈ X. Then one introduces the corresponding flows associated to (Mun − κ):

∂tΦn(t, s, x) = [Mun − κ](t,Φn(t, s, x)), Φn(t, t, x) = x. (68)

Due to the uniform Lipschitz bound on (Mun − κ) and Gronwall’s lemma, these flows converge uniformly
to the one associated to (Mu − κ). We use the same notations yn := (1 − ∂2

xx)un and y := (1 − ∂2
xx)u as

previously, and so on for ỹn, etc. We have:

L(yn) → L(y) ∈ C0([0, T ];L2(T)),

and

λn := −
[
2M∂xun+γ

√
Υn+ < yn, y >2N

]
→ λ := −

[
2M∂xu+γ

√
Υ+ < y, y >2N

]
in C0([0, T ]×T). (69)

Now (59) yields that

ỹ⊥n (t, x) = exp
{∫ t

0

λn(τ,Φn(τ, t, x)) dτ
}

×
(
y⊥0 (Φn(0, t, x)) + κy

∫ t

0

exp
{∫ t

τ

λn(s,Φn(s, t, x))ds
}
< yn(τ, ·), yx > dτ

)
, (70)
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and the same is valid for ỹ⊥. Then the convergence of ỹ⊥n to ỹ⊥ in L∞(0, T ;L2(T)) follows (and hence so
does the one of Υ̃n to Υ̃). Since the right-hand side of (58) converges in L∞(0, T ), the convergence of αn to
α follows as well, which yields the continuity of T .

Hence it remains to prove the relative compactness of T (X) in C0([0, T ];H2(T))× C0([0, T ]). Consider
a sequence (un,Υn)n∈N ∈ XN, and we take the same notations as previously, that is, ũn is the first part
of T (un,Υn), etc. To each un, we associate the flow Φn = Φn(t, s, x) of (Mun − κ) by (68). The uniform
L∞(0, T ;H2(T)) bound on un yields a uniform Lipschitz bound on Φn, hence up to a subsequence we can
assume that

Φn → Φ ∈ C0([0, T ]× [0, T ]× T).

On another side, using the L∞(0, T ;H2(T)) and Lip(0, T ;H1(T)) bounds on un, we see that up to a subse-
quence,

un → u ∈ C0([0, T ];Hs′(T)) for
3
2
< s′ < s.

In particular, we have the convergence of this subsequence in C0([0, T ];Lip(T)). Using the condition iii. in
the definition of X, we see that, by extracting a subsequence again, we may also assume that

< yn, y >→< y, y > in C0([0, T ]).

Finally, as we have a uniform Lipschitz estimate on Υn, we also have, up to a subsequence,

Υn → Υ in C0([0, T ]).

Of course, because of the last two convergences, one has

Nn(t) :=
√
< yn, y >2 +Υn → N(t) :=

√
< y, y >2 +Υ in C0([0, T ]).

Recall that which ỹ⊥n can be written as in (70), where λn is defined in (69). Gathering the above convergences,
we deduce that we have the convergence for the corresponding subsequence of ỹ⊥n , and hence the one of Υ̃n.
It is straightforward to get a converging subsequence in C0([0, T ]) for αn since we clearly have a uniform
Lipschitz estimate from (58); hence we get the convergence of the corresponding subsequence of ũn in
C0([0, T ];H2(T)). This completes the proof of the relative compactness of T (X).

Consequently, we get a fixed point of T in X. Let us briefly show that it gives a solution to the
problem. Given such a fixed point (u,Υ), we take the H−1 × H1 product of (59) with y. Using that
Supp(M) ∩ Supp(y) = ∅, that N = 1 on Supp(y), and “integrating by parts”, we deduce that for some
function of the time C(t),

d

dt
< ỹ⊥, y >L2= C(t) < ỹ⊥, y >L2 .

With the initial condition for ỹ⊥, this involves that < ỹ⊥, y >= 0 for all times, and hence, with (56), that

ỹ⊥ = π⊥(y).

With (57) it follows that √
|Υ|+ < y, y >2 = ‖y‖L2(T).

Hence we recover (55) from (59), and (54) from (56) and (58). Finally, the C1([0, T ];H1(T)) regularity of u
follows from (59). This ends the proof of Proposition 3. �

Remark 5 The uniqueness of the solutions in Proposition 3 is an open problem. As a matter of fact, this is
not very important since the asymptotic stability property applies to all solutions. Remark that this is due to
the feedback law: at this level of regularity, one can elementarily show the uniqueness of the free trajectories
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of (2) (see e.g. [15]). Note that even in the context of finite dimensional control systems, one may have to
consider feedback laws which are not necessarily locally Lipschitz and for which uniqueness may be lost. See
e.g. [10] for a discussion of this in the context of the Euler equation for bidimensional inviscid incompressible
fluids.

Remark 6 Proposition 3 can be proven in any Sobolev space Hs(T) for s ≥ 2. It is essentially a matter
of noticing that the above Q is continuous from Hs(T) × R ×Hs−2(T) to Hs−2(T), with the corresponding
estimate (60). It is easy to check that for s ≥ 3 uniqueness holds, by performing an estimate for the difference
of two solutions of (48) in Hs−1(T). (But a priori, properties (5) and (6) only hold for the H2(T) norm.)

3.3 Energy estimate

Now the rest of the paper is devoted to the proof of Proposition 2.

In what follows, we will refer to the favourable and unfavourable situations such as described in Paragraph
3.1. The proof that L (defined in (51)) is a Lyapunov functional will rely on the following lemma.

Lemma 7 There are some positive numbers γ0, K0, c1 and C1 independent of the choice of β such that
the following holds whenever γ ≥ γ0, K ≥ K0. Consider u a solution of (46) defined on [0, T ], with the
regularity of Proposition 3. Then for almost any t ∈ (0, T ), one has the following estimates, according to the
situation:

• Favorable situation (under condition (49)):

d

dt
‖π⊥(y)‖L2 ≤ −c1‖π⊥(y)‖L2 < y, y >L2 , (71)

• Unfavourable situation:
d

dt
‖π⊥(y)‖L2 ≤ C1‖π⊥(y)‖L2‖y‖L2 . (72)

Proof of Lemma 7. The above derivatives are defined almost everywhere thanks to (66), which thanks to
Lemma 6 is valid for any solution of the closed-loop system having the regularity described in Proposition 3.

Now establishing (71)-(72) is essentially an energy estimate. Let us denote y⊥ := π⊥(y). We multiply
(55) by y⊥ and integrate on T (as a matter of fact, we use Lemma 6). One gets

d

dt

∫
T

y⊥
2

2
−
∫

T
∂x(M(x)u− κ)

y⊥
2

2
+ 2

∫
T
M(x)uxy

⊥2
= −γ‖y‖L2

∫
T
y⊥

2N (x)dx. (73)

After simplification we get for almost every time

d

dt

∫
T

y⊥
2

2
= −3

2

∫
T
Muxy

⊥2
+

1
2

∫
T
Mxuy

⊥2 − γ‖y‖L2

∫
T
y⊥

2N (x)dx. (74)

Now we discuss according to the case under view.

• Unfavourable case: in that case, using the fact that (1− ∂2
xx)−1 : L2(T) → H2(T) ↪→W 1,∞(T), we see

that the two first terms in the right hand side of (74) can be estimated together by

|
∫

T
M(x)u∂x

(
y⊥

2

2

)
| . ‖y‖L2‖y⊥‖2L2 . (75)
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The remaining term in (73) is non-positive, and this yields

d

dt
‖y⊥‖2L2 ≤ C1‖y⊥‖2L2‖y‖L2 . (76)

If π⊥(y(t)) does not vanish, this gives (72). If it does, it follows also from (73) and Gronwall’s lemma
that one has y⊥(τ) = 0 for τ ≥ t, which gives again (72).

• Favorable case: the analysis in this situation relies on the following lemma:

Lemma 8 In the favourable situation (that is if (49) is satisfied), if K is chosen large enough, we
have

∂xu ≥
µ

2
< y, y > on T \ ω. (77)

Proof of Lemma 8.

Recall that u and y are connected via

u = (1− ∂2
xx)−1y

= (1− ∂2
xx)−1(π(y) + π⊥(y)) in T

= µ < y, y >L2 ex + (1− ∂2
xx)−1π⊥(y) in T \ ω.

Now, should K be large enough, we see, using elliptic regularity and Sobolev injections, that the
relation < y, y >≥ K‖π⊥(y)‖L2 implies

‖(1− ∂2
xx)−1π⊥(y)‖W 1,∞(T) ≤ C2‖π⊥(y)‖L2(T) (78)

≤ C2

K
< y, y >L2 , (79)

which yields the result simply by choosing

K >
2C2

µ
. (80)

�

From now we assume that (80) is satisfied. Using Lemma 8, we see that the only term in (74) whose
sign is not easily determined is second one of the right-hand side. But it is easy to see that this term
can be absorbed for instance by taking γ such that

γ ≥ 20‖Mx‖∞. (81)

It follows that if γ is large enough, one has

d

dt

∫
T

y⊥
2

2
≤ −3

2

∫
T
M(x)uxy

⊥2 − 4γ
5
‖y‖L2

∫
T
y⊥

2N (x)dx. (82)

Using again Lemma 8 and the fact that{
M = 1

}
∪
{
N = 1

}
= T,

we easily arrive at the conclusion, by noting that

| < y, y >L2 | =< y, y >L2≤ ‖y‖L2 .

This ends the proof of Lemma 7. �
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3.4 Lyapunov functional

The goal of this section is to prove that the functional L introduced in Paragraph 3.1 is a Lyapunov function
associated to the closed loop system, precisely, that it satisfies

L(0) = 0, (83)

for some c > 0, L(u) ≥ c‖u‖H2 for all u ∈ H2(T), (84)
L(u) decreases along a trajectory of (46) unless u(t) = 0. (85)

The existence of solutions in the large and the asymptotic stability of (46) are direct consequences of the
existence of such an L and of Proposition 3.

As previously it will be crucial to distinguish in the state function y, the part that is proportional to y
and the one that is orthogonal to it. We will use the following notation:

v⊥(t) := ‖π⊥(y)‖L2 and v‖(t) :=< y, y(t) > . (86)

Since the two first properties (83)-(84) are obvious regardless of the constant K (although conspicuously the
constant c in (84) depends on it), it remains to prove the following proposition.

Proposition 4 For a suitable choice of β, γ and K, the functional L(u) decreases along a trajectory of (46)
unless u(t) vanishes.

We begin with a lemma.

Lemma 9 The favourable situation is stable by the evolution of the closed-loop system.

Proof of Lemma 9. Consider a solution u of the closed-loop system such as described in Proposition 3 and
at time t at which < y, y(t) >L2≥ K

2 ‖π
⊥y(t)‖L2 . It is elementary to see that, according to Lemma 7 and

(54),
d

dt
(v‖ −

K

2
v⊥) ≥ −β(v‖ −

K

2
v⊥)‖y‖L2 + g, (87)

for some non-negative function g. �

Proof of Proposition 4. Let us establish the decrease of the Lyapunov functional L. Suppose that we have a
solution u such as described in Proposition 3, defined on [0, T ]. We discuss according to the situation:

• First situation: if u(t) ∈ ΩK , that is v‖ > Kv⊥.

In that case, due to the continuity of the solution with respect to time, we have in a neighborhood of
t:

L(u) = Kv⊥ +
v‖

2
.

Now using Lemma 7, we infer that

dL
dt

≤ −c1Kv⊥v‖ −
β

2
(v‖ −Kv⊥)‖y‖L2 . (88)

Notice that both terms on the right-hand side are non-positive. Moreover, by distinguishing the two
cases u(t) ∈ Ω2K and u(t) /∈ Ω2K it is easy to see that (90) implies for some c > 0:

c1Kv⊥v‖ +
β

2
(v‖ −Kv⊥)‖y‖L2 ≥ cL2(t).
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• Second situation: if u(t) ∈ ΩK/2 \ ΩK that is, K
2 v⊥ ≤ v‖ ≤ Kv⊥.

In that case, due to Lemma 9, we are in the favourable situation in [t, T ], and L reads:

L(u) := 2Kv⊥ −
1
2
v‖. (89)

Using again the notations of (86), we still have (87), and we deduce

d

dt
L(u(t)) ≤ −2Kc1v⊥(t)v‖(t) +

β

2
(v‖ −Kv⊥)‖y‖L2 (90)

Again the two terms on the right hand side are nonpositive, and one can easily bound from above the
first one with a term of the type −cL2(t) (note that v‖ and v⊥ are of comparable size in this case).

• Third situation: 0 ≤ v‖ <
K
2 v⊥.

In that case, L can still be written as in (89). However, as we are no longer in the favourable situation,
the estimate becomes

d

dt
L(u(t)) ≤ 2KC1v⊥(t)‖y‖L2 +

β

2
(v‖ −Kv⊥)‖y‖L2 .

On another side, we see that

v‖ −Kv⊥ ≤ −K
2
v⊥,

and it follows that
d

dt
L(u(t)) ≤ K(2C1 −

β

4
)v⊥(t)‖y‖L2 .

Hence if we choose β such that
β > 16C1, (91)

we can affirm that
d

dt
L(u(t)) ≤ −βK

8
v⊥(t)‖y‖L2 . (92)

(Recall from Lemma 7 that the constant C1 does not depend on the choice of β.)

• Fourth situation: v‖ < 0.

In that case, L becomes

L(u) := 2Kv⊥ −
3
2
v‖.

It is then easy to see that under condition (91), one can still obtain (92). (As a matter of fact, the
decrease is even better in that case.)

�

3.5 Global existence, asymptotic stabilization

Let us briefly conclude. The decrease of L ensures that a local solution u of the closed-loop system defined
on the (maximal) time interval [0, T ∗) has a bounded H2(T) norm on [0, T ∗) (say by M). It follows easily
that, should we suppose T ∗ < +∞, we would get a contradiction by applying Proposition 3 with initial data
u(T ∗ − c?/max(2, 2M), ·).

The stability property (6) is a trivial consequence of the monotonicity of L: to get (6), it is for instance
sufficient to start from a state sufficiently small in H2(T) norm to satisfy L(u0) ≤ ε to make sure that for
all time, one has

K‖π⊥(y)‖+
1
2
|< y, y >| ≤ ε.
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Finally, let us discuss the asymptotic behaviour (5). Consider u a global in time solution of the closed loop
system, in C0(R+;H2(T)) ∩ C1(R+;H1(T)). According to the situation, we may use (88), (90) or (92); it
follows that in all the cases, and for some c > 0 independent of u,

d

dt
L(u(t)) . −cL(u(t))2.

It follows immediately that
L(u(t)) −→ 0 as t→ +∞,

which establishes (5).

Remark 7 One can see that
L(t) ≤ 1

ct
,

independently of the initial state. One can check that c can be chosen independent of K ≥ 1; since K is
chosen arbitrarily large, wee see that we can find a feedback law which damps as fast as we want the part
π⊥y of the state (and consequently its “part ” y|ω).
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[13] Crépeau E., Exact boundary controllability of the Korteweg-de Vries equation around a non-trivial
stationary solution. Internat. J. Control 74 (2001), no. 11, pp. 1096–1106.

[14] Dai H.-H., Model equations for nonlinear dispersive waves in a compressible Mooney–Rivlin rod, Acta
Mech., 127 (1998), pp. 193–207.

[15] Danchin R., A few remarks on the Camassa-Holm equation. Differential Integral Equations 14 (2001),
no. 8, pp. 953–988.

[16] Danchin R., A note on well-posedness for Camassa-Holm equation. J. Differential Equations 192 (2003),
no. 2, pp. 429–444.

[17] de Lellis C., Kappeler T., Topalov P., Low-regularity solutions of the periodic Camassa-Holm equation,
Comm. Partial Differential Equations 32 (2007), no. 1-3, pp. 87–126.

[18] Fokas A. S., Fuchssteiner B., Symplectic structures, their Bäcklund transformations and hereditary
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