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Abstract. In this paper, we deal with the viscous Burgers equation with a small dissipation
coefficient ν. We prove the (global) exact controllability property to nonzero constant states, that
is to say, the possibility of finding boundary values such that the solution of the associated Burgers
equation is driven to a constant state. The main objective of this paper is to do so with control
functions whose norms in an appropriate space are bounded independently of ν, which belongs to a
suitably small interval. This result is obtained for a sufficiently large time.
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1. Introduction.

1.1. Statement of the result and background. We are interested in the
controllability of the Burgers equation in a bounded interval:

ut + uux − νuxx = 0 in (0, T )× (0, 1), (1.1)

where T is a positive real number. We complete this equation with the following: we
give an initial condition

u|t=0 = u0 in (0, 1), (1.2)

and controlled boundary values:

u|x=0 = v1(t) in (0, T ), u|x=1 = v2(t) in (0, T ). (1.3)

Here, v1 and v2 stand for control functions, which translates in the possibility of acting
over the system through both endpoints of the boundary x = 0 and x = 1. Let ū
be a solution of (1.1) with Dirichlet boundary conditions (also called a trajectory).
The exact controllability to trajectories holds if we can find controls v1 and v2 such
that the associated solution coincides with ū at time t = T . In this paper, we are
interested in proving an exact controllability result uniformly with respect to the
viscosity coefficient ν in a sufficiently small range.

Let us be more specific on the problem under view. We consider the system
constituted by (1.1), (1.2) and (1.3). Let us fix the initial condition u0 in some
Banach space X and a constant M 6= 0; then, our goal is to find two controls v1 and
v2 such that the associated solution u satisfies

u|t=T = M in (0, 1). (1.4)

Moreover, as we said above we are interested in finding controls whose norms in some
Banach space Y are uniformly bounded with respect to ν, whenever ν is sufficiently
small and T is sufficiently large. The main result of this paper is given in the following
theorem, where we prove the previous results for X = L∞(0, 1) and Y = L∞(0, T ):

Theorem 1.1. There is a constant α0 ≥ 1 such that for any M ∈ R \ {0}
there exists ν0 > 0 such that for any u0 ∈ L∞([0, 1]), any time T > α0/|M | and any
ν ∈ (0, ν0) there exist controls vν

1 and vν
2 satisfying the following properties:
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• ‖vν
1‖∞ and ‖vν

2‖∞ are uniformly bounded for ν ∈ (0, ν0), that is to say, there
exists a constant C(α0) > 0 such that

‖vν
1‖∞ + ‖vν

2‖∞ ≤ C(‖u0‖∞ + |M |).

• The solution u of (1.1)-(1.2)-(1.3) associated to v1 = vν
1 and v2 = vν

2 satisfies
(1.4).

The controllability of Burgers equation for fixed ν has been studied by several authors.
In particular, two kinds of controllability properties have been considered:

• On the one hand, the local exact controllability to trajectories, which stands
for the concept of exact controllability with the additional assumption that
the initial state u0 is close to the initial state of the targeted trajectory ū|t=0;
this has been established for the Burgers equation in [8]. It is also proved in
[8] that the exact controllability does not hold as long as one controls in a sub-
interval (a, b) of (0, 1), which is equivalent to control at one endpoint. In the
more recent work [9], the authors prove that the global exact controllability
for (1.1) does not hold even if the control is acting on both sides of the domain.

• On the other hand, in [4] the author establishes a global result between 0
and constant states: precisely, the author proves that for u0 = 0 and for any
T > 0 one can drive the solution of (1.1) to any constant M satisfying that
|M | is sufficiently large with respect to T .

Here, as we are interested in the properties of uniform controllability as ν → 0+,
it seems natural to regard the inviscid framework (ν = 0). In this case and in the
context of entropy solutions, the controllability of the equation

ut + (u2/2)x = 0, (1.5)

was studied in [12], where some conditions are given on the final state in order to
ensure this property. More general convex scalar conservation laws

ut + (f(u))x = 0, (1.6)

were considered in [1], for which the controllability problem is posed in the half line
with null initial condition. The set of attainable states is completely described.

We recall that for conservation laws such as (1.5), solutions generally develop
singularities in finite time, regardless of the regularity of the initial condition. This
leads to considering distributional solutions, but in this setting, uniqueness is lost.
From both physical and mathematical standpoints, it is then natural to consider
solutions that fulfill entropy conditions in order to extract the physically relevant
solution. These are the following: for any regular couple (η, q) defined on R and such
that η′f ′ = q′ and η is convex, the following stands in the sense of measures:

η(u)t + q(u)x ≤ 0.

We underline that entropy solutions are the ones which can be obtained by van-
ishing viscosity. One can summarize the situation by saying that the viscosity has
disappeared from the equation, and is only effective for the selection of admissible
discontinuities. Concerning the Cauchy problem, equation (1.1) was first approached
by Hopf [11], in which an explicit formula is given, and the limit as ν → 0+ is consid-
ered. The convergence of vanishing viscosity approximations to the entropy solutions
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of a general scalar conservation law was studied in the celebrated work of Kruzkov
[13]. For a general reference to conservation laws, we refer to [6].

It is therefore very natural, when considering control problems for conservation
laws, to consider the cost of the viscosity, that is, to determine if known controllability
properties for the hyperbolic equation are still valid for the model with small viscosity,
and how the size of the control evolves as the viscosity approaches 0. Note that some
problems such as the global approximate controllability of the Navier-Stokes equation
with Navier slip boundary conditions [3], are obtained through controllability results
for the inviscid equation (in this case, the Euler equation).

1.2. Some remarks. Let us make some remarks on the above theorem, and
state a corollary which concerns the system with ν = 1.

Remark 1. In general, entropy solutions of (1.5) cannot reach a state M (start-
ing for instance from u0 = 0), in a time less than 1/|M |. In particular, the state
0 cannot be reached unless one has u0 = 0. This is easily seen by considering gen-
eralized backward characteristics (see [1]). Hence the time of control O(1/M) is not
surprising. Note that even in the case of a linear transport equation, the uniform
controllability results [5, 10] consider a time of control of the form C/|M |, C > 1.

Remark 2. Following the proof of Theorem 1.1, one can check that Theorem 1.1
holds for the choices α0 = 9 (or in fact, as obtained numerically, approximately 6.3)
and

ν0 = ν1 min{1, |M |/| log(|M |)|}, (1.7)

where ν1 is a small enough constant independent of M but depending on α0.
Now we can present the following result as a consequence of Theorem 1.1.
Corollary 1.2. Consider for w0 ∈ L∞(0, 1) and T̃ > 0 the following control

problem: 
wt + wwx − wxx = 0 in (0, T̃ )× (0, 1),

w|x=0 = ṽ1(t), w|x=1 = ṽ2(t) in (0, T̃ ),

w|t=0 = w0 in (0, 1).

(1.8)

Assume that |M0| is large enough in order that

|M0|ν1 ≥ | log(|M0|ν1)|,

where ν1 is defined in (1.7); then, for every T̃ > α0/|M0| (where α0 can be chosen as
9), there exist controls ṽ1(t) and ṽ2(t) in L∞((0, T ),R) such that the solution of (1.8)
satisfies

w|t=T̃ = M0. (1.9)

Note in particular that Corollary 1.2 implies that the result of [4] is valid for any
u0 ∈ L∞(0, 1). Let us also underline that the time that we use to control the system
depends only on the final state, and is independent from the initial one.

Proof. This is a simple scaling argument. Indeed, let us set{
u(t, x) = ν1w(ν1t, x), v1(t) = ν1ṽ1(ν1t), v2(t) = ν1ṽ2(ν1t) and u0(x) = ν1w0(x),

t ∈ (0, T ), x ∈ (0, 1),
3



where we have denoted T = T̃ /ν1. Then, we have
ut + uux − ν1uxx = 0 in (0, T )× (0, 1),

u|x=0 = v1(t), u|x=1 = v2(t) in (0, T ),

u|t=0 = w0 in (0, 1).

(1.10)

Let us set M := ν1M0. From Theorem 1.1 and since T > α0/|M | (thanks to the
choice of T̃ ) and ν1 ≤ ν1 min{1, |M |/| log |M ||} (thanks to the choice of M0), we know
the existence of v1 and v2 such that the solution of (1.10) satisfies u|t=T = M in
(0, 1). Going back to w, this shows the existence of two controls ṽ1 and v2 such that
the associated solution of (1.8) satisfies w|t=T̃ = M0 in (0, 1), as we wanted to prove.

1.3. Structure of the paper. One of the main ingredients of the proof is the use
of the return method by J.M. Coron, which consists in finding a particular trajectory
of the system which moves far away from the initial state to get back to the final state
afterward. In the present situation we steer the system to a large constant state N ,
and then we get back to the constant state M .

Consequently, the proof of Theorem 1.1 is divided in two parts, which we sum-
marize in the following propositions.

Proposition 1.3. There are some constants α1 ≥ 1 and ν1 > 0 such that: for
any u0 ∈ L∞([0, 1]), for any N ∈ R with |N | large enough (depending on ‖u0‖∞)
and any ν ∈ (0, ν1) there are controls wν

1 and wν
2 in L∞(0, T1), where T1 = α1/|N |,

satisfying the following properties:
• ‖wν

1‖∞ and ‖wν
2‖∞ are uniformly bounded for ν ∈ [0, ν1].

• The associated solution u satisfies u|t=T1 = N in (0, 1).
Proposition 1.4. The conclusion of Theorem 1.1 is true when M > 0 and u0

is a positive constant large enough with respect to M .

The planning of the paper is the following: Proposition 1.3 is established in
Section 2. Section 3 is devoted to prove Proposition 1.4 and finally, we prove some
technical results we need for the previous propositions in Section 4.

2. Proof of Proposition 1.3. Due to the invariance of the solutions of (1.1) by
the transformation u(t, x) ↔ −u(t, 1− x), we can assume that N > 0. Now the proof
of Proposition 1.3 is divided in two parts. First, we prove that we can reach a state
close to N in a time O(1/N) (which is a kind of global approximate controllability,
but where the target is a constant that depends on the initial one) and then we
prove that we can steer the latter state exactly to N in a time O(1/N) (local exact
controllability).

2.1. Reaching N approximately. In the following proposition we prove that,
starting from a L∞ initial condition, we can construct a solution of (1.1)-(1.2) which
is close in W 1,∞ norm to some large constant.

Proposition 2.1. Given u0 ∈ L∞([0, 1]), one can find N > 0 large enough
such that for any ν > 0, one can find controls v1 and v2 such that the solution of
(1.1)-(1.2)-(1.3) satisfies:

‖u(t, ·)−N‖L∞([0,1]) ≤ (‖u0‖∞ +N/2) exp
{
−3N2

16ν

(
t− 8

N

)}
, (2.1)
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for any t > 0 and

‖ux(t, ·)‖L∞([0,1]) ≤ C
N2

ν
exp

{
−3N2

16ν

(
t− 8

N

)}
(2.2)

for any t > 8/N and some C > 0. Moreover, the controls satisfy independently from
ν:

max(‖v1‖L∞(0,T ), ‖v2‖L∞(0,T )) ≤ N. (2.3)

Remark 3. All the above constants (such as 8 or 16) are not optimal (see the
proof below) but are sufficient for our purpose (because N is arbitrarily large).

Proof of Proposition 2.1.
The proof of this proposition relies on the comparison principle and on traveling

waves for equation (1.1). Let us state precisely the comparison principle for the
reader’s convenience.

Lemma 2.2 (Comparison principle). Consider u1 and u2 in L∞(R), and the
corresponding solutions u1 and u2 of the Burgers equation on the whole real line with
initial conditions u1 and u2, respectively. Then, if

u1 ≤ u2 in R, (2.4)

we have

u1(t, x) ≤ u2(t, x) in R+ × R. (2.5)

Proof. A simple way to prove Lemma 2.2 (although it could be proven in a far
more general setting) is to use Hopf’s formula for solutions of the viscous Burgers
equation [11]:

ui(t, x) =

∫∞
−∞

x−y
t exp

{
− 1

2ν

(
(x−y)2

2t +
∫ y

0
ui(η)dη

)}
dy∫∞

−∞ exp
{
− 1

2ν

(
(x−y)2

2t +
∫ y

0
ui(η)dη

)}
dy

i = 1, 2. (2.6)

We consider the function

ρi(x, y) := exp
{
− 1

2ν

(
(x− y)2

2t
+
∫ y

0

ui(η)dη
)}

,

and dµi the probability measure (depending on x) given by

dµi :=
ρi(x, y)∫∞
−∞ ρi(x, ·)

dy.
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Now we have

u2(t, x) =
∫ +∞

−∞

x− y

t
dµ2

=
∫ +∞

−∞

x− y

t
exp

(
− 1

2ν

∫ y

0

(u2(η)− u1(η))dη
)
dµ1.

∫ +∞
−∞ ρ1(x, y)dy∫ +∞
−∞ ρ2(x, y)dy

≥
∫ +∞

−∞

x− y

t
dµ1.

∫ +∞

−∞
exp

(
− 1

2ν

∫ y

0

(u2(η)− u1(η))dη
)
dµ1

×
∫ +∞
−∞ ρ1(x, y)dy∫ +∞
−∞ ρ2(x, y)dy

=
∫ +∞

−∞

x− y

t
dµ1 = u1(t, x).

The inequality used above is the FKG inequality: for µ a probability measure on R
and two non-decreasing functions f and g, one has:∫

R
fgdµ ≥

∫
R
fdµ×

∫
R
gdµ.

(This follows easily by considering
∫ ∫

(f(x)− f(y))(g(x)− g(y))dµ(x)dµ(y).)

Back to the proof of Proposition 2.1. We introduce travelling wave profiles for equation
(1.1). These are solutions of the viscous Burgers equations on the whole real line, of
the form:

u(t, x) = U(x− ct) t ∈ R+, x ∈ R,

with c a fixed real number which will be chosen later on. Furthermore, u satisfies the
following asymptotic properties:

u(t, x) → U− as x→ −∞, u(t, x) → U+ as x→ +∞, ux(t, x) → 0 as x→ ±∞,

where U− and U+ are constant states. Straightforward computations show that these
travelling waves are given by the following:

U− ≥ U+, (2.7)

c =
U− + U+

2
, (2.8)

U(y) =
U− + U+

2
− U− − U+

2
tanh

(U− − U+

2ν
(y − y0)

)
, (2.9)

where of course y0 is arbitrary (we will refer to y0 as the center of the wave).
Now let us go back to the proof of Proposition 2.1. Given u0, we choose N >

2‖u0‖∞; later we will also take N > L‖u0‖∞ for some L ≥ 2 and in Section 3 we will
additionally require N > |M |.

We introduce:
• u as the solution of the Burgers equation on R with initial value

u(0, x) =


N for x < 0,

u0(x) for 0 ≤ x ≤ 1,

0 for x > 1.

(2.10)
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• ǔ as the travelling wave solution of the Burgers equation with U− = N and
U+ = −2‖u0‖∞, initially centered at y0, if u0 6≡ 0. If u0 ≡ 0, then we take
for instance U+ := −N/4.

The goal is to prove that the restriction of u to [0, 1] is a suitable solution for Propo-
sition 2.1 (of course, v1 and v2 are defined as the traces of u at x = 0 and x = 1,
respectively). Now if y0 is such that

ǔ(0, ·) ≤ u0(·) in (0, 1), (2.11)

it follows from the comparison principle that

ǔ(t, x) ≤ u(t, x) ≤ N in R+ × R. (2.12)

Let us do a choice of y0 so that (2.11) is satisfied. Indeed, if we take, in the case
u0 6≡ 0,

y0 = − 2ν
N + 2‖u0‖∞

arctanh
( N

N + 2‖u0‖∞
)
,

one can easily check that

ǔ(0, x) ≤ −‖u0‖∞ ∀x ∈ [0, 1],

just taking into account that the maximum value of the function

x ∈ [0, 1] 7−→ − tanh
(
U− − U+

2ν
(x− y0)

)
is reached at x = 0. The case u0 ≡ 0 is similar.

Clearly, for N large enough, one has

y0 ≥ −1 (2.13)

and

N − 2‖u0‖∞ ≥ N

2
. (2.14)

Let us now prove that estimate (2.1) holds. We first recall the expression of ǔ: for
t ∈ R+ and x ∈ R,

ǔ(t, x) =
N

2
− ‖u0‖∞

− N + 2‖u0‖∞
2

tanh
(
N + 2‖u0‖∞

2ν

(
x− N − 2‖u0‖∞

2
t− y0

))
. (2.15)

From (2.13) and (2.14), we get for t ∈ R+ and x ∈ [0, 1],

tanh
(
N + 2‖u0‖∞

2ν

(
x− N − 2‖u0‖∞

2
t− y0

))
≤ tanh

(
N + 2‖u0‖∞

2ν

(
−N

4
t+ 2

))
≤ tanh

(
−3N2

16ν

(
t− 8

N

))
.
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On the other hand, from the definition of the function tanh, we readily deduce that

tanh
(
−3N2

16ν

(
t− 8

N

))
≤ −1 + exp

{
−3N2

16ν

(
t− 8

N

)}
.

Going back to (2.15), we obtain

ǔ(t, x)−N ≥ −
(
N

2
+ ‖u0‖∞

)
exp

{
−3N2

16ν

(
t− 8

N

)}
.

Since ǔ(t, x)−N ≤ 0 already holds (see (2.12)), we deduce (2.1).

In order to prove (2.2) we begin by giving an explicit representation of the spatial
derivative of u in the following lemma:

Lemma 2.3. Let u be a solution of{
ut − νuxx + uux = 0 (t, x) ∈ R+ × R,

u|t=0 = u0 x ∈ R.

Then one has

∂xu(t, x) =

∫ +∞
−∞

y−x
t (u0(y)− u(t, x)) exp

{
− 1

2ν

[ (x−y)2

2t +
∫ y

0
u0(η)dη

]}
dy

2ν
∫ +∞
−∞ exp

{
− 1

2ν

[ (x−y)2

2t +
∫ y

0
u0(η)dη

]}
dy

. (2.16)

Proof. Let us define

f(t, x) :=
∫ +∞

−∞

x− y

t
exp

{
− 1

2ν
[ (x− y)2

2t
+
∫ y

0

u0(η)dη
]}
dy

and

g(t, x) :=
∫ +∞

−∞
exp

{
− 1

2ν
[ (x− y)2

2t
+
∫ y

0

u0(η)dη
]}
dy.

From Hopf’s formula (see (2.6)), we find

u(t, x) =
f(t, x)
g(t, x)

(t, x) ∈ R+ × R.

We notice that ∂xg = − 1
2ν f and

∂xf(t, x) =
g

t
− 1

2νt

∫ +∞

−∞

(y − x)2

t
exp

{
− 1

2ν
[ (x− y)2

2t
+
∫ y

0

u0(η)dη
]}
dy,

so that

∂xu(t, x) =
1
t
− 1

2ν

[∫ +∞
−∞

(y−x)2

t2 exp
{
− 1

2ν

[ (x−y)2

2t +
∫ y

0
u0(η)dη

]}
dy

g
− f2

g2

]
. (2.17)
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Now let us consider the second term in the above right hand side:

I :=
∫ +∞

−∞

(y − x)2

t2
exp

{
− 1

2ν
[ (x− y)2

2t
+
∫ y

0

u0(η)dη
]}
dy

=
∫ +∞

−∞

y − x

t
(
y − x

t
+ u0(y)) exp

{
− 1

2ν
[ (y − x)2

2t
+
∫ y

0

u0(η)dη
]}
dy

−
∫ +∞

−∞

y − x

t
u0(y) exp

{
− 1

2ν
[ (y − x)2

2t
+
∫ y

0

u0(η)dη
]}
dy

=
2νg
t

−
∫ +∞

−∞

y − x

t
u0(y) exp

{
− 1

2ν
[ (y − x)2

2t
+
∫ y

0

u0(η)dη
]}
dy.

In the last identity we have used the fact that

− 2ν
d

dy
exp

{
− 1

2ν
[ (y − x)2

2t
+
∫ y

0

u0(η)dη
]}

=
(
y − x

t
+ u0(y)

)
exp

{
− 1

2ν
[ (y − x)2

2t
+
∫ y

0

u0(η)dη
]}

(2.18)

and we have integrated by parts. Injecting I in (2.17) yields

∂xu(t, x) = − 1
2νg

[
−
∫ +∞

−∞

y − x

t
u0(y) exp

{
− 1

2ν
[ (y − x)2

2t
+
∫ y

0

u0(η)dη
]}
dy

− u(t, x)f(t, x)
]
,

which yields (2.16).
Back to the proof of (2.2). We consider x ∈ [0, 1] and use (2.16) to estimate ∂xu(t, x):

∂xu(t, x) =
1
2ν

∫ +∞
−∞

y−x
t (u0(y)−N) exp

{
− 1

2ν

[ (x−y)2

2t +
∫ y

0
u0(η)dη

]}
dy∫ +∞

−∞ exp
{
− 1

2ν

[ (x−y)2

2t +
∫ y

0
u0(η)dη

]}
dy

+
1
2ν

∫ +∞
−∞

y−x
t (N − u(t, x)) exp

{
− 1

2ν

[ (x−y)2

2t +
∫ y

0
u0(η)dη

]}
dy∫ +∞

−∞ exp
{
− 1

2ν

[ (x−y)2

2t +
∫ y

0
u0(η)dη

]}
dy

.

Let us denote A and B respectively the first and second term of the above right hand
side. Clearly,

B = − 1
2ν

(N − u(t, x))u(t, x),

and this term is easily estimated using the L∞ estimate on N − u. Concerning A, we
first notice that, due to the initial condition of u (see (2.10)), one has

A =
1
2ν

∫ +∞
0

y−x
t (u0(y)−N) exp

{
− 1

2ν

[ (x−y)2

2t +
∫ y

0
u0(η)dη

]}
dy∫ +∞

−∞ exp
{
− 1

2ν

[ (x−y)2

2t +
∫ y

0
u0(η)dη

]}
dy

.

Note that simple computations yield∫ b

a

exp

{
− 1

2ν

[
(x− y)2

2t
+ α y

]}
dy = 2

√
νt exp

{
α(−2x+ αt)

4ν

}∫ ξ+

ξ−

e−t2dt

(2.19)
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with

ξ− :=
a− x+ α t

2
√
νt

and ξ+ :=
b− x+ α t

2
√
νt

,

and∫ b

a

y exp

{
− 1

2ν

[
(x− y)2

2t
+ α y

]}
dy

= 2
√
νt(x− αt) exp

{
α(−2x+ αt)

4ν

}∫ ξ+

ξ−

e−t2dt

−2νt
{

exp
[
−b

2 − 2bx+ 2bαt+ x2

4νt

]
− exp

[
−a

2 − 2ax+ 2aαt+ x2

4νt

]}
.

(2.20)

Also, we note that for y > 0, one has∫ +∞

y

e−s2
ds ≤ e−y2

2y
. (2.21)

We estimate from below the denominator by∫ +∞

−∞
exp

{
− 1

2ν
[ (x− y)2

2t
+
∫ y

0

u0(η)dη
]}
dy

≥
∫ 0

−∞
exp

{
− 1

2ν
[ (x− y)2

2t
+
∫ y

0

u0(η)dη
]}
dy

=
∫ 0

−∞
exp

{
− 1

2ν
[ (x− y)2

2t
+Ny

]}
dy

≥
√
πνt exp

{N
2ν

(
Nt

2
− x)

}
.

The numerator is bounded by∣∣∣ ∫ +∞

0

y − x

t
(u0(y)−N) exp

{
− 1

2ν
[ (x− y)2

2t
+
∫ y

0

u0(η)dη
]}
dy
∣∣∣

≤
∫ +∞

0

y + 1
t

(‖u0‖∞ +N) exp
{
− 1

2ν
[ (x− y)2

2t
− ‖u0‖∞y

]}
dy

≤ 12νN exp{−x
2

4νt
},

where we used N > ‖u0‖∞ and Nt− 1 > 1 for the times under view.
Then (2.2) follows by taking N >> ‖u0‖∞. Note that the estimate on the term

A is better than the estimate on the term B, which comes directly from the L∞

estimate.
Finally, estimate (2.3) comes directly from the maximum principle. �
Remark 4. It is easy to check the following: suppose that we take N large enough

(as we may) in order that

y0 ≥ −δ,

N − 2‖u0‖∞ ≥ (1− δ)N,
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for some small parameter δ > 0, instead of (2.13)-(2.14). Tthen following the above
computations we obtain estimates of the form

‖u(t, ·)−N‖W 1,∞([0,1]) ≤
CN2

ν
exp

{
− K

ν

(
t− 2(1 + δ)

N(1− δ)

)}
.

Hence the time of approximate controllability can be made close to 2/N for N large
enough (as ν → 0+). This is not surprising, since for the hyperbolic equation, the
solution of the Riemann problem (1.5) with initial condition

u|t=0 =

{
N on R−,

M on R+,

with N,M ∈ R, N > M is given by a simple shock with speed (N +M)/2.

2.2. Reaching N exactly. Observe that from the previous paragraph and after
a time t = α1/N has gone by (with for instance α1 = 8 or even α1 > 2, taking Remark
4 into account), we can assume that our new initial condition (which we also denote
u0) satisfies

‖u0 −N‖W 1,∞(0,1) ≤ e−CN/ν (2.22)

for some C > 0, provided that ν ∈ (0, ν0).
Remark 5. As said above, condition (2.22) trivially follows from Proposition

2.1, since ν0 is small enough and N is large enough. In the sequel we will prove
that condition (2.22) suffices to reach N exactly with uniform bounds on the controls,
which concludes the proof of Proposition 1.3.

In what concerns the proof of Proposition 1.4, at this stage of the analysis, we
will also have some initial state u0 satisfying

‖u0 −M‖W 1,∞(0,1) ≤ e−CM/ν

provided that ν < ν0 where ν0 is small enough (see Proposition 3.1 below). As a
consequence, arguing as in this paragraph, we will be able to drive the solution exactly
to M as well (with uniform bounds on the controls).

In this paragraph, we prove that we have a local exact (uniform in ν) controlla-
bility result for a time T = O(1/N). Precisely, we establish:

Proposition 2.4. Assume that u0 ∈ W 1,∞(0, 1) and there exists K0 > 0 such
that

‖u0 −N‖W 1,∞(0,1) ≤ e−K0N/ν . (2.23)

Then, one can find controls v1 and v2 such that the solution of (1.1)-(1.2)-(1.3) sat-
isfies, for T = α0−2

N ,

u|t=T = N in (0, 1). (2.24)

Moreover, the controls satisfy the following estimate, which is independent of ν ∈
(0, ν0):

max(‖v1‖W 1,∞(0,T ), ‖v2‖W 1,∞(0,T )) ≤ 2N. (2.25)

11



Proof. First, we set y(t, x) = u(t, x)−N so that y fulfills{
yt + yyx − νyxx +Nyx = 0 in (0, T )× (0, 1)

y|t=0 = y0 := u0 −N in (0, 1).
(2.26)

Now, our objective is to find boundary controls y|x=0(t) = v1(t)−N and y|x=1(t) =
v2(t)−N such that

y|t=T = 0 in (0, 1) (2.27)

and

‖v1(t)−N‖W 1,∞(0,T ) + ‖v2(t)−N‖W 1,∞(0,T ) ≤ N. (2.28)

We will prove this by means of a fixed point argument posed in a suitable Hilbert
space Z.

2.2.1. Uniform null controllability of the linearized Burgers equation.
In this paragraph, we consider the following linearized Burgers equation:

yt − νyxx + ((N + z(t, x)/2)y)x = 0 in (0, T )× (0, 1),

y|x=0 = ṽ1, y|x=1 = ṽ2 in (0, T ),

y|t=0 = y0 in (0, 1).

(2.29)

For this system, we prove the null controllability with controls bounded independently
of ν. Precisely, we have:

Lemma 2.5. Let z be in L1(0, T ;W 1,∞(0, 1)) ∩ L∞((0, T )× (0, 1)) with

‖zx‖L1
t L∞x

+ ‖z‖L∞t L∞x ≤ exp
(
− K0N

5ν
)
, (2.30)

where K0 is introduced in Proposition 2.4, and let us introduce the quantity

D(T,N, z) :=
3e−2‖zx‖L1

t (L∞x )

4

(
2T (N − ‖z‖∞/2)

3
− 1
)2

− 6χ, (2.31)

where χ is some positive constant defined in (4.23). Assume that the initial condition
y0 = u0 −N satisfies (2.23) and that the final time T satisfies

(N − ‖z‖∞/2)2T/3 > 1. (2.32)

Then, for any ν ∈ (0, ν0), there exist two controls ṽ1, ṽ2 ∈ W 1,∞(0, T ) such that the
associated solution to (2.29) satisfies

y|t=T = 0 in (0, 1)

and

‖ṽ1‖W 1,∞(0,T ) + ‖ṽ2‖W 1,∞(0,T ) ≤ e−K0N/(3ν)
(
e−D(T∗,N,z)/(νT∗) + 1

)
, (2.33)

where T ∗ := min{T, 3/(N − ‖z‖∞/2)}.
12



Remark 6. It will follow from Lemma 4.1 that one can take 6χ = 4 in (2.31).
When we follow Remark 7 below (as found numerically), we see that one can estimate
6χ by 2.61.

Proof. First, choosing the controls ṽ1 and ṽ2 to be zero close to t = 0 and on
account of the regularizing effect of the heat equation, one can always suppose that our
initial condition y0 belongs to W 2,∞(0, 1) and, thanks to (2.23), we can also assume
that

‖y0‖W 2,∞(0,1) ≤ e−K0N/(2ν). (2.34)

Now, we introduce a function ỹ0 ∈W 2,∞(−1, 2) such that ỹ0 = y0 in (0, 1) and

‖ỹ0‖W 2,∞(−1,2) ≤ C‖y0‖W 2,∞(0,1) (2.35)

for some C > 0. Let us first suppose that we can find two controls ṽ3, ṽ4 ∈ L2(0, T )
satisfying

‖ṽ3‖L2(0,T∗) + ‖ṽ4‖L2(0,T∗) ≤ Ce−D(T∗,N,z)/(νT∗)‖ỹ0‖L2(−1,2)

≤ Ce−D(T∗,N,z)/(νT∗)e−K0N/(2ν) (2.36)

for some C > 0, such that the solution ỹ ∈ L2((0, T )× (−1, 2)) of
ỹt − νỹxx + ((N + z(t, x)/2)ỹ)x = 0 in (0, T ∗)× (−1, 2),

ỹ|x=−1 = ṽ3, ỹ|x=2 = ṽ4 in (0, T ∗),

ỹ|t=0 = ỹ0 in (−1, 2),

(2.37)

satisfies

ỹ|t=T∗ = 0 in (−1, 2).

Then, the function y := ỹ|[0,1]1(0,T∗) fulfills system (2.29) with

ṽ1(t) = ỹ|x=0(t)1(0,T∗) and ṽ2(t) = ỹ|x=1(t)1(0,T∗) (2.38)

and satisfies

y|t=T = 0 in (0, 1)

(indeed, y ≡ 0 in (T ∗, T )).
In order to prove estimate (2.33), it suffices to use classical localization arguments

together with regularity estimates for the solution of (2.37). Precisely, for any δ > 0,
we can prove that there exists a positive constant C > 0 such that

‖ỹ‖W 1,∞(0,T ;H1(−1+δ,2−δ)) ≤ (C/ν)(‖ỹ0‖W 2,∞(−1,2) + ‖ṽ3‖L2(0,T∗) + ‖ṽ4‖L2(0,T∗)).

In particular, this implies that ỹ|x=0 and ỹ|x=1 belong to W 1,∞(0, T ∗) and thanks to
(2.36), (2.23) and ν ∈ (0, ν0), they satisfy estimate (2.33).

Consequently, our task will be now to find ṽ3 and ṽ4 satisfying the above prop-
erties. We use the classical approach, consisting of obtaining a suitable observability
inequality for the adjoint system of (2.37). For simplicity, we will suppose that we
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are working in the space interval (0, 1) instead of (−1, 2) (so, in particular, we will
refer to system (2.29) instead of (2.37)). Thus, let us introduce the adjoint problem
associated to (2.29):

−ϕt − νϕxx − (N + z(t, x)/2)ϕx = 0 in (0, T ∗)× (0, 1),

ϕ|x=0 = 0, ϕ|x=1 = 0 in (0, T ∗),

ϕ|t=T∗ = ϕ0 in (0, 1),

(2.39)

where, ϕ0 ∈ H1
0 (0, 1) is the initial condition.

We prove the following observability inequality for the solutions of (2.39):

‖ϕ|t=0‖2
L2(0,1) ≤ K(T ∗, ν)

∫ T∗

0

(|ϕx|x=0|2 + |ϕx|x=1|2) dt (2.40)

for some positive constant K(T ∗, ν). Then, it is not difficult to prove that the null
controllability of system (2.29) holds with controls ṽ1 and ṽ2 whose L2 norms are
bounded by K(T ∗, ν)/ν. We omit the proof of this fact for the sake of simplicity.

In order to prove estimate (2.40), we will follow the same ideas in [5]. That is
to say, we will combine a suitable Carleman inequality with a dissipation result for
system (2.39).

Dissipation Result: Let t0 ∈ (0, T ∗). Then, following the steps of the proof in [7],
one can prove: ‖ϕ|t=t0‖2

L2(0,1) ≤ exp
{‖zx‖L1

t (L∞x )

8
− ((N − ‖z‖∞/2)t∗ − 1)2

2νt∗
e
−2‖zx‖L1

t (L∞x )

}
×‖ϕ|t=t0+t∗‖2

L2(0,1),

(2.41)
for any t∗ ∈ (0, T ∗ − t0) such that

(N − ‖z‖∞/2)t∗ > 1. (2.42)

Carleman inequality: Let 0 < γ < 1/3 (one can take for example γ := 1/6). We
will prove that, if (2.30) and (2.32) hold, then we have the following inequality:∫ 1

0

∫ (2+3γ)T∗/3

2T∗/3

|ϕ|2 dt dx

6 Ce6χ/(νT∗)

(
ν2T ∗

N

∫ T∗

0

|ϕx(t, 0)|2 dt+
1
N

∫ 1

0

|ϕ(0, x)|2 dx

)
.

(2.43)

The proofs of these results are postponed to the fourth and last section of the paper.
Now, we are in position to establish our central observability inequality (2.40).

We apply the dissipativity result (2.41) to ϕ (which is a solution of (2.39)) for each
t∗ ∈ (2T ∗/3, (2 + 3γ)T ∗/3). This is possible by (2.32). We obtain∫ 1

0

∫ (2+3γ)T∗/3

2T∗/3

|ϕ|2 dt dx ≥ C(ν,N, T ∗, z)
∫ 1

0

|ϕ(0, x)|2 dx,

with

C(ν,N, T ∗, z) = exp

{
−
‖zx‖L1

t (L∞x )

8
+ 3e−2‖zx‖L1

t (L∞x )
( 2T∗

3 (N − ‖z‖∞
2 )− 1)2

4νT ∗

}
.
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Here, we have used the fact that

t∗ 7−→ ((N − ‖z‖∞/2)t∗ − 1)2

4νt∗

is an increasing function as long as (2.42) is satisfied.
Finally, we obtain the observability inequality (2.40) with

K(T ∗, ν) = C exp
(
−D(T ∗, N, z)

νT ∗

)
,

for some C = C(T ∗, N); recall that D(T ∗, N, z) was introduced in (2.31). In particu-
lar, estimate (2.36) holds.

This concludes the proof of Lemma 2.5.

2.2.2. Fixed Point argument. In this paragraph, we end the proof of the null
controllability of system (2.26), by performing a fixed point argument to the following
application: to each z ∈ W 1,∞((0, T ) × (0, 1)) such that (2.31) holds, we associate y
solution of (2.29) given by lemma 2.5. More precisely, let us first define the set of
controls:

A(z) = {(ṽ1, ṽ2) ∈W 1,∞(0, T )2 :
y solution of (2.29) satisfies y|t=T = 0 and ṽ1, ṽ2 satisfy (2.33)}. (2.44)

Then, Λ(z) = y, where y fulfills system (2.29) for some controls (ṽ1, ṽ2) ∈ A(z).
Let us recall Kakutani’s fixed point theorem (see, for instance, [2]):
Theorem 2.6. Let Z be a Hilbert space and let Λ : Z 7→ Z be a set-valued

mapping satisfying the following assumptions:
1. Λ(z) is a nonempty closed convex set of Z for every z ∈ Z.
2. There exists a nonempty convex compact set E ⊂ Z such that Λ(E) ⊂ E.
3. Λ is upper-hemicontinuous in Z, i.e. for each σ ∈ Z ′ the single-valued map-

ping

z 7→ sup
y∈Λ(z)

〈σ, y〉Z′,Z (2.45)

is upper-semicontinuous.
Then Λ possesses a fixed point in the set E, i.e. there exists z ∈ E such that z ∈ Λ(z).

Let us check that Kakutani’s theorem can be applied to Λ and

Z = H3/4(0, T ;L2(0, 1)) ∩ L2(0, T ;H7/4(0, 1)).

Observe that Z ⊂ L∞(Q) ∩ L2(0, T ;W 1,∞(0, 1)).
• The fact that Λ(z) is a nonempty closed convex set of Z for every z ∈ Z is very

easy to verify, so we leave it to the reader.
• Let us prove that Λ maps a compact set into itself. For this, we consider the

Hilbert space

H = H1(0, T ;L2(0, 1)) ∩ L2(0, T ;H2(0, 1)).

Then, we introduce the space

E = {w ∈ H : ‖w‖H ≤ e−K0N/(5ν)},
15



where K0 is the constant in (2.23). Observe that, in particular, if w ∈ E then
‖w‖∞ ≤ N as long as ν ∈ (0, ν0).

It is very easy to check that E is a compact set of Z. Moreover, since E ⊂
L2(0, T ;W 1,∞(0, 1)), one can prove that for each z ∈ E the solution y of (2.29)
belongs to H and there exists a constant C > 0 such that

‖y‖H ≤ C(‖ṽ1‖W 1,∞(0,T ) + ‖ṽ2‖W 1,∞(0,T ) + ‖y0‖W 1,p(0,1)). (2.46)

Indeed, let us consider the following lifting of the boundary conditions:

V (t, x) = (1− x)ṽ1(t) + xṽ2(t) t ∈ (0, T ), x ∈ (0, 1).

By introducing w := y − V , our problem (2.29) is transformed into
wt − νwxx + ((N + z(t, x)/2)w)x = f(t, x) in (0, T )× (0, 1),

w|x=0 = 0, w|x=1 = 0 in (0, T ),

w|t=0 = y0 − (1− x)ṽ1(0) + xṽ2(0) in (0, 1),

(2.47)

where

f(t, x) = (1− x)ṽ1,t(t) + xṽ2,t(t) + (N/2 + z(t, x))(−ṽ1(t) + ṽ2(t)) + zx(t, x)V.

This is a linear parabolic equation with L2
t (L

∞
x ) coefficient for the zero order term,

L∞(Q) coefficient for the first order (in space) term, L∞(Q) right hand side and
W 1,∞(0, 1) initial condition. In this situation, it is not difficult to prove that the
solution of (2.47) belongs to H and (2.46) holds. (Observe that, thanks to (2.38), the
initial data in (2.47) satisfies the required compatibility condition.)

Now, looking at the definition of D given in (2.31), we see that as long as T >
(α0 − 2)/N (for some α0 < 9), we have

D(T,N, z) ≥ 0 ∀z ∈ E, ν ∈ (0, ν0).

Then, from (2.46) and taking into account estimates (2.23) and (2.33), we obtain for
some C > 0

‖y‖H ≤ C(e−K0/ν + e−K0/(3ν)) ≤ e−K0N/(5ν) ν ∈ (0, ν0)

and so y ∈ E.
• It remains to check that Λ is upper-hemicontinuous. Thus, assume that σ ∈ Z ′

and let a sequence {zn} be given, with zn → z strongly in Z. We must prove that

limn→+∞ sup
y∈Λ(zn)

〈σ, y〉Z′,Z ≤ sup
y∈Λ(z)

〈σ, y〉Z′,Z .

Let {zn′} be a subsequence of {zn} such that

limn→+∞ sup
y∈Λ(zn)

〈σ, y〉Z′,Z = lim
n′→+∞

sup
y∈Λ(zn′ )

〈σ, y〉Z′,Z .

Since each Λ(zn′) is a compact set of Z, for every n′ we have

sup
y∈Λ(zn′ )

〈σ, y〉Z′,Z = 〈σ, yn′〉Z′,Z

16



for some yn′ ∈ Λ(zn′). On the other hand, since all the states yn′ belong to the same
compact set E, at least for a new subsequence (again indexed by n′), we must have
yn′ → y strongly in Z. We will now prove that y ∈ Λ(z). This will achieve the proof
of the upper hemicontinuity of Λ.

Indeed, it can be assumed that the controls ṽ1,n′ and ṽ2,n′ converge to some
functions ṽ1 and ṽ2 weakly-∗ in W 1,∞(0, T ). Then, y solves (2.29) and y|t=T = 0.
Moreover, since inequality (2.33) is independent of n, ṽ1 and ṽ2 also satisfy (2.33).
Therefore, (ṽ1, ṽ2) ∈ A(z). Consequently, it is immediate that y is the solution to
(2.29) associated to the controls ṽ1 and ṽ2.

This shows that y ∈ Λ(z) and, therefore, Λ is upper hemicontinuous.

Consequently, Kakutani’s Theorem applies and this implies that there exists y ∈
Λ(y), that is to say, we have found a function y solution of (2.26) such that (2.27)
and (2.28) (thanks to (2.33)) are satisfied. The proof of Proposition 2.4 is finished.

3. Proof of Proposition 1.4. Again relying on the invariance of the solutions
of (1.1) by the transformation u(t, x) ↔ −u(t, 1 − x), we can always assume that
M > 0. Now Proposition 1.4 is proven approximately as Proposition 1.3, but here
a (viscous) rarefaction wave is used in place of a traveling wave. More precisely, we
start from N which can be chosen larger than M . First, we reach M approximately
and then we reach M exactly by using the same argument as above.

3.1. Reaching M approximately. Let us prove that
Proposition 3.1. One can find controls v1 and v2 such that the solution of (1.1)-

(1.3) with initial condition u|t=0 = N satisfies for some constant C > 0 independent
from M , N and ν:

‖u(t, ·)−M‖W 1,∞([0,1]) ≤ CM
√
νt exp

{
−M

2

4ν

(
t− 2

M

)}
, (3.1)

for any t > 2
M and moreover, the controls satisfy independently from ν:

‖v1‖L∞(0,T ) + ‖v2‖L∞(0,T ) ≤ N. (3.2)

Proof of Proposition 3.1. In this situation, the solution u is obtained by taking the
restriction to [0, T ]× [0, 1] of the solution defined on the whole space domain R as the
unique solution with initial condition:

u(0, x) := û0 =

{
M if x ≤ 0,
N if x > 0.

(3.3)

Then, v1 and v2 are obtained by taking the traces of u along the lines (0, T ) × {0}
and (0, T )× {1}. As before, (3.2) follows directly from the maximum principle so we
only have to check (3.1).

In a first step we only consider the L∞ norm. The solution u(t, x) has the following
explicit form:

u(t, x) =∫ 0

−∞
x−y

t exp
{
− 1

2ν

(
(x−y)2

2t +My
)}
dy +

∫ +∞
0

x−y
t exp

{
− 1

2ν

(
(x−y)2

2t +Ny
)}
dy∫ 0

−∞ exp
{
− 1

2ν

(
(x−y)2

2t +My
)}
dy +

∫ +∞
0

exp
{
− 1

2ν

(
(x−y)2

2t +Ny
)}
dy

.
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We note that∫ 0

−∞

x− y

t
exp

{
− 1

2ν

( (x− y)2

2t
+My

)}
dy

= 2ν exp(− x2

4νt
) +M

∫ 0

−∞
exp

{
− 1

2ν

( (x− y)2

2t
+My

)}
dy,

(as seen by adding and subtracting M inside the integral). In the same way, we have

∫ +∞

0

x− y

t
exp

{
− 1

2ν

( (x− y)2

2t
+Ny

)}
dy

= −2ν exp(− x2

4νt
) +N

∫ +∞

0

exp
{
− 1

2ν

( (x− y)2

2t
+Ny

)}
dy.

Hence we get that

u(t, x)−M =

(N −M)
∫ +∞
0

exp
{
− 1

2ν

(
(x−y)2

2t +Ny
)}
dy∫ 0

−∞ exp
{
− 1

2ν

(
(x−y)2

2t +My
)}
dy +

∫ +∞
0

exp
{
− 1

2ν

(
(x−y)2

2t +Ny
)}
dy
.

Note that û0 is non-decreasing, hence u(t, ·) is also non-decreasing (as seen from
Lemma 2.2, and comparing the solutions corresponding to û0 and û0(· + h)). Using
the fact that û0 ≥M , we deduce together with the maximum principle, that u ≥M .
Consequently, it is sufficient to have an upper estimate for u(t, 1) −M . Now from
(2.19) we have∫ 0

−∞
exp

{
− 1

2ν

( (1− y)2

2t
+My

)}
dy =

√
4νt exp

(M(Mt− 2)
4ν

) ∫ ξM

−∞
e−s2

ds,∫ +∞

0

exp
{
− 1

2ν

( (1− y)2

2t
+Ny

)}
dy =

√
4νt exp

(N(Nt− 2)
4ν

) ∫ +∞

ξN

e−s2
ds,

with

ξM :=
Mt− 1
2
√
νt

and ξN :=
Nt− 1
2
√
νt

.

We deduce

u(t, 1)−M ≤
(N −M)

∫ +∞
0

exp
{
− 1

2ν

(
(1−y)2

2t +Ny
)}
dy∫ 0

−∞ exp
{
− 1

2ν

(
(1−y)2

2t +My
)}
dy

≤
(N −M) exp

(M(Mt−2)
4ν

) ∫ ξM

−∞ e−s2
ds

exp
(N(Nt−2)

4ν

) ∫ +∞
ξN

e−s2ds

≤
(N −M) exp

(M(Mt−2)
4ν

) ∫ ξM

−∞ e−s2
ds

√
π/2

.
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With (2.21), we get

u(t, 1)−M ≤ 2
√
νt√
π

N −M

Nt− 1
exp

{−1
4νt
}

exp
{
− M2

4ν
(
t− 2

M

)}
,

and the result in L∞ norm follows using t > 2/M .
The L∞ estimate on ∂xu is done approximately as in Paragraph 2.1, by using

Lemma 2.3. We fix x ∈ [0, 1]; we get

∂xu(t, x) =
1
2ν

∫ +∞
−∞

y−x
t (û0(y)−M) exp

{
− 1

2ν

[ (x−y)2

2t +
∫ y

0
û0(η)dη

]}
dy∫ +∞

−∞ exp
{
− 1

2ν

[ (x−y)2

2t +
∫ y

0
û0(η)dη

]}
dy

+
1
2ν

∫ +∞
−∞

y−x
t (M − u(t, x)) exp

{
− 1

2ν

[ (x−y)2

2t +
∫ y

0
û0(η)dη

]}
dy∫ +∞

−∞ exp
{
− 1

2ν

[ (x−y)2

2t +
∫ y

0
û0(η)dη

]}
dy

=: A+B.

Using again the fact that u(t, ·) is non-decreasing, we see that we only have to give
an upper bound for ∂xu. The second term B satisfies

B =
1
2ν

(M − u(t, x))u(t, x),

and thus is clearly non-positive as follows from the maximum principle. Therefore, it
remains to estimate the first term A. To this aim, we estimate the denominator from
below as follows∫ +∞

−∞
exp

{
− 1

2ν
[ (x− y)2

2t
+
∫ y

0

û0(η)dη
]}
dy

≥
∫ 0

−∞
exp

{
− 1

2ν
[ (x− y)2

2t
+
∫ y

0

û0(η)dη
]}
dy

=
∫ 0

−∞
exp

{
− 1

2ν
[ (x− y)2

2t
+My

]}
dy

≥
√
πνt exp

{M
2ν

(
Mt

2
− x)

}
.

For the numerator, thanks to (2.20), we have

N :=
∫ +∞

0

y − x

t
(û0(y)−M) exp

{
− 1

2ν
[ (x− y)2

2t
+
∫ y

0

û0(η)dη
]}
dy

≤
∫ +∞

0

y

t
(N −M) exp

{
− 1

2ν
[ (x− y)2

2t
+Ny

]}
dy

≤ N −M

t

[
2
√
νt(x−Nt) exp

{
N(−2x+Nt)

4ν

}
×
∫ +∞

−x+Nt

2
√

νt

e−s2
ds+ 2νt exp

{
− x2

4νt

}]
=
N −M

t
exp

{
N(−2x+Nt)

4ν

}
×
[
2
√
νt(x−Nt)

∫ +∞

−x+Nt

2
√

νt

e−s2
ds+ 2νt exp

{
− (x−Nt)2

4νt

}]
.
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Simple integrations by parts prove that

−
∫ +∞

y

e−s2
ds+

e−y2

2y
≤ e−y2

4y3
. (3.4)

Plugging (3.4) with y = −x+Nt
2
√

νt
in the previous estimate of N and using Nt ≥ 1 ≥ x,

we deduce

N ≤ 4
N −M

(Nt− 1)2
ν2t exp

{−x2

4νt
}
.

Using N > M , we finally obtain

N ≤ 4Mν2t,

which yields the result.

3.2. Reaching M exactly. Reaching M exactly is done exactly as for reaching
N exactly (see paragraph 2.2). This is due to the fact that we did not use the size
of N in paragraph 2.2. This ends the proof of Proposition 1.4 and hence of Theorem
1.1.

4. Technical Results.

4.1. Proof of the dissipation result. In this first paragraph, we will prove
the estimate presented in (2.41):

‖ϕ|t=t0‖L2(0,1) ≤ exp
{‖zx‖L1

t (L∞x )

8
− ((N − ‖z‖∞/2)t∗ − 1)2

4νt∗
e
−2‖zx‖L1

t (L∞x )

}
× ‖ϕ|t=t0+t∗‖L2(0,1), (4.1)

for any t0 ∈ (0, T ∗) and any t∗ ∈ (0, T ∗ − t0) such that (2.42) is satisfied. Here, ϕ
designs the solution of the system

−ϕt − νϕxx − (N + z(t, x)/2)ϕx = 0 in (0, T ∗)× (0, 1),

ϕ|x=0 = 0, ϕ|x=1 = 0 in (0, T ∗),

ϕ|t=T∗ = ϕ0 in (0, 1).

(4.2)

Let us first define a function Θ(t, x) = eθ(t,x), where θ ∈ L∞(0, T ∗;W 1,∞(0, 1)) is
chosen as follows: we set θ(t, x) := r0|ψ−1(t, x)|, with r0 > 0 a constant which will be
chosen later on, and where ψ is the backward flow associated to N + z(t, x)/2. More
precisely, ψ is given by 

dψ

dt
(t, x) = N + z(t, ψ(t, x))/2,

ψ|t=t0+t∗ = x.

Here, we have extended z(t, ·) by z(t, 0) on the left of 0 and by z(t, 1) on the right of
1. In particular, Θ is defined for x ∈ R and satisfies

Θt + (N + z(t, x)/2)Θx = 0. (4.3)
20



We regard the equation satisfied by Θϕ (in fact to be complete, we should regularize
Θ and z, establish estimates for regularized Θ and z, and then pass to the limit):

−(Θϕ)t − ν(Θϕ)xx − (N + z(t, x)/2)(Θϕ)x = −νϕΘxx − 2νϕxΘx. (4.4)

We multiply by Θϕ and integrate on (0, 1). After integration by parts we obtain

−1
2
d

dt

∫ 1

0

|eθϕ|2 dx+
1
4

∫ 1

0

zx|eθϕ|2 dx+ ν

∫ 1

0

|(eθϕ)x|2 dx

= ν

∫ 1

0

|Θθxϕ|2 dx ≤ ν‖θx‖2
∞

∫ 1

0

|eθϕ|2 dx.
(4.5)

After an application of Gronwall’s lemma in the time interval (t0, t0 + t∗), we find the
following from (4.5):∫ 1

0

|eθϕ|2(t0) dx

≤ exp
{‖zx‖L1

t (L∞x )

4
+ 2νr20t

∗ exp(2‖zx‖L1
t (L∞x ))

}∫ 1

0

|eθϕ|2(t0 + t∗) dx.

(4.6)

Here, we have used the expression of θ together with the estimate

|ψ−1
x (t, x)|2 ≤ exp

{
2
∫ T∗

0

‖zx(s)‖∞ ds

}
t ∈ (0, T ), x ∈ (0, 1).

Now, from the expression of ψ−1(t, x) we observe that

ψ−1(t0, x) ≤ 1− (N − ‖z‖∞/2)t∗ for x ∈ (0, 1).

Then from (4.6) we find that∫ 1

0

|ϕ|2(t0) dx ≤ C(r0, t∗)
∫ 1

0

|ϕ|2(t0 + t∗) dx, (4.7)

with

C = exp{‖zx‖L1
t (L∞x )/4 + 2νr20t

∗ exp(2‖zx‖L1
t (L∞x )) + 2r0(1− (N − ‖z‖∞/2)t∗)}.

Finally, we choose

r0 =
e
−2‖zx‖L1

t (L∞x )((N − ‖z‖∞/2)t∗ − 1)
2νt∗

and we find the desired inequality (4.1) squared.

4.2. Proof of the Carleman inequality. In this last paragraph of the paper,
we will provide the proof of the Carleman inequality which was presented in (2.43).
In order to prove this estimate, we follow the steps of the proof in [5].

Hence, let us first perform a change of variables in order to restrict ourselves to
the case where ν = 1: {

t̃ = νt,

x̃ = x.
(4.8)
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In the new variables, we have, with ϕ̃(t̃, x̃) := ϕ(t, x) and z̃(t̃, x̃) = z(t, x),
ϕ̃et + ϕ̃exex + ν−1Nϕ̃ex = −ν−1(z̃(t̃, x̃)/2)ϕ̃ex (t̃, x̃) ∈ (0, νT ∗)× (0, 1),

ϕ̃(t̃, 0) = ϕ̃(t̃, 1) = 0 t̃ ∈ (0, νT ∗),

ϕ̃(νT ∗, x̃) = ϕ̃0(x̃) x̃ ∈ (0, 1).

(4.9)

Let

Ñ :=
N

ν
, (4.10)

T̃ := νT ∗. (4.11)

Then, condition (2.32) implies

Ñ T̃ > 3/2. (4.12)

Let us define a weight function, similar to the one introduced by Fursikov and Imanuvilov
in [8],

α(t̃, x̃) :=
β(x̃)

T̃ − t̃
(t̃, x̃) ∈ (0, T̃ )× (0, 1), (4.13)

where 0 6 β ∈ C2([0, 1]) will be chosen below. We also introduce the function

ψ := e−αϕ̃,

which verifies

P1ψ + P2ψ = P3ψ, (4.14)

with

P1ψ := ψexex + α2exψ + Ñαexψ + αetψ,
P2ψ := ψet + 2αexψex + Ñψex,

P3ψ := −αexexψ − ν−1(z̃(t̃, x̃)/2)(αexψ + ψex).

We develop here the classical proof, consisting in taking the L2 norm in identity (4.14)
and then develop all the double products:

‖P1ψ‖2
L2(Q) + ‖P2ψ‖2

L2(Q) + 2(P1ψ, P2ψ)L2(Q) = ‖P3ψ‖2
L2(Q), (4.15)

where Q stands for the open set (0, T̃ )× (0, 1).
Let us compute 2(P1ψ, P2ψ)L2(Q). Let us first compute the terms concerning ψexex.

We have

(ψexex, ψet)L2(Q) =
1
2

∫ 1

0

|ψex(0, x̃)|2 dx̃.

Moreover

2(ψexex, αexψex)L2(Q)

=
∫ eT

0

(αex(t̃, 1)|ψex(t̃, 1)|2 − αex(t̃, 0)|ψex(t̃, 0)|2) dt̃−
∫∫

Q

αexex|ψex|2 dx̃ dt̃. (4.16)
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Finally,

Ñ(ψexex, ψex)L2(Q) = (Ñ/2)
∫ eT

0

(|ψex(t̃, 1)|2 − |ψex(t̃, 0)|2) dt̃.

As long as the term α2exψ is concerned, we first have

(α2exψ,ψet)L2(Q) = −
∫∫

Q

αexαexet|ψ|2 dx̃ dt̃− 1
2

∫ 1

0

α2ex(0, x̃)|ψ(0, x̃)|2 dx̃.

Next,

2(α2exψ, αexψex)L2(Q) = −3
∫∫

Q

αexexα2ex|ψ|2 dx̃ dt̃.
Finally,

Ñ(α2exψ,ψex)L2(Q) = −Ñ
∫∫

Q

αexexαex|ψ|2 dx̃ dt̃.

Let us next perform the terms concerning Ñαexψ. First, we have

Ñ(αexψ,ψet)L2(Q) = −(Ñ/2)
∫∫

Q

αexet|ψ|2 dx̃ dt̃− (Ñ/2)
∫ 1

0

αex(0, x̃)|ψ(0, x̃)|2 dx̃.

Then, we find

2Ñ(αexψ, αexψex)L2(Q) = −2Ñ
∫∫

Q

αexαexex|ψ|2 dx̃ dt̃.
The last term provides

Ñ2(αexψ,ψex)L2(Q) = −(Ñ2/2)
∫∫

Q

αexex|ψ|2 dx̃ dt̃.
Lastly, we deal with the computations of the term αetψ. First, we obtain

(αetψ,ψet)L2(Q) = −(1/2)
∫∫

Q

αetet|ψ|2 dx̃ dt̃− (1/2)
∫ 1

0

αet(0, x̃)|ψ(0, x̃)|2 dx̃.

Additionally, we find

(αetψ, 2αexψex)L2(Q) = −
∫∫

Q

(αetαexex + αetexαex)|ψ|2 dx̃ dt̃.

Finally,

(αetψ, Ñψex)L2(Q) = −(Ñ/2)
∫∫

Q

αetex|ψ|2 dx̃ dt̃.
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Putting all these computations together, we conclude that the double product
term is

2(P1ψ, P2ψ)L2(Q) =
∫ 1

0

|ψex(0, x̃)|2 dx̃

+
∫ eT

0

((2αex(t̃, 1) + Ñ)|ψex(t̃, 1)|2 − (2αex(t̃, 0) + Ñ)|ψex(t̃, 0)|2) dt̃

−2
∫∫

Q

αexex|ψex|2 dx̃ dt̃− 4
∫∫

Q

αexαexet|ψ|2 dx̃ dt̃
−
∫ 1

0

α2ex(0, x̃)|ψ(0, x̃)|2 dx̃− 2
∫∫

Q

(3αexexα2ex + Ñαexet)|ψ|2 dx̃ dt̃
−Ñ

∫ 1

0

αex(0, x̃)|ψ(0, x̃)|2 dx̃− Ñ

∫∫
Q

(6αexαexex + Ñαexex)|ψ|2 dx̃ dt̃

−
∫∫

Q

αetet|ψ|2 dx̃ dt̃−
∫ 1

0

αet(0, x̃)|ψ(0, x̃)|2 dx̃− 2
∫∫

Q

αetαexex|ψ|2 dx̃ dt̃.

(4.17)

On the other hand, we have the following for the right hand side term:

‖P3ψ‖2
L2(Q) ≤

∫∫
Q

(2α2exex|ψ|2 + ν−2|z̃(t̃, x̃)|2(α2ex|ψ|2 + |ψex|2)) dx̃ dt̃. (4.18)

Combining (4.17)–(4.18) with (4.15), we obtain

∫ eT
0

(2αex(t̃, 1) + Ñ)|ψex(t̃, 1)|2 dt̃− 2
∫∫

Q

αexex|ψex|2 dx̃ dt̃− 6
∫∫

Q

αexexα2ex|ψ|2 dx̃ dt̃
−2
∫∫

Q

αetαexex|ψ|2 dx̃ dt̃− 6Ñ
∫∫

Q

αexαexex|ψ|2 dx̃ dt̃− Ñ2

∫∫
Q

αexex|ψ|2 dx̃ dt̃
6
∫∫

Q

(2α2exex|ψ|2 + ν−2|z̃(t̃, x̃)|2(α2ex|ψ|2 + |ψex|2)) dx̃ dt̃

+
∫ eT

0

(2αex(t̃, 0) + Ñ)|ψex(t̃, 0)|2 dt̃+ 4
∫∫

Q

αexαexet|ψ|2 dx̃ dt̃
+2Ñ

∫∫
Q

αexet|ψ|2 dx̃ dt̃+
∫∫

Q

αetet|ψ|2 dx̃ dt̃+
∫ 1

0

α2ex(0, x̃)|ψ(0, x̃)|2 dx̃

+Ñ
∫ 1

0

αex(0, x̃)|ψ(0, x̃)|2 dx̃+
∫ 1

0

αet(0, x̃)|ψ(0, x̃)|2 dx̃.
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From the definition of α (given in (4.13)), we find∫ eT
0

(2
β′(1)

T̃ − t̃
+ Ñ)|ψex(t̃, 1)|2 dt̃− 2

∫∫
Q

β′′(x̃)

T̃ − t̃
|ψex|2 dx̃ dt̃

−6
∫∫

Q

β′′(x̃)(β′(x̃))2

(T̃ − t̃)3
|ψ|2 dx̃ dt̃− 2

∫∫
Q

β(x̃)β′′(x̃)

(T̃ − t̃)3
|ψ|2 dx̃ dt̃

−6Ñ
∫∫

Q

β′(x̃)β′′(x̃)

(T̃ − t̃)2
|ψ|2 dx̃ dt̃− Ñ2

∫∫
Q

β′′(x̃)

T̃ − t̃
|ψ|2 dx̃ dt̃

6
‖z‖2

∞
ν2

∫∫
Q

|ψex|2 dx̃ dt̃+
∫∫

Q

2(β′′(x̃))2 + ν−2‖z‖2(β′(x̃))2

(T̃ − t̃)2
|ψ|2 dx̃ dt̃

+
∫ eT

0

(
2
β′(0)

T̃ − t̃
+ Ñ

)
|ψex(t̃, 0)|2 dt̃+ 4

∫∫
Q

(β′(x̃))2

(T̃ − t̃)3
|ψ|2 dx̃ dt̃

+2
∫∫

Q

(
Ñβ′(x̃) +

β(x̃)

T̃ − t̃

)
|ψ|2

(T̃ − t̃)2
dx̃ dt̃+

∫ 1

0

β′(x̃)2

T̃ 2
|ψ(0, x̃)|2 dx̃

+
Ñ

T̃

∫ 1

0

β′(x̃)|ψ(0, x̃)|2 dx̃+
1

T̃ 2

∫ 1

0

β(x̃)|ψ(0, x̃)|2 dx̃.

(4.19)

Let us now define the function β : [0, 1] 7→ R. We will take a function satisfying

β′′(x̃) = − 1
1− δ

2(β′(x̃))2 + β(x̃)
3(β′(x̃))2 + β(x̃)

x̃ ∈ [0, 1], (4.20)

together with the initial conditions

β(0) = δ and β′(0) = λ, (4.21)

where λ > 0 and δ ∈ (0, 1) are parameters to be determined.
Now we claim that for proper λ, the function β is well defined and satisfies

β > 0, β′ > 0 and β′′ < 0 on [0, 1]. (4.22)

Once such a function β is obtained, we consider χ a constant satisfying

β(1) < χ. (4.23)

In the sequel, the smaller χ is, the better the estimates will be.
Remark 7. One can check, for instance with Matlab, that, if δ > 0 is small

enough and if one fixes λ := 0.807, then the corresponding β is defined on [0, 1] and
satisfies (4.23) with χ = 0.435. At the end of the paper, we will establish elementarily
the following lemma:

Lemma 4.1. There are some values of λ > 0 and δ ∈ (0, 1) such that the unique
solution β of (4.20)-(4.21) is well defined in [0, 1] and satisfies

β(1) < 2/3. (4.24)

From now, we suppose that we have such a β satisfying (4.20), (4.21), (4.22) and
(4.23). In (4.19), we remark that the first term in the left hand side is non-negative,
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and we regroup the third and fourth terms of the left hand side, together with the
fourth and sixth terms of the right hand side. We deduce

−2
∫∫

Q

β′′(x̃)

T̃ − t̃
|ψex|2 dx̃ dt̃− 6δ

∫∫
Q

β′′(x̃)
β(x̃) + 3(β′(x̃))2

(T̃ − t̃)3
|ψ|2 dx̃ dt̃

−6Ñ
∫∫

Q

β′(x̃)β′′(x̃)

(T̃ − t̃)2
|ψ|2 dx̃ dt̃− Ñ2

∫∫
Q

β′′(x̃)

T̃ − t̃
|ψ|2 dx̃ dt̃

6
‖z‖2

∞
ν2

∫∫
Q

|ψex|2 dx̃ dt̃+
∫∫

Q

2(β′′(x̃))2 + ν−2‖z‖2(β′(x̃))2

(T̃ − t̃)2
|ψ|2 dx̃ dt̃

+
∫ eT

0

(2
β′(0)

T̃ − t̃
+ Ñ)|ψex(t̃, 0)|2 dt̃+ 2Ñ

∫∫
Q

β′(x̃)

(T̃ − t̃)2
|ψ|2 dx̃ dt̃

+
1

T̃

∫ 1

0

(
β′(x̃)2

T̃
+ Ñβ′(x̃)

)
|ψ(0, x̃)|2 dx̃+

1

T̃ 2

∫ 1

0

β(x̃)|ψ(0, x̃)|2 dx̃.

(4.25)

Additionally, using (2.30), the definition of T̃ = νT ∗ and the fact that β′′(x̃) 6
−2/((1− δ)3), we can absorb the first term in the right hand side of (4.25) with

−2
∫∫

Q

β′′(x̃)

T̃ − t̃
|ψex|2 dx̃ dt̃

as long as ν is small enough. Furthermore, using β ≥ δ and −β′′ ≥ 2/3, the second
term in the left hand side of (4.25) can be estimated in the following way:

−6δ
∫∫

Q

β′′(x̃)
β(x̃) + 3(β′(x̃))2

(T̃ − t̃)3
|ψ|2 dx̃ dt̃ ≥ 4δ2

νT ∗

∫∫
Q

|ψ|2

(T̃ − t̃)2
dx̃ dt̃

Then, thanks to (2.30) and taking ν ∈ (0, ν0), we have that

4δ2

νT ∗

∫∫
Q

|ψ|2

(T̃ − t̃)2
dx̃ dt̃ >

∫∫
Q

2(β′′(x̃))2 + ν−2‖z‖2(β′(x̃))2 + 2Ñβ′(x̃)

(T̃ − t̃)2
|ψ|2 dx̃ dt̃.

From (4.22) and (4.25), we have

− Ñ2

∫∫
Q

β′′(x̃)

T̃ − t̃
|ψ|2 dx̃ dt̃ 6

∫ eT
0

(2
β′(0)

T̃ − t̃
+ Ñ)|ψex(t̃, 0)|2 dt̃

+
1

T̃

∫ 1

0

(
β′(x̃)2

T̃
+ Ñβ′(x̃)

)
|ψ(0, x̃)|2 dx̃+

1

T̃ 2

∫ 1

0

β(x̃)|ψ(0, x̃)|2 dx̃. (4.26)

Let us recall that ψ := e−αϕ̃. Then, from (4.12), (4.13), (4.22) and (4.26), we deduce
that

Ñ

∫∫
Q

1

T̃ − t̃
e−2α|ϕ̃|2 dx̃ dt̃ 6 C

(∫ eT
0

|ϕ̃ex(t̃, 0)|2 dt̃+
1

T̃

∫ 1

0

|ϕ̃(0, x̃)|2 dx̃

)
. (4.27)

In (4.27) and in the sequel, C will stand for generic positive constants independent of
ν, N , T ∗ and ϕ0.
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By (4.13) and (4.22), e−2α reaches its minimum in the region [2T̃ /3, (2+3γ)T̃ /3]×
[0, 1] at (t̃, x̃) = (2T̃ /3, 1) (recall that 0 < γ < 1/3 was introduced right before (2.43)).
Hence

Ñ

T̃
e−2α(2 eT/3,1)

∫ 1

0

∫ (2+3γ) eT/3

2 eT/3

|ϕ̃|2 dt̃ dx̃

6 C

(∫ eT
0

|ϕ̃ex(t̃, 0)|2 dt̃+
1

T̃

∫ 1

0

|ϕ̃(0, x̃)|2 dx̃

)
.

(4.28)

From (4.13), we deduce, with (4.23) that

exp{−2α(2T̃ /3, 1)} = exp{−6β(1)/T̃} > exp{−6χ/T̃}. (4.29)

Coming back to our original variables (see (4.8), (4.10) and (4.11)), we get from (4.28)
and (4.29) the desired inequality (2.43).

Proof of Lemma 4.1. First, we introduce the unique maximal solution β of

β
′′

= −2β
′2

+ β

3β
′2

+ β
, (4.30)

with initial conditions

β(0) = 0 and β
′
(0) = 1. (4.31)

Clearly, for a ∈ R and b ≥ 0, we have

2
3
≤ 2a2 + b

3a2 + b
≤ 1. (4.32)

Hence a solution of (4.30) can be locally extended as long as for instance β(x) ≥ 0.
It straightforwardly follows that β is well-defined on [0, 1] and moreover satisfies

β
′
> 0 on [0, 1), and hence β > 0 on (0, 1].

Now it follows that

β
′
< 1− 2x

3
on (0, 1],

which yields

β(1) <
2
3
.

Now, if we consider, instead of β, the solution βδ of (4.20)-(4.21) for λ = 1 and δ
small enough, it follows easily (for instance from a Gronwall’s argument) that

βδ −→ β uniformly on [0, 1], as δ → 0+.

Hence for δ small enough, β := βδ satisfies (4.24).
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