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RÉSUMÉ. – J.-M. Coron a établi un résultat de contrôlabilité approchée du système d’Euler pour les
fluides parfaits incompressibles, dans les espaces Lp pour p < +∞. Lorsque la partie du bord sur laquelle
s’applique le contrôle ne rencontre pas toutes les composantes connexes du bord du domaine, on ne peut pas
en général obtenir la contrôlabilité L∞ car la loi de Kelvin impose un certain nombre d’invariants durant
le processus. Dans cet article nous prouvons que ces invariants sont les seules objections à la contrôlabilité
W1,p pour p < +∞. Sous une hypothèse naturelle supplémentaire sur les profils de vitesse à connecter,
on peut assurer un résultat de contrôlabilité approchée W2,p .  2001 Éditions scientifiques et médicales
Elsevier SAS

ABSTRACT. – J.-M. Coron established a result of approximate controllability of the 2D Euler system for
incompressible inviscid fluids in the Lp spaces for p < +∞. When the controlled part of the boundary
does not meet every connected component of the boundary of the domain, one cannot in general extend
the result to the L∞ controllability, because the Kelvin law guarantees some invariants during the process.
Here we prove that these invariants are the only objection for theW1,p controllability. Under supplementary
natural assumption on the flows we want to connect, we can improve the result to the W2,p approximate
controllability.  2001 Éditions scientifiques et médicales Elsevier SAS
Keywords: Incompressible inviscid fluids, Controllability

1. Introduction

1.1. Statement of the results

Consider Ω an open set in R2, nonempty, bounded, connected, C∞-regular (precisely whose
boundary is composed of a finite number of C∞ non-intersecting Jordan curves, and which is
situated at one side of these curves) and not simply connected. Let Σ be a nonempty open part
of its boundary ∂Ω , which does not intersect every connected component of ∂Ω .
The general controllability theorem concerning the 2D Euler system for incompressible

inviscid fluids – answering to a problem raised by J.-L. Lions in [7] – was established by
J.-M. Coron in [4]. This result proves that this system is “approximately controllable” for (Ω,Σ),
with respect to the Lp(Ω) topology, for all p in [1,+∞).
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Precisely, for every T > 0 and for all y0 and y1 in C∞(Ω;R2) such that

divy0 = divy1 = 0 inΩ,(1)

y0 · ν = y1 · ν = 0 on ∂Ω\Σ,(2)

(where we denote by ν the unit exterior normal vector on the boundary), there exists a sequence
(yn)n∈N of functions in C∞([0, T ]×Ω;R2), which is composed of solutions of the Euler system
for 2D incompressible inviscid fluids, that is:

divyn(t, x) = 0, ∀(t, x) ∈ [0, T ] ×Ω,(3)

∂ty
n(t, x) + (

yn(t, x) · ∇)

yn(t, x) = ∇Pn(t, x), ∀(t, x) ∈ [0, T ] ×Ω,(4)

(for some function Pn in C∞(Ω × [0, T ];R)), which satisfies the condition on the boundary:

yn(t, x) · ν(x) = 0, ∀t ∈ [0, T ],∀x ∈ ∂Ω\Σ,(5)

and moreover

yn
|t=0 = y0 onΩ,(6)

yn
|t=T → y1 with respect to the Lp(Ω)norm when n → +∞,(7)

for all 1 ! p < +∞. One may furthermore require that yn should coincide with y1 at points
situated at a distance superior to 1/n from the components of ∂Ω which do not intersect Σ .

Remark 1. – If we were not in the case whereΣ does not meet every connected component of
the boundary (in particular, this remark is valid whenΩ is simply connected), but on the contrary
in the case where it meets every one of them, the system would be exactly controllable (as shown
in [4]). That is, we could substitute to the result (7) the following one:

y|t=T = y1 inΩ.(8)

But in our precise situation, we cannot even obtain a better convergence result than the
one in Lp , for all p < +∞. For example, we have a negative result for the L∞ approximate
controllability problem.
Indeed, let us denote by Γ0, . . . ,Γk the connected components of ∂Ω which meet Σ , and

Γk+1, . . . ,Γg the ones which do not meet Σ . Let also Γ b be the union of all connected
components of ∂Ω which do not intersect Σ , i.e.

⋃g
i=k+1 Γi .

Now consider i ∈ {k + 1, . . . , g}. Then if one chooses y0 and y1 such that
∫

Γi

y0 · 'dx (=
∫

Γi

y1 · 'dx,

the Kelvin law, which ensures
∫

Γi

y0 · 'dx =
∫

Γi

yn
|t=T · 'dx,
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for a solution of the Euler system satisfying (5) (because, since y(x, t) · ν(x, t) = 0 ∀x ∈ Γi and
∀t ∈ [0, T ], the loop Γi does not change when following the flow of the velocity), makes the L∞

convergence impossible.
But if we restrict the problem to y0 and y1 satisfying

∫

Γi

y0 · 'dx =
∫

Γi

y1 · 'dx, ∀i ∈ {k + 1, . . . , g},(9)

one can wonder if we can expect a better convergence of the sequence (yn).
The purpose of this paper is to show that, indeed, if we are in the case described by (9), one

can find a sequence (yn), satisfying (3), (4), (5) and (6), and whose final value yn
|t=T converges to

y1 in theW 1,p(Ω) sense, for all p in [1,+∞). Moreover, one can require in addition the above
coincidence property.
Let us remark that one cannot expect a really better convergence than this one, because the

vorticity of y0, viz. curly0, in the process (3)–(4), is transported by the flow of yn. In particular,
curly0|Γ b is transported inside each connected component of Γ b. But curly1|Γ b may be very
different from any function obtained this way.
To have a precise counter-example, one may choose as a domain the annulus B(0,2)\B(0,1),

and take Σ := ∂B(0,2) as a control zone. We choose y0 = 0 and define y1 the following way:
let ψ1 :Ω → R be defined by:

'ψ1 = 1 inΩ,

ψ1 = 0 on ∂Ω.
(10)

Now consider the function τ1 defined by:

'τ1 = 0 in B(0,2)\B(0,1),

τ1 = 1 on ∂B(0,1),

τ1 = 0 on ∂B(0,2).

(11)

We then set λ such that

λ

∫

Ω

|∇τ1|2 = −
∫

Ω

τ1.(12)

Then we choose

y1 := ∇⊥ψ1 + λ∇⊥τ1.(13)

One easily checks that y0 and y1 satisfy (9). (For that, remark that
∫

∂B(0,1)

∇⊥ψ · 'dx =
∫

∂Ω

τ1∂νψ1 dx,

and then integrate by parts.) But theW 1,∞ controllability does not occur, because curly0 = 0 on
∂B(0,1), whereas curly1 = 1 on ∂B(0,1).
In consequence we set up the:
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THEOREM 1. – Let T > 0, and let y0 and y1 be two functions in C∞(Ω;R2) satisfying (1),
(2) and (9). Then there exists a sequence (yn) of functions in C∞([0, T ] ×Ω;R2) which satisfy
(3), (4), (5), (6), and moreover

yn
|t=T → y1 in norm W 1,p(Ω),(14)

for all p such that 1! p < +∞. In addition to that, one can choose yn in order that it satisfies:

yn(T , x) = y1(x) for all x inΩ such that dist
(

x,Γ b
)

" 1
n
.(15)

Now one can wonder if the fact that during the process curly0 is transported by the flow of
the velocity of the fluid along any component of Γ b is the only objection – in addition to (9) –
to theW 2,p approximate controllability. This is the aim of our second result. Precisely, we show
the following theorem:

THEOREM 2. – Let T > 0, and y0 and y1 two functions in C∞(Ω) satisfying (1), (2), (9),
and moreover the condition

“there exists g − k diffeomorphismsAk+1, . . . ,Ag,Ai :Γi → Γi,

preserving orientation, such that:

∀i ∈ {k + 1, . . . , g}, curly1 = curly0 ◦Ai on Γi”.(16)

Then there exists a sequence (yn) of functions in C∞([0, T ] ×Ω;R2) which satisfy (3), (4), (5),
(6), and moreover

yn
|t=T → y1 in norm W 2,p(Ω),(17)

for all p such that 1 ! p < +∞. In addition to that, one can choose yn in order that it
satisfies (15).

Again, one cannot expect any better convergence, particularily the W 2,∞ one. To have a
counter-example, one can for example consider in the same way the annulus B(0,2)\B(0,1)
as a domain Ω , and all the same consider a control distributed on Σ := ∂B(0,2). Then take
y1 := ∇⊥ψ1 where ψ1 is defined by (10), and y0 := ∇⊥ψ0, where ψ0 is chosen in order that:

'ψ0 = 2− r, in B(0,3/2)\B(0,1),
∫

Ω

τ1'ψ0 dx = −
∫

Ω

τ1 dx,

ψ0 = 0 on ∂Ω,

(18)

where r = |x| and τ1 is defined by (11).
From the construction, (9) and (16) are satisfied. But one cannot expect theW 2,∞ (and hence

the C2) approximate controllability, because this would imply for any ε > 0 the existence of an
orientation and area-preserving diffeomorphismAε from a neighbourhood of ∂B(0,1) ofΩ into
another one, say B(0,1+ ε̃)\B(0,1) such that

‖ curly0 − curly1 ◦Aε‖C1(B(0,1+ε̃)\B(0,1)) ! ε.(19)
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Indeed, for any n, there exists ε̃ > 0 such that no point situated in B(0,1+ ε̃)\B(0,1) at the
end of the flow of −yn corresponds to a point coming from Σ . (Of course, in that case, the
vorticity of the point is constant when following the flow.)
But this is clearly impossible for ε small for

∥

∥(∇ curly0)(x)
∥

∥ = 1 on ∂B(0,1),

whereas

∇ curly1 ≡ 0 on ∂B(0,1).

1.2. Notations

Let us introduce a few notations. We recall that g + 1 is the number of connected components
of ∂Ω , and k + 1 the number of connected components of ∂Ω which meet Σ . For i between
k +1 and g, we will consider the curves Γ i

ε obtained by regrouping the points situated at distance
ε from Γ i . These curves are regular and do not intersect themselves nor each other if ε is small
enough (say ε < ε0), which we will systematically suppose. We will denote byΩε the part ofΩ
which is composed of all points situated at distance at less ε from Γi , for all i between k + 1 and
g; precisely:

Ωε :=
{

x ∈Ω | dist
(

x,

g
⋃

i=k+1
Γi

)

" ε

}

.(20)

We will denote byΩi
ε the part ofΩ consisting in points situated at distance at most ε from Γi ,

viz.

Ωi
ε :=

{

x ∈Ω | dist
(

x,Γi

)

! ε
}

.

Let us finally denote by γ ε := ⋃g
i=k+1 Γ

ε
i .

We also introduce a real R > 0 large enough in order thatΩ is included in the open ball in R2

centered in 0 with radius R, which we denote by BR . The unit outward normal vector on BR will
be denoted by ν̃.
We will also be given a continuous operator π , which extends functions on Ω of regularity

C∞(Ω) to functions on BR of regularity C∞(BR), with compact support in BR .
For V ∈ C∞(BR × R,R2) such that V · ν̃ = 0 on ∂BR × R (where we denote by ν̃ the unit

normal exterior vector field on ∂BR), we define the application φV :R2 × BR → BR as the flow
of the vector field V , that is the application satisfying:

∂φ

∂t2
(t1, t2, x) = V

(

φ(t1, t2, x), t2
)

, φ(t1, t2, x) = x, ∀(t1, t2, x) ∈ R
2 × BR.(21)

The functions τ i ∈ C∞(Ω;R), defined for all i ∈ {1, . . . , g} by:
'τi = 0 inΩ,(22)

τ i = 1 on Γi,(23)

τ i = 0 on ∂Ω\Γi,(24)

will also be useful.
Let b be a C∞(R; [0,1]) function such that

b = 1 on (−∞,1/2], b = 0 on [3/4;+∞), |b′| ! 5 on R.(25)
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For x ∈ BR and d > 0, we set bd(x) := b(dist(x,Ω)/d).
Finally, we will use the following notations: | · |W 2,p is the sum of all Lp norms of second

derivatives of a function; | · |δ is the Hölder norm with index δ ∈ (0,1).

1.3. The control

Let us remark that in the previous presentation, the control is not explicited, and we study an
under-determined system. As a control, one may consider the normal local velocity of the fluid
on Σ and the vorticity of the fluid on the points of Σ which enter the domain Ω , that is on the
set

{

x ∈Σ | y(x, t) · ν(x) < 0
}

.

When given these supplementary boundary conditions, the Cauchy problem associated to the
system (3)–(4) has at most one solution.

1.4. Structure of the article

In Section 2, we introduce some tools necessary in the construction.
In Section 3, we give, for a fixed time-dependent velocity field, the construction of a vector

field which will be “reachable” for the linearized equation around some W , with initial value y0
(under some assumptions onW ).
In Section 4, we reproduce the construction of [4], in the hope of making the article clearer.

Precisely, we show that this velocity field is actually reachable, if W is close enough to a given
solution of the Euler system denoted by y .
In Section 5, we prove Theorem 1, by deducing a non-linear solution from a sequence

of solutions of linear problems, and by showing that the obtained solution solves the W 1,p

controllability problem.
In Section 6, we prove Theorem 2, by using a construction slightly modified with respect to

Section 3, and also a proposition which allows to reduce the problem to the case when curly1
has “the good shape” (by modifying the function y).
Section 7 is devoted to the proof of the proposition of Section 6.

2. Some preliminary results

We will use the following lemma, due to J.-L. Lions (see [8, Théorème 5.1]):

LEMMA 1. – ConsiderΩ a nonempty bounded regular open set inRn, with boundary S1∪S2,
where S1 and S2 are two nonempty disjoint open sets of the boundary ∂Ω . Let p ∈ (1,+∞). We
consider the mapping from W

1− 1
p ,p

(S2) into W 1,p(Ω) defined by:

u 0→ y(u) such that

{

'y(u) = 0 inΩ ,
y(u) = 0 on S1,
y(u) = u on S2.

(26)

Then ∂νy(u)|S1 describes a dense subspace of W
− 1

p ,p
(S1) when u describes W

1− 1
p ,p

(S2).

Proof. –We reproduce the proof of [8], which is placed in the “H 1(S2)” framework, instead
of the “W 1− 1

p ,p
(S2)” one as here, in order to make sure that the proof is still valid.
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We argue by contradiction; suppose that there exists a certain non-zero distribution ψ in the
dual ofW− 1

p ,p
(S1), that is inW

1− 1
q ,q

(S1) (q ∈ (1,+∞) being defined by 1/p + 1/q = 1), such
that for all u ∈ W

1− 1
p ,p

(S2), one has:
〈

ψ,∂νy(u)
〉

W
1− 1

q ,q
(S1)×W

− 1
p ,p

(S1)
= 0.(27)

Then one may define the function φ ∈ W 1,q (Ω) by:

'φ = 0 inΩ,

φ = ψ on S1,

φ = 0 on S2.

(28)

Then by computing
∫

Ω ∇φ · ∇y(u), one obtains that for all u ∈ W
1− 1

p ,p
(S2)

〈

∂νφ, y(u)
〉

W
− 1

q ,q
(∂Ω)×W

1− 1
p ,p

(∂Ω)
=

〈

∂νy(u),φ
〉

W
− 1

p ,p
(∂Ω)×W

1− 1
q ,q

(∂Ω)
.(29)

With (27), one gets that for all u ∈ W
1− 1

p ,p
(S2), one has

〈

∂νφ;y(u)
〉

W
− 1

q ,q
(∂Ω)×W

1− 1
p ,p

(∂Ω)
= 0,

which involves, with (26), ∂νφ = 0 on S2, which with (28) implies φ = 0 inΩ , and consequently
ψ = 0, which is contradictory. !
We add here two classical results to which we will refer in the next sections. The first one is a

particular extension theorem:

LEMMA 2. – For every k ∈ N, for all p ∈ (1,+∞) , there exists a constant C depending only
on Ω , k and p such that: for all f in C∞(Ω;R), there exists another function g ∈ C∞(Ω;R)

satisfying the two following properties:

∃ε > 0, f ≡ g in
g

⋃

i=k+1
Ω

ε
i ,(30)

‖g‖Wk,p (Ω) ! C‖f ‖Wk−1/p,p(
⋃g

i=k+1(Γi ))
.(31)

The proof is clear and left to the reader: let us just remark, that, as a constant C, one can take
for example the best constant in the trace formulaWk,p(Ω) → Wk−1/p,p(∂Ω) plus 1.
The second following lemma is a kind of Poincaré inequality. Recall that we denote by Γ b the

union of the connected components of ∂Ω which do not intersect Σ .

LEMMA 3. – Given k ∈ N, there exists some constant C > 0 such that for every ε ∈ (0, ε0),
and every f ∈ Wk+1,p(Ω\Ωε), one has the following relation:

|f |Wk,p(Ω\Ωε) ! C
(

‖f ‖
W

k− 1
p ,p

(Γ b)
+ ε|f |Wk+1,p(Ω\Ωε)

)

.(32)
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Proof. – This is a classical Poincaré’s lemma. To obtain this, one first reduces to the case when
f has a null trace on Γ b by finding f ∈ Wk+1,p(Ω) such that

f − f = 0 on Γ b,(33)

‖f ‖Wk,p(Ω) ! C‖f ‖
W

k− 1
p ,p

(Γ b)
.(34)

Then, for f with 0 trace on Γ b , relation (32) follows from the Lp Poincaré’s inequality for a
band with width ε, which one can adapt, by means of pasting, to an open set with “width” ε,
such as Ω\Ωε . !

3. The construction of a particular accessible function

In this section, our goal is mainly to construct, for a given W :BR × [0, T ] → R2 which
satisfies W · ν̃ = 0 on ∂BR × [0, T ], a solenoidal vector field which is a target for the controlled
linearized system aroundW . Let us precise here that by linearized system aroundW we mean in
the whole paper the following system in z (“in vorticity”):

∂tω + (W · ∇)ω = 0 in BR × [0, T ],

div z = 0 in Ω × [0, T ],

curlz = ω inΩ × [0, T ],

z · ν = 0 on ∂Ω\Σ.

In the next section, we will actually prove that for proper W , the vector field presented here
can be achieved as the final value of a solution of the linearized equation aroundW . Of course,
this vector field is intended to be “close” to y1 and particularily to satisfy a coincidence property
such as (15). More precisely, we construct a family of targets yβ indexed by a positive number
β , which will satisfy

yβ = y1 in Ωβ.

In this whole part, p is a fixed real number, in (1 + ∞). (In fact, we construct a reachable
vector field which will give (14) for a fixed p; we will later on prove that one can require (14)
“for all p”.)
The construction makes use of a potential solution of the Euler equation, that we call y. It is

not explicited here, but it will be in Section 4.
The first step consists in constructing a solution “without control”. Precisely, we construct a

function yw ∈ C∞(Ω × [0, T ];R2) as a fixed point of the following process.
First, we define the functionnal space in which this fixed point is to be found. For this, we

introduce functions r and q the following way: we introduce the following function from R+∗

into R ∪ {+∞} defined by:

ξ(s) = s + s log
1
s

for s ∈ (0,1),

ξ(s) = s for s " 1,
(35)
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and the function q from C0(Ω × [0, T ]) into R ∪ {+∞}:

q(y) := sup
{

∣

∣y(·, t)
∣

∣

0 + sup
{ |y(x2, t) − y(x1, t)|

ξ(|x2 − x1|)
, x1, x2 ∈ Ω,x1 (= x2

}

, t ∈ [0, T ]
}

.(36)

Now, to any y in

S :=
{

y ∈ C0
(

Ω × [0, T ]
)

, q(y) < +∞, y · ν = b

(

2t
T

)

y0 · ν
}

,(37)

one associates P(y) by:

divP(y) = 0 inΩ × [0, T ],

curlP(y) = ω∗ in Ω × [0, T ],

P (y) · ν = b
(2t
T

)

y0 · ν on ∂Ω × [0, T ],
∫

Ω

[

∂tP (y) + (P (y) · ∇)P (y)
]

· ∇⊥τi = 0 on [0, T ],∀i ∈ {1, . . . , g},
∫

Ω

P(y)(·,0) · ∇⊥τi =
∫

Ω

y0 · ∇⊥τi ∀i ∈ {1, . . . , g},

(38)

where ω∗ is a function in C∞(BR;R) defined by:

ω∗(0, ·) = curl(πy0) in BR,

∂tω
∗ +

(

π(y) · ∇
)

ω∗ = 0 in BR × [0, T ].
(39)

One can find a unique fixed point of P (this follows from the classical method of [6] and [11],
except that here we impose non-homogenous boundary conditions; we refer to these articles
for more precisions) which gives us a regular solution of the Euler system. Let us denote this
fixed point by yw . (Note that by “without control” we do not mean that the control described in
Section 1.3 is 0, but that we do not make the decisive control here.)
Let us now introduce the functionsψw inC∞(Ω×[0, T ]),ψ0 andψ1 inC∞(Ω) the following

way:

'ψw = curlyw in Ω × [0, T ],

ψw = 0 on ∂Ω × [0, T ],
(40)

'ψ0 = curly0 inΩ,

ψ0 = 0 on ∂Ω,
(41)

and

'ψ1 = curly1 inΩ,

ψ1 = 0 on ∂Ω.
(42)
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We obtain this way the following unique decomposition of y0 and y1:

yi = ∇⊥ψi + ∇θi +
j=g
∑

j=1
l
j
i ∇⊥τj ,(43)

for i ∈ {0,1}, where θi is a function defined up to a constant by:

'θi = 0 inΩ,

∂νθi = yi · ν on ∂Ω.
(44)

We consider β > 0 a fixed number. For this β , according to Lemma 1 (for which we choose
S1 = Γ b and S2 = ∂Ω\Γ b), there exists a function u defined in W

1− 1
p (

⋃k
i=0 Γi) such that

∥

∥∂νy(u) + ∂νψ1 − ∂νψ
w(T )

∥

∥

W
− 1

p ,p
(Γ b)

< β/2.

Regularizing u if needed, one can require that u should satisfy

u ∈ C∞
(

k
⋃

i=0
Γi

)

,(45)

∥

∥∂νy(u) + ∂νψ1 − ∂νψ
w(T )

∥

∥

W
− 1

p ,p
(Γ b)

< β.(46)

For this u, one applies Lemma 2 to y(u). For β chosen small enough (in terms ofΩ and p), one
obtains a function H ∈ C∞(Ω) such that

H = y(u) in Ω\Ωr(β),(47)

for some 0< r(β) < ε0, in such a way that relation (46) occurs when we replace y(u) by H and
such that

|H |
W 2,p(Ω\Ωβ)

! 2.(48)

Besides, we may choose r(β) in order that it satisfies r(β) < β/2.
Note that by construction, one has

'H = 0 inΩ\Ωr(β).(49)

Now for our consideredW , we introduce the vector field W̃ defined in C∞(BR × [0, T ],R2)
by

W̃ := y + π(W − y).(50)

Note that this implies in particular that

W̃ · ν̃ = 0 on ∂BR × [0, T ].
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For this fixed W̃ , we define ω∗ as the function in C∞([0, T ] × BR,R) satisfying:

ω∗(·,0) = curl(πy0) in BR,

∂tω
∗ + (W̃ · ∇)ω∗ = 0 in BR × [0, T ].

(51)

We deduce from it the function ψ∗ ∈ C∞([0, T ] ×Ω,R) as follows:

'ψ∗ = ω∗ in Ω × [0, T ],

ψ∗ = 0 on ∂Ω × [0, T ].
(52)

Here, as in [4], the point is to “glue” ψ∗(T ) and ψ1 in order to obtain a ψ̃ in such a way that
its second derivatives are not “too big”.
We define the following family of functions indexed by α ∈ (0, ε0):

ρα = 0 in Ωα,

ρα = 1 in Ω\Ωα/2,

‖ρα‖C0 = 1,

‖∇ρα‖C0 < K/α,

‖∇2ρα‖C0 < K/α2,

(53)

for some constant K independant of α in (0, ε0).
We then define ψ̃ onΩ by:

ψ̃ = (1− ρβ)ψ1 + ρβ
(

ψ∗(T ) + H
)

.(54)

But we still have to modify once again this ψ̃ . For i ∈ {k + 1, . . . , g} and for α > 0 small, we
introduce the function ηi

α fromΩ into R, C∞-regular, such that

0! ηi
α ! 1,

∣

∣∇ηi
α

∣

∣ ! C

α
∣

∣∇∇ηi
α

∣

∣ ! C

α2

Supp ηi
α ⊂ Ω\Ωα,

Supp
(

1− ηi
α

) ⊂ Ωα/2.

(55)

One may consider then the following function for i ∈ {k + 1, . . . , g}:

ψ̃i = µiη
i
β(1− τi),(56)



856 O. GLASS / J. Math. Pures Appl. 80 (2001) 845–877

where we have ruled µi ∈ R in order that
∫

Ω

('ψ̃ − curly1) · τi = µi

∫

Ω

|∇τi |2.(57)

(Note that this expression is different from the one of [4]; it is equivalent only because we have
the supplementary assumption (9).)
The “∇⊥ψ” part of the searched accessible function (in a decomposition such as (43)) is then

given by:

ψ̂ := ψ̃ +
g

∑

i=k+1
ψ̃i .(58)

Finally, one defines the searched solenoidal vector field by:

yβ = ∇⊥ψ̂ + ∇θ1 +
j=g
∑

j=1
l
j
1∇⊥τj .(59)

4. The reachability of the presented velocity field

In this section, we recall the construction due to J.-M. Coron. The general idea is that the
linearized equation around 0 is not controllable, but nevertheless one can hope to control the one
around a particular solution y of the Euler system which begins and ends at 0.
First, we describe this y . Then, we describe a solution of the linearized Euler system around

W (which is regular for W close enough to y). Finally, we show that for W close enough to y,
this solution actually reaches the vector field given by (59).

4.1. The function y

The function y is chosen as a potential solution of the Euler system (i.e y = ∇θ ) with local
support in time. In fact we choose (for the moment) two types of “∇θ”.
The first type of θ is given by the following lemma. To state it, we introduce a function

a ∈ C∞([0,1], [0,1]), different from 0, and with support in (0,1). Then one has:

LEMMA 4 ([4], Proposition 2.1). – For any i in {1, . . . , k}, there exist θ i in C∞
0 (BR;R) and

ωi
0 in C∞(BR;R) such that

'θi = 0 inΩ,(60)

∂νθ
i = 0 on ∂Ω\

[

(Γ0 ∪ Γi) ∩Σ
]

,(61)

Suppωi
0 ⊂ BR\Ω,(62)

and if we define the function ωi :BR × [0,1] → R by:

ωi(·,0) = ωi
0 in BR,

∂tω
i(x, t) +

[

(a(t)∇θ i(x)) · ∇
]

ωi(x, t) = 0 in BR × [0,1],
(63)
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then one has

Suppωi(·,1) ⊂ BR\Ω,(64)
∫

Γi×[0,1]

a(t)∂νθ
i(x)ωi(x, t)dx dt = 1.(65)

The second type of θ is given by the following lemma:

LEMMA 5 ([4], Proposition 2.2). – For any x inΩ\⋃g
i=k+1 Γi , there exists θ in C∞

0 (BR;R)

such that

'θ = 0 in Ω,(66)

∂νθ = 0 on ∂Ω\Σ,(67)

φa∇θ (0,1, x) /∈Ω.(68)

Now “the” function y is constructed the following way. We consider ε > 0. For this ε, by
Lemma 5 and using the compactness of Ω , there exists l ∈ N such that l > k, there exist l − k

functions θk+1, . . . , θ l such that for all x in Ω such that dist(x,Γ b) > ε, one has

dist
(

φa∇θi
(0,1, x),Ω

)

" 2d,(69)

for a certain i ∈ {k + 1, . . . , l}, the real number d > 0 being fixed, satisfying for i ∈ {1, . . . , k}:

ωi(x,1) = ωi
0(x) = 0 if dist(x,Ω) ! 2d.

Now for a T > 0 and η > 0 (which will be small) one defines:

ti/2 := T − η

(

l + 1− i

2

)

for i in
{

0, . . . ,2(l + 1)
}

.(70)

Then one defines y ∈ C∞(BR ×[0, T ]) (slightly differently from [4]) by the following formulas:

y := ∇θ,(71)

where θ is defined by:

θ(x, t) = 0 for t in [0, t0],

θ(x, t) = 2
η
a

(

2(t − ti−1)
η

)

θ i(x), ∀i ∈ {1, . . . , l},∀t ∈ [ti−1, ti−1/2],

θ(x, t) = −2
η
a

(

2(ti − t)

η

)

θ i(x), ∀i ∈ {1, . . . , l},∀t ∈ [ti−1/2, ti ],

θ(x, t) = 0 for t in [tl, T ].

(72)

Reducing η if necessary, we can demand that t0 > 1/2 and η < β in Section 3. We underline here
that y depends on two constants ε and η.
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Note that y is actually a solution of the Euler system (3)–(4) inΩ ×[0, T ], where the pressure
is given by:

p = ∂t θ + 1
2
|∇θ |2 inΩ × [0, T ],

and moreover satisfies (5).

4.2. The construction of a solution of the linearized system aroundW

Here we describe how the solution of the linearized control problem aroundW is constructed.
We limit the study to W satisfying:

W · ν = y · ν + b

(

2t
T

)

y0 · ν + b

(

T − t

η

)

y1 · ν.(73)

For such a W , one defines W̃ by (50). To this W̃ , one associates ψ̂ by Section 3. Then one
defines the function ω̂ by:

∂t ω̂ + (W̃ · ∇)ω̂ = 0 in BR × [0, T ],

ω̂(·, T ) = π('ψ̂) in BR.
(74)

We consider the functions ωi for i in {k + 1, . . . , l} respectively defined on BR × [ti−1/2, ti+1/2],
given by induction by the formulas:

ωk+1(·, tk+1/2) = ω∗(·, tk+1/2) on BR,(75)

∂tω
i + (W̃ · ∇)ωi = 0 in BR × [ti−1/2, ti+1/2],(76)

ωi(x, ti−1/2) = bd(x)ωi−1(x, ti−1/2) +
(

1− bd(x)
)

ω̂(x, ti−1/2), ∀i ∈ {k + 2, . . . , l}.(77)

(ω∗ is defined by (51).)
Now we consider the functions ωi for i ∈ {1, . . . , k} defined respectively in BR × [ti−1, ti ] by

the following formulas:

ωi(·, ti−1) = ω∗(·, ti−1) + µiω
i
0(78)

(µi is a real number to be precised) and

ωi(·, ti−1/2) = ω∗(·, ti−1/2).(79)

Between times ti−1 and ti−1/2 and between ti−1/2 and ti , one requires that ωi should satisfy:

∂tω
i + (W̃ · ∇)ωi = 0 in BR × [ti−1, ti−1/2) and in BR × [ti−1/2, ti).(80)

The µi are defined for i ∈ {1, . . . , k} by the following equation:
∫

Γi×[ti−1,ti−1/2]

(W · ν)ωi =
∫

Ω

(y0 − y1) · ∇⊥τi +
(

ω0 − ω̂(·, T )
)

τi
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−
∫

[0,t0]×Γi

(W · ν)ω∗ −
l

∑

j=k+1

∫

[tj−1/2,tj+1/2]×Γi

(W · ν)ωj

−
∫

Γi×[tk,tk+1/2]

(y · ν)ω∗ −
k

∑

j=1

∫

Γi×[tj−1/2,tj ]

(y · ν)ω∗.(81)

(We will show that this equation actually has a solution in the next section.)
Then one finally defines:

ω(x, t) = ω∗(x, t) in BR × ([0, t0] ∪ [tk, tk+1/2]),

ω(x, t) = ωi(x, t) in BR × [ti−1, ti ],∀i ∈ {1, . . . , k},

ω(x, t) = ωi(x, t) in BR × [ti−1/2, ti+1/2],∀i ∈ {k + 1, . . . , l},

∂tω + (W̃ · ∇)ω = 0 in BR × [tl+1/2, T ].

(82)

The searched solution of the linear system is z = F(W) defined inΩ ×[0, T ] in the following
way:

div z = 0 in Ω × [0, T ],(83)

curl z = ω in Ω × [0, T ],(84)

z · ν = y · ν on ∂Ω × [0, T ],(85)
∫

Ω

(∂tz + (z · ∇)z) · ∇⊥τi = 0, ∀i ∈ {1, . . . , g},(86)

∫

Ω

z(·,0) · ∇⊥τi =
∫

Ω

y0 · ∇⊥τi .(87)

4.3. Why the previous solution of the linear system is correctly defined

In this section, we show that F is correctly defined if W satisfies some assumptions. One
defines (recall y depends on η):

SM,η :=
{

W ∈ C0
(

Ω × [0, T ]), q(W) < +∞, |W − yη|0 < M,

W · ν = yη · ν + b

(

2t
T

)

y0 · ν + b(
T − t

η
)y1 · ν on ∂Ω × [0, T ]

}

,

(88)

where q is defined by (35) and (36).
For M large enough, SM,η (= ∅ for all η. We fix such a M , and show that ω (and hence F ) is

correctly defined for η(M) small enough and W ∈ SM,η .
The problem for the correct definition of ω in C∞(Ω × [0, T ]) is the definition of the µi

and the continuity at times ti/2 for i ∈ {0, . . . ,2k}. (Indeed, for other times ω is given by the
composition of a regular function by a regular flow.)
We deduce from Gronwall’s lemma the following formula:

∣

∣φW̃ (x, s, t) − φy(x, s, t)
∣

∣ ! η
[

eC|t−s|/η − 1]‖W̃ − y‖C0(BR×[0,T ]).(89)
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Consequently, for fixedM , for η small enough, one has:

ωi(·, ti−1/2) = ω∗(·, ti−1/2) in Ω, for i ∈ {1, . . . , k}.(90)

Hence, with the construction of ωi for i ∈ {1, . . . , l}, one gets

ω ∈ C∞(

Ω × [0, T ]
)

.(91)

Let us now specify why theµi are well defined. For η small enough, one has for anyW ∈ SM,η ,
∣

∣

∣

∣

∣

∫

Γi×[ti−1,ti−1/2]

ω̃i(W · ν) − 1
∣

∣

∣

∣

∣

is small,(92)

as a consequence of (89), where ω̃i is defined for i ∈ {1, . . . , k}, on BR × [ti−1, ti] by:

ω̃i(·, ti−1) = ωi
0 in BR,

∂t ω̃
i + (W̃ · ∇)ω̃i = 0 in BR × [ti−1, ti−1/2),

ω̃i = 0 in BR × [ti−1/2, ti )

(93)

(in such a way that µiω̃
i = ωi −ω∗ in BR × [ti−1, ti)). Hence the linear system (81) has one and

only one solution (µ1, . . . ,µk).

4.4. The final value of the solution of the linear system

Let us now explain why the function F(W) actually reaches the desired vector field, at least if
ε and η are chosen small enough in the definition of y (this ε is chosen as a function of β). For
this, we use the following decomposition of z := F(W)(T ):

z = ∇⊥ψz + ∇θz +
j=g
∑

j=1
λ

j
z∇⊥τj ,(94)

where ψz equals 0 on ∂Ω , and where θz is a harmonic function on Ω . We want to precise the
different terms in this decomposition and then to compare them with those of y1 in (43). (Let us
remark that in this decomposition, all of the three terms are L2-orthogonal one to another.)
First, for the “gradient” part, one has:

∇θz = ∇θ1,(95)

as a consequence of the normal velocity imposed on the boundary by (85).
Now we are interested in the “∇⊥τi” terms. Thanks to (86), we can affirm that for all i in

{1, . . . , g}, one has:
g

∑

j=1

(

∫

Ω

∇τi · ∇τj

)

dλj

dt
+ d
dt

∫

Ω

ωτi +
∫

Γi

(W · ν)ω = 0.(96)
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With (81) and (82), this leads to the fact that for all i in {1, . . . , k} one has:

g
∑

j=1

(

∫

Ω

∇τi · ∇τj

)

(

λ
j
z − l

j
1
)

= 0.(97)

For i ∈ {k + 1, . . . , g}, equation (96) becomes:

g
∑

j=1

(

∫

Ω

∇τi · ∇τj

)

λj +
∫

Ω

ωτi is constant for t ∈ [0, T ].(98)

But on the other hand, by the further assumption (9), and by (43) one deduces that

∫

∂Ω

τi

(

∇⊥ψ1 +
g

∑

j=1
l1i ∇⊥τj

)

· 'dx =
∫

∂Ω

τi

(

∇⊥ψ0 +
g

∑

j=1
l0i ∇⊥τj

)

· 'dx,(99)

which leads to

g
∑

j=1

(

∫

Ω

∇τi · ∇τj

)

(

l
j
1 − l

j
0
)

=
∫

Ω

τi(curly1 − curly0) +
∫

∂Ω

∂ν(ψ1 − ∂νψ0).

With (98), we deduce that for all i ∈ {k + 1, . . . , g}, one has:

j=g
∑

j=1

(

∫

Ω

∇τi · ∇τj

)

(

λz
j (T ) − l1j

)

dx =
∫

Γi

(∂νψ̂ − ∂νψ1)dx.(100)

Now (56) and (58) imply
∫

Γi

∂νψ̂ =
∫

Γi

∂νψ̃ − µi∂ντi .

Hence, using (57), one gets:
∫

Γi

∂νψ̂ =
∫

Γi

∂νψ1.(101)

Transferring this into (100), one gets:

j=g
∑

j=1

(

∫

Ω

∇τi · ∇τj

)

(

λz
j (T ) − l1j

)

= 0(102)

for i in {k + 1, . . . , g}. We deduce together with (97) that

λ
j
z = l

j
1 for all j ∈ {1, . . . , g}.(103)
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Nowwe show that the “∇⊥ψz” part equals in fact∇⊥ψ̂ , or equivalently (bothψz and ψ̂ satisfy
the 0 Dirichlet boundary condition) that

curlz = 'ψ̂ inΩ.(104)

To obtain this result, we need to have chosen ε small enough, precisely here we take ε := r(β).
Then we distinguish points at distance superior or inferior of ε to Γ b .
For points at distance at least ε from Γ b, there is a number i for which one has

dist(φW̃ (x,0, ti),Ω) " d (if one chooses η small enough). At time ti , formula (77) gives “the
good value” to the vorticity of the point (thanks to formula (74)). Then this value does not change
any more, even if the point is sent again out ofΩ , thanks to (77). For points at distance at most ε,
(104) is a consequence of the form of 'ψ̂ (see in particular (53) to (58)): the vorticity allocated
to these points was “the good one” from the beginning.

5. Proof of Theorem 1

5.1. Preliminary step

The main step of the proof will be to establish the following proposition:

PROPOSITION 1. – Let T > 0 and y0, y1 be two functions of C∞(Ω;R2) satisfying (1),
(2) and (9). Then for every p in [1,+∞), there exists a sequence (yn) of functions in
C∞([0, T ] ×Ω;R2) which satisfy (3), (4), (5) and (6), and moreover

yn
|t=T → y1 in norm W 1,q(Ω),(105)

for all q < p. One can moreover make (yn) satisfy (15).

Theorem 1 follows easily from Proposition 1 (using a diagonal extraction argument).

5.2. Passing to a non-linear solution

The goal of this section is to make sure that one can obtain, given a β > 0, a fixed point of
the operator F , and to ensure that this solves the problem of approximate controllability for the
W 1,q topology, for any 1< q < p (for proper ε and η computed in function of β).
One may observe that during the construction of Section 3, if one defines:

'ψ = ω in Ω × [0, T ],

ψ|∂Ω = 0,
(106)

then one obtains

‖'ψ‖0 ! C,

for any W , because ω is “made” from bounded functions (as the vorticity is transported by the
flow of the velocity). Using techniques due to Wolibner in [11] and following Kato (see [6]), one
may deduce from this that for all W obtained as the image by F of a certain function, we get

∣

∣curlF(W)
∣

∣

δ
! C,(107)
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for a certain δ > 0.
That involves that ‖F(W)‖ is Cδ-bounded in time, and C1+δ-bounded in space.
On another side, one gets that for proper η, SM,η is sent into itself (consequence of (89)). The

previous boundedness implies then that F(SM,η) is a compact subset of SM,η. Hence, we get,
using the Leray–Schauder theorem, the existence of a fixed point to F , which is moreover in the
class C∞. For further precisions, we refer to [4, Part 4].
Proceeding this way, we obtain a solution of the Euler system yβ , such that yβ

|t=T is the vector
field described by (59), ψ being the function ψ̂β of the previous section computed forW = yβ .

5.3. TheW 1,q convergence

We have left to prove that this implies
∥

∥yβ − y1
∥

∥

W 1,q (Ω)
→ 0 when β → 0,(108)

for any q < p and moreover (15) for 1/n = β .
First, we prove that, β being fixed, one has

∥

∥ψ∗(T ) −ψw(T )
∥

∥

2,p ! Cη.(109)

Let us first remark that it is a consequence of the construction that

ψw(t0) = ψ∗(t0).

(We consider non-linear solutions here.) So (109) is a consequence of the form of y (note
particularly that ψ∇θ (·, t0, T ) = Id ) and of (89).
We now show that ψ̂β converges to ψ1 for theW 2,q topology (for q < p). As these functions

have a zero trace on the boundary, it suffices to show the convergence of their Laplacian in the
Lq sense, as a consequence of the classical elliptic estimate (in fact we will bound it in the Lp

norm).
Now,

'
(

ψ̂β −ψ1
)

= '
[

ρβ
(

ψ∗(T ) + H −ψ1
)]

+
g

∑

i=k+1
µi'ψ̃i.(110)

Of course, this is null on Ωβ , and only what happens on Ω\Ωβ does interest us.
There are three terms to estimate in the development of the first term in the previous

expression. We are going to bound them in Lp . These three terms are the following:
• ρβ'(ψ∗(T )+H −ψ1) = ρβ('H +ω∗(T )−curly1) which is bounded in Lp when β → 0
(because of (48)).

• 2∇ρβ∇(ψ∗(T ) + H − ψ1). The first factor has a norm L∞ which is a term of order 1/β .
The other factor has a norm Lp of order β , as a consequence of Lemma 3, (46) and (48).

• 'ρβ(ψ∗(T ) + H −ψ1). The first factor has a L∞ norm of order 1/β2.
The other factor has an Lp norm of order β2, as a consequence all the same of Lemma 3,
(46) and (48).

Now, let us deal with the second term in (110). Precisely, let us show that:

‖ψ̃i‖W 2,p(Ω) is bounded as β → 0.(111)
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The same way as for ψ̂ , onemay reduce the problem, for each i ∈ {k+1, . . . , g}, to the estimating
of ‖'ψ̃i‖Lp(Ω). In the same way, there is three terms to deal with, in the domainΩi

β . These three
terms are the following:

• ηi
β'(1− τi) = 0.

• −2∇ηi
β∇τi . The second factor is bounded in the L∞ norm, and the first factor has its L∞

norm of order 1/β .
• 'ηi

β(1− τi). The first factor has an L∞ norm of order 1/β2. The other factor has an L∞ of
order β , since 1− τi has a zero trace on Γi .

In order to prove (111), it is sufficient hence to prove that µi = O(β). But considering (57),
one deduces:

µi

∫

Ω

|∇τi |2 =
∫

Γi

∂ν
(

ψ∗(T ) + H −ψ1
)

,(112)

hence

|µi | ! C
∥

∥∂ν
(

ψ∗(T ) + H −ψ1
)
∥

∥

W
− 1

p ,p
(Γi )

.(113)

We deduce that:

|µi | ! C
[
∥

∥∂ν
(

ψw(T ) + H −ψ1
)
∥

∥

W
− 1

p ,p
(Γi)

+
∥

∥∂ν
(

ψw(T ) −ψ∗(T )
)
∥

∥

W
− 1

p ,p
(Γi)

]

,(114)

which implies

|µi | ! C
(

β +
∥

∥ψw(T ) −ψ∗(T )
∥

∥

W 1,p(Ω)

)

.

But thanks to (109) and with η < β , one can deduce:

|µi | ! Cβ,

that is, the researched estimate.
As the support of '(ψ̂β −ψ1) “tends” to 0, one deduces:

'
(

ψ̂β −ψ1
)

→ 0 for the Lq topology,∀q < p.(115)

Now with (95), (103) and (115), we obtain as claimed that yβ → y1 as β → 0 in the W 1,q

sense for all q < p.

6. Proof of Theorem 2

The proof of Theorem 2 is approximately the same as the one of Theorem 1, but in that case,
we have to “prepare” the solution before the beginning of the active control at time t0 and to
modify the construction of Section 3 a little. If one has prepared the solution well, one can obtain
better estimates in the study of Section 5.3.

6.1. Supplementary propositions

In this section, we use the direct orientation on the plane C. This is useful only to ensure that
a diffeomorphism of a Jordan curve which conserves orientation is homotopic to the identity of
the Jordan curve.
To “prepare” the solution properly, we need the following proposition:
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PROPOSITION 2. – Consider g − k diffeomorphisms ψk+1, . . . ,ψg , respectively from Γi into
itself, which each conserve orientation. Then for all ε > 0, there exists a function θ̌ ε defined in
C∞(Ω × [0,1];R) satisfying the following properties:

Supp θ̌ ε ⊂ Ω × (0,1),(116)

'θ̌ε = 0 in Ω × [0,1],(117)

∂ν θ̌
ε = 0 on (∂Ω\Σ) × [0,1],(118)

∥

∥φ∇θ̌ ε (0,1, ·) −ψi

∥

∥

C1(Γi)
< ε, ∀i ∈ {k + 1, . . . , g}.(119)

Proving this proposition is the goal of Section 7.
Simultaneously with Proposition 2, we will prove the following result, which is an improve-

ment of Proposition 1, but limited to the 2-dimensional case and to the assumption “Γ1 connect-
ed”.

LEMMA 6. – Consider Ω a nonempty bounded regular open set in R2, with boundary
Γ1 ∪ Γ2, with Γ1 connected and disjoint from Γ2. Let k ∈ N. We consider the mapping y from
C∞(Γ2) into C∞(Ω) defined by (26). Then ∂νy(u)|Γ1 describes a dense subspace of Ck(Γ1)
when u describes the space C∞(Γ2) (for any integer k).

6.2. A new construction for the reachable velocity field

Our goal is principally to reduce to the case when

∥

∥ω∗(T ) − curly1
∥

∥

C1(Γ b)
is small.(120)

This is possible as a consequence of Proposition 2. Indeed, by our assumption (16), one can
write curly1 on each Γi for i ∈ {k + 1, . . . , g} as the composition of curly0 by a certain direct
diffeomorphismAi of Γi . As during the movement of the perfect fluid, the vorticity is transported
by the flow of the velocity, one can obtain all the same curly0 on each Γi for i ∈ {k + 1, . . . , g}
as the composition of curlyw(T ) by a certain direct diffeomorphism Bi of Γi .
Now for εr > 0, we consider a function θ given by Proposition 2 for the diffeomorphisms

Bi ◦Ai :Γi → Γi .
We then define y :Ω × [0, T ] → R2 by:

y(x, t) := y(x, t) + ∇θ

(

x,
t − t0 − η

η

)

,(121)

where θ is extended to Ω × R by 0 at the exterior of Ω × [0,1].
Let us now describe the construction of a new target for the velocity field at time T . Indeed, we

need here to modify the construction of Section 3 at two points: we consider a reference solution
yw which takes y into account, and we use a stronger approximating function y(u) and then H .
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Here, yw
2 is defined as the fixed point of the following operator P2:

ω∗(0, ·) = curl(πy0) in BR,

∂tω
∗ +

(

π(W) · ∇
)

ω∗ = 0 in BR × [0, T ],

divP2
(

W
) = 0 inΩ × [0, T ],

curlP2(W) = ω∗ in Ω × [0, T ],

P2(W).ν = b

(

2t
T

)

y0 · ν + y · ν on ∂Ω × [0, T ],
∫

Ω

[

∂tP2(W) +
(

P2(W) · ∇
)

P2(W)
]

· ∇⊥τi = 0 on [0, T ],∀i ∈ {1, . . . , g},
∫

Ω

P2(W)(·,0) · ∇⊥τi =
∫

Ω

y0 · ∇⊥τi, ∀i ∈ {1, . . . , g}.

(122)

We still consider β > 0, and now, by Lemma 6, there exists for each i ∈ {k + 1, . . . , g} a
function ui ∈ C∞(∂Ω\Γi;R) such that

∥

∥∂νy(ui) + ∂νψ1 − ∂νψ
w(T )

∥

∥

C2(Γi )
< β2.(123)

And then, as in Section 3, we define H ∈ C∞(Ω\Ωβ) and r(β) in order to satisfy:

'H = 0 inΩ\Ω2r(β),(124)

|H |
W 3,p(Ω\Ωβ)

! 2,(125)

and such that H coincides with y(ui) in a boundary of Γi , in such a way that
∥

∥∂νH + ∂νψ1 − ∂νψ
w(T )

∥

∥

C2(Γ b)
< β2.(126)

In the same way as for H , one considers r ′(β) such that for all x ∈Ωr ′(β), one has:

∣

∣curly0
(

φy(t0,0, x)
) − curly1(x)

∣

∣ !
∥

∥curly0
(

φy(t0,0, ·)
) − curly1

∥

∥

C1(Γ b)
+ β.(127)

Now we constuct a function G ∈ C∞(Ω\Ωβ) such that

G(x) = ψ∗ −ψ1 in Ωr ′(β),

‖G‖
C3(Ω\Ωβ)

= ‖G‖
C3(Ωr′(β))

.
(128)

Then we replace formula (54) of Section 3 by

ψ̃ = ψ1 + ρβ(G + H).(129)

The rest of the construction, that is (55) to (59), is kept as in Section 3.
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Then the arguments for reachability of Section 4 and the one for passing to a non-linear
solution in Section 5.2 are still valid, in such a way that we can consider a fixed point of the
obtained process (with a new “ψ̂” and a new “y ”), whose final value is given again by the
corresponding formula (59). Indeed, for ε <max(r(β), r ′(β)) fixed for the choice of y, the same
proof as before can be done for the reachability of the velocity field. (By the way, one may
impose to η and ε to be inferior to β .)
For what concerns the fixed point of the process, the point is that here we want to find it in a

different functional space, viz.

S′
M,η :=

{

y ∈ C1
(

Ω × [0, T ]
)

, q(y) < +∞,
∣

∣y − yη
∣

∣

C0([0,T ],C1(Ω;R2)) < M,

y · ν = yη · ν + b

(

2t
T

)

y0 · ν + b

(

T − t

η

)

y1 · ν on ∂Ω × [0, T ]
}

.

(130)

One gets all the same some compactness of the operator in this new space. One has to verify
that for proper η, S′

M,η is sent by F into itself. This point follows from the fact that one can
obtain the following Gronwall-type estimate for s and t in [0, T ]:

∥

∥φW̃ (t, s, ·) − φy(t, s, ·)
∥

∥

C1(BR)
! ηe|t−s|‖y‖

C0([0,T ],C2(BR))
∥

∥W̃ − y
∥

∥

C0([0,T ],C1(BR))
.(131)

The problem is now reduced to check that with this new preparation, one gets the W 2,q

convergence for q < p.

6.3. TheW 2,q convergence

First, one easily deduces from the previous construction that, at the end of the process, one has
in addition to above, the result:

∥

∥curlyβ − curly1
∥

∥

C1(Γ b)
< C

(

εr + η
)

,(132)

where C is a constant depending on the domain, y0 and y1. This is indeed a consequence of
(131).
Now, we reconsider Section 5.3 in the light of the supplementary information (132).
Of course, the estimates that allowed the W 1,q convergence (q < p) in Section 5.3 are still

valid, and we just deal with ∇(curlyβ). As previously, we are concerned only with what happens
onΩ\Ωβ .
For this we consider first the “∇2ψ̂” part. There are four terms to study (precisely, for which

we want to prove the Lp boundedness on Ωβ ): ∇3ρβ(G + H − ψ1), ∇2ρβ∇(G + H − ψ1),
∇ρβ∇2(G + H −ψ1) and ρβ∇3(G + H −ψ1).
To that effect, let us first study the traces of G + H and of its derivatives on Γ b:
• 0-th order trace: G + H = 0 on Γb.
• 1st order normal trace: ‖∂ν(G + H)‖

W
1
p ,p = ‖∂ν(ψ∗ −ψ1 + H)‖

W
1
p ,p < β2.

• 2nd order “normal” trace: by (132) one can bound the second derivatives on the boundary in
the direction of the normal in terms of second derivatives in the tangent direction (which are
null) plus first derivatives corresponding to curvature terms (and controlled with the help of
the preceeding point) plus a term of order “εr + η” (and hence of order β).

Now we can go back to our “four terms” that we want to bound in Lp .
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• ρβ∇3(G+H −ψ1). = The “H ” part is actually bounded because of (125). Of course ∇3ψ1
does not change. Finally the term ∇3G is also bounded in Lp as a consequence of (127),
(128) and (131).

• ∇ρβ∇2(G + H − ψ1). By the previous study of traces, (124), (125) and (128), one gets
(with a proper Poincaré’s inequality) that ‖∇2(G + H − ψ1)‖Lp(Ωβ) is of order β . But
‖∇ρβ‖L∞ is of order 1/β .

• ∇2ρβ∇(G + H − ψ1). The same way as previously, one can get by a proper Poincaré’s
inequality that ‖G + H −ψ1‖Lp(Ωβ) is of order β2.

• ∇3ρβ(G + H − ψ1). The same way, by the previous study of the traces and by Poincaré’s
inequality, one gets that the second part of this product is of order β3.

Now we study again the second term in (58). Here, we have to prove that µi = O(β2) to get
the result. It follows the same way as in Section 5.3 from (126).
Then, one can conclude as previously.

7. Proof of Proposition 2

The proof of Proposition 2 relies on the proofs of the two following propositions, that we are
going to establish before coming back to the principal proof.

PROPOSITION 3. – Let J be a C∞-regular Jordan curve of the plane. Let ψ be a
C∞-diffeomorphism of J , which preserves orientation. For all ε > 0 (small), there exists a time-
dependent tangent vector field v :J × [0,1] → T J of class C∞ satisfying the constraints:

Supp v ⊂ J × (0,1),(133)

∫

J

v(x, t) · 'dx = 0, ∀t ∈ [0,1],(134)

and such that
∥

∥φv(0,1, ·) −ψ
∥

∥

C1(J )
! ε.(135)

The second proposition is the following:

PROPOSITION 4. – Let Ω be a regular, bounded, non empty connected open subset of C.
ConsiderΣ an non empty (regular) open part of its boundary. Let k ∈ N and f ∈ Ck(∂Ω\Σ;C).
For all ε > 0, there exists a holomorphic function φ ∈ H(Ω) ∩ C∞(Ω;C) such that

‖f − φ‖Ck(∂Ω\Σ;C) < ε.(136)

7.1. Proof of Proposition 3

Let us explain the general strategy. First, we consider a vector field whose flow between time
0 and time 1 gives ψ on J . We reproduce this vector field everywhere on J except on a small
connected subset of J (which moves with the flow), and on which we impose a vector field
in order to obtain (134). At the end of this stage, the obtained φv(1,0, ·) is close to ψ in the
C0 norm, but its derivatives are certainly very different on the small subset. To obtain the C1

approximation, we then “dilute” the irregularity of φv(1,0, ·) on the whole J , during a second
stage.
From the fact that ψ preserves orientation, we deduce that it is in the same connected

component as Id.
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Let us be given a homotopy Φ : [0,1] → Diff∞(J ), differentiable in time, for which
Φ(0) = IdJ and Φ(1) = ψ . If needed, one can add to this the condition that (∂tΦ) has a compact
support in time in (0,1). (We will note also Φt for Φ(t).)
The homotopy Φ can be seen as the flow of the time-dependent tangent vector field:

ṽ(x, t) = (∂tΦ)
(

Φ−1
t (x), t

)

.(137)

The problem is that in general, ṽ(·, t) is not of null circulation on J .
We consider a positive number ε. We introduce a connected closed subset in J , say Iε , of

length at most ε, and such that its image by the flow of ṽ, say Iε(t) := φṽ(0, t,Iε) is of length
at most ε. Then Iε(t) has a minimal length; let us denote it by ε0. (It suffices, by Gronwall’s
lemma, to choose Iε sufficiently small.)
Now we consider a modification on ṽ: we set

v̂(x, t) = ṽ(x, t) ∀t,∀x ∈ J\Iε(t),(138)

and v̂ on {(x, t)/x ∈ J\Iε(t)} is ruled in order that
∫

J

v̂(·, t) · 'dx = 0, ∀t ∈ [0,1],(139)

and in order that v̂ is regular in space and in time (and still has a compact support in time).
We consider the flow of v̂. For any x in J\Iε , one has φv̂(0, t, x) ∈ J\Iε(t) and finally one

has

φv̂(0,1, x) = ψ(x), ∀x ∈ J\Iε.(140)
The problem is that we do not measure well the regularity of the flow for points originally

situated in Iε (even if we know that Iε is sent into Iε(1)). So to ensure that the researched
diffeomorphism φv(0,1, ·) is not “too irregular” on Iε , we use the following lemma:
LEMMA 7. – Let J be a C∞ Jordan curve of the plane. There exist two constants K(J )

and ε0(J ) depending only on J , such that if D is a C∞-regular diffeomorphism J → J , which
conserves orientation and which moreover satisfies

∀x ∈ J\Iε, D(x) = x,(141)

where Iε is a connected subset in J of length at most ε, with ε < ε0(J ), then there exists a
C∞-time-dependent tangent vector field v̌ :J × [0,1] → T J such that

∫

J

v̌(x, t) · 'dx = 0, ∀t ∈ [0,1],(142)

Supp v̌ ⊂ J × (0,1),(143)
and such that if we use the notation:

T := φv̌(0,1, ·),(144)

then one has:
‖T − Id‖C1(J \Iε) ! K(J )ε,(145)
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and moreover

(T ◦D)|Iε = IdIε .(146)

This lemma will allow us to smooth the transform of J given by the flow of v̂. The proof of
this lemma is delayed till the end of the proof of Proposition 2.
We apply Lemma 7 with D := φv̂(0,1, ·) ◦ψ−1 and Iε := Iε(1).
Hence, one gets an operator T – which can be represented as the flow between time 0 and time

1 of a null-circulation (in space for each time) tangent vector field of J – such that

‖T − Id‖C1(J \Iε) ! K(J )ε,

which implies
∥

∥T ◦ φv̂(0,1, ·) − φv̂(0,1, ·)
∥

∥

C1(J \Iε)
! K(J,ψ)ε.(147)

(For x ∈ J\Iε , on has φv̂(0,1, ·) = ψ(x).)
By (146), one has on the interval Iε

T ◦ φv̂(0,1, ·) = ψ.(148)

Consequently, by (147) and (148),
∥

∥T ◦ φv̂(0,1, ·) −ψ
∥

∥

C1(J )
! K(J,ψ)ε.

But T ◦ φv̂(0,1, ·) consists of the flow of v̂ during [0,1] followed by the flow of v̌

corresponding to T during [1,2]:

v(x, t) = 2v̂(x,2t), ∀(x, t) ∈ J × [0, 12 ],

v(x, t) = 2v̌(x,2t − 1), ∀(x, t) ∈ J × [ 12 ,1].
(149)

Hence taking ε small enough, one gets (135).

Proof of Lemma 7. – Let us first introduce the time-dependent vector field v̌, and then we will
show that it satisfies the required properties.
We introduce a C∞ function m : [0,1] → R such that:

Suppm ⊂ (0,1),(150)

0! m(t) ! 2, ∀t ∈ [0,1],(151)
∫

[0,1]

m = 1.(152)

Let M be the primitive of m such that M(0) = 0. Let us also introduce the interval Ĩε obtained
by extending Iε of length ε/2 on each side. For ε small, one obviously has Ĩε # J .
We introduce a parametrisation of J , say j : R

LZ
→ J (where L is the total length of J ) which

is compatible with the arc length, that is if we denote by s the arc length on J starting from j (0),
s :J → R, the one has j ◦ S ◦ s = IdJ , with S the canonical surjection R → R

LZ
.
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We introduce the following time-dependent transform of J :

ϕ :J × [0,1] → J,

ϕ(x, t) := j ◦ S
{

s(x) + M(t)
[

s
(

D(x)
) − s(x)

]}

.
(153)

Let us remark that from (141) and (153) one deduces ϕ(x, t) = x for J\Iε . The transform is thus
internal in Ĩε and by the way, one has |s ◦D− s| < ε on J .
From the fact that D is a direct diffeomorphism, one deduces together with (153) that the

transform ϕ is an homotopy of (direct) diffeomorphisms. At each time, we note ϕt := ϕ(·, t).
Then one chooses v̌ in C∞(J × [0,1];R2) in the set of all the tangent vector fields satisfying:

v̌(x, t) = (∂tϕ)
(

ϕ−1
t (x), t

)

in Ĩε × [0,1],(154)

∫

J

v̌(·, t) · 'dx = 0, ∀t ∈ [0,1],(155)

‖v̌‖C1(J \Ĩε) ! 10
1+ L

L2

∣

∣

∣

∣

∣

∫

Ĩε

v · 'dx
∣

∣

∣

∣

∣

,(156)

for ε small enough with respect to L (say ε < L/10).
Let us remark that such a v̌ satisfies v̌(x, t) = 0 for all x in Ĩε\Iε . Then to obtain (154)–(156),

the work consists in finding a regular function with support in J\Ĩε with prescribed integral on
J\Ĩε (which is an interval of length at least L − 2ε), precisely:

−
∫

Ĩε

m(t)(s ◦D − s)dx.

This can clearly be done regularly in time and such that (156) holds (taking for example,
C∞-approximations of piecewise affine functions).
Let us prove that the v̌ constructed this way is convenient. The point (146) is a trivial

consequence of the form of ϕ, and of the choice of m.
Let us verify the point (145). By (151), (153) and (154), one deduces that ‖v̌‖C0(Iε) ! 2ε, and

consequently with (156) that

‖v̌‖C1(J \Ĩε) ! C(J )ε.(157)

So one has for any x ∈ J\Ĩε
∣

∣T (x) − x
∣

∣ ! C(J )ε.(158)

So we have left to study ‖∂xT − 1‖C0 in J\Ĩε . But (145) can be easily obtained for ε small by
a classical Gronwall’s inequality and (157). !

7.2. Proof of Proposition 4

First, it is easy to see that one can suppose f of class C∞.
We shall cut the proof in two parts. During a first step, we prove that one can approximate f

on ∂Ω\Σ by a holomorphic function defined in a neighbourhood of ∂Ω\Σ . In a second step we
give a holomorphic function approximating f on ∂Ω\Σ and defined globally on Ω .
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Part I: The local problem

Step 1: Let us first consider the case when ∂Ω\Σ = S1 is the unit circle.
As the function f is C∞, the Fourier series

P
f
N (θ) :=

n=+N
∑

n=−N

cn(f )einθ ,(159)

converges to f in the Ck sense on S1.
Hence, we choose N so that

∥

∥f − P
f
N

∥

∥

Ck(S1) < ε.(160)

We now consider the rational function on C:

Q
f
N(z) :=

n=+N
∑

n=−N

cn(f )zn.(161)

Then the function z 0→ Q
f
N(z), holomorphic on a neighbourhood of S1 (in fact, in the whole

C∗) is such that

‖ψ − f ‖Ck(S1) < ε.(162)

Step 2:We consider the case when ∂Ω\Σ is a real-analytic Jordan curve.
We use a conformal mapping M from the interior of J into the unit disc. Then by real-

analyticity of J , this mapping can be enhanced slightly across J , as a consequence of the Schwarz
reflexion principle. For this, we refer for example to [10, p. 41, Proposition 3.1].
So if we can solve the problem in a neighbourhood of the unit circle (what was done in Step 1),

we can solve it in a neighbourhood of any real-analytic Jordan curve.
Let us remark here that the local property holds a fortiori when, instead of a Jordan curve, one

considers only an interval in a Jordan curve.

Part II: The global problem

Step 3: Let us consider the case when ∂Ω\Σ is the union of g real-analytic Jordan curves
and interval of real-analytic Jordan curves. Let us call J1, . . . , Jg these curves. Let us fix
f ∈ C∞(∂Ω\Σ).
There are g neighbourhoods O1, . . . ,Og (we can suppose these neighbourhoods do not

intersect each other, by reducing them if necessary) of respectively J1, . . . , Jg , and one can find
g holomorphic functions ψ1, . . . ,ψg defined respectively on Oi such that one has:

‖f −ψi‖Ck(Ji;C) < ε/2, ∀i ∈ {1, . . . , g}.(163)

Then the problem reduces to extracting from the ψi a global holomorphic function ψ .
As Σ (= ∅, one gets that one of the connected components of C\Ω in the topological space

C\(∂Ω\Σ) contains Ω .
Hence, let us consider g points x1, . . . , xg in C\Ω , such that any connected component of

C\(∂Ω\Σ) contains at least one point xi .
Then one obtains the global holomorphic function φ by Runge’s theorem: it gives us a

sequence of rational functions with poles in {x1, . . . , xg} (and hence, holomorphic on Ω), and
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which converge to ψi uniformly on any compact of Oi . But for holomorphic functions, the
uniform convergence on compacts determines the Ck convergence on compacts. Consequently,
one can find the solution by getting a element of the sequence sufficiently far.

Step 4:We consider the general case. The general case is a consequence of the Step 3, because
any (bounded regular) domain Ω is conformaly equivalent to a domain whose boundary is
composed with analytic Jordan curves.
This point is rather classical (see, e.g., [1, p. 244]): it suffices to compose conformal mappings

obtained by the Riemann’s theorem for either exterior (in the Riemann sphere) or interior domain
of the Jordan curves composing the boundary (and its iterated transformations), computed one
after another. The important fact that we would like to underline is that during this process
each conformal mapping is C∞ up to the boundary by the Kellogg–Warschawski theorem (see,
e.g., [10, Theorem 3.6, p. 46]), because the Jordan curves are all C∞. The resulting conformal
mapping to a domain bounded by real-analytic curves is hence also C∞ up to the boundary.
Hence, it is sufficient to have the Step 3 solved to solve the general case.

Remark 2. – The local result is a very particular case of the result of R. Nirenberg and R.O.
Wells (see [9]), which gives approximating holomorphic functions around (instead of a Jordan
curve in C) C∞ totally real submanifolds of n-dimensional complex manifolds.

7.3. Back to the proof of Proposition 2

In this whole part, we identify R2 to C and hence, points in Ω will sometimes be considered
as complex numbers.
Let us fix ε > 0. For this ε, and for the ψi , one can find by Proposition 3, g−k time-dependent

tangent vector fields vi defined respectively on Γi × [0,1] for i in {k + 1, . . . , g} and such that
(133), (134) and (135) hold on Γi . For i ∈ {1, . . . , k}, we fix vi := 0 on Γi , and v1 is fixed to 0
on Γ0\Σ and “free” on Σ ∩ Γ0 (that is we use Σ ∩ Γ0 as the only control region).
The main work is now to extend these vi inside Ω in a form v = ∇θ in order that (117) and

(118) occur.
In a first step, we show that we can limit ourselves to the case when vi(x, t) is of the form

∑

j λj (t)wj (x). For that, we fix ε2 > 0, to be ruled later (in function of ε).
For this ε2, we consider κ ∈ N, κ " 3, such that for t1, t2 in [0,1]:

|t1 − t2| <
2
κ

⇒
∥

∥vi(t1, ·) − vi(t2, ·)
∥

∥

C2(Γi)
< ε2, ∀i ∈ {k + 1, . . . , g},(164)

Supp vi ⊂
(

1
κ

,
κ − 1
κ

)

, ∀i ∈ {k + 1, . . . , g}.(165)

Then we consider a partition of unity adapted to [0,3/2κ] ∪ [1/κ,5/2κ] ∪ · · · ∪ [(κ − 2)/κ ,
(2κ − 1)/2κ] ∪ [(κ − 1)/κ,1]; that is, we consider κ functions ρ1, . . . , ρκ in C∞([0,1];R) such
that:

Suppρj ⊂ [0,1] ∩
[

j − 1
κ

,
j + 1/2

κ

)

,

0! ρj ! 1,
κ

∑

j=1
ρj = 1 on [0,1].

(166)
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Now we consider the function:

wi(t, x) =
κ

∑

j=1
ρj (t)vi

(

j

κ
, x

)

on [0,1] × Γi.(167)

Then the difference between wi and

vi(t, x) =
κ

∑

j=1
ρj (t)vi(t, x),(168)

in the C2(Γi) norm is majored by ε2 for all t (note that for a given t , there are at most two non
null terms in the previous sums).
Now we consider, for each j ∈ {1, . . . , κ}, a holomorphic C2 approximation of the vi(j/κ, ·)

(the complex conjugate of vi ) on the Γi for i ∈ {1, . . . , g} and of 0 on Γ0\Σ , with error at most ε2.
This is given by Proposition 4. (Note that one can obviously consider that Σ is regular, reducing
it if necessary). We obtain κ holomorphic functions defined on Ω , viz. H1, . . . ,Hκ , such that

∥

∥

∥

∥

Hj − vi

(

j

κ
, ·

)∥

∥

∥

∥

C2(Γi)

< ε2, ∀i ∈ {1, . . . , g},

‖Hj‖C2(Γ0\Σ) < ε2.

(169)

We add as a condition that, if for a given j , the vi(j/κ, ·) are all null for all i , then one chooses
as function Hj the function 0.
Remark that by (134) and by the choice of vi for i ∈ {1, . . . , g}, this implies in particular:

∣

∣

∣

∣

∣

∫

Γi

Hj · 'dx
∣

∣

∣

∣

∣

! C(Ω)ε2, ∀i ∈ {1, . . . , g}.(170)

Now we consider g points x1, . . . , xg in R2\Ω respectively in the interior of Γi for i ∈
{1, . . . , g} (if Γi is the external curve, we fix xi more precisely in the interior of Γ0).
Then we consider the modified functions:

H̃j (x) = Hj(x) −
g

∑

i=1

∫

Γi
Hj · 'dx

2iπ(x − xi)
.(171)

Then H̃j is holomorphic on Ω , regular up to the boundary. The circulation of its conjugate
around any Γm for m ∈ {1, . . . , g} is null; hence the circulation of H̃ j is also null around Γ0.
Consequently, the circulation of H̃j around any inner connected component of the boundary

is 0. Moreover, Hj is holomorphic in Ω . Hence, the function H̃j is the gradient of a harmonic
function:

H̃j = ∇ θ̃j = ∂θ̃j

∂x1
+ i∂θ̃j

∂x2
,(172)

for some θ̃j ∈ C∞(Ω;R), with

'θ̃j = 0 inΩ.(173)
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We have left to modify a little θ̃j in order to obtain (118). For that, for j ∈ {1, . . . , κ}, one
defines a function Gj of class C∞ on ∂Ω such that

Gj = ∂ν θ̃j on ∂Ω\Σ,

‖Gj‖C1,α(∂Ω) ! C(Ω,Σ)‖∂ν θ̃j‖C1,α(∂Ω\Σ),
∫

∂Ω

Gj = 0,

(174)

for a given α ∈ (0,1).
Then one introduces for j ∈ {1, . . . , κ} the function θ̂j in C∞(Ω;R) such that

'θ̂j = 0 in Ω,

∂ν θ̂j = Gj on ∂Ω,
∫

Ω

θ̂j = 0.

(175)

Then one finally defines:

θ̌ (x, t) :=
κ

∑

j=1
ρj (t)

(

θ̃j (x) − θ̂j (x)
)

.(176)

Then (116) follows from the fact that the vi are of compact support in (0,1). Relation (117)
follows from (173), (175) and (176). One easily deduces from (174), (175) and (176) that (118)
holds.
There remains to prove (119).
From (170), one deduces that the correcting term H̃j − Hj satisfies:

‖H̃j − Hj‖C1(Ω) ! C(Ω,Σ,xi)ε2.(177)

Furthermore, as the vi are tangent on ∂Ω\Σ , the normal part of H̃j on ∂Ω\Σ is less (in norm
C1,α) than a factor of ε2. Consequently with (174) and (175), one obtains:

‖θ̂j‖C2,α(Ω) ! C(Ω,Σ,xi)ε2.(178)

Finally, (164), (166), (169), (176), (177) and (178) lead to:

‖v − ∇ θ̌‖C0([0,1],C1(Ω)) ! 2ε2 + C(Ω,Σ,xi)ε2.(179)

It follows from Gronwall’s lemma that
∥

∥φv(0,1, ·) − φ∇θ̌ (0,1, ·)
∥

∥

C1(Γi )
< K‖v − ∇ θ̌‖C0([0,1],C1(Ω)),(180)

where K is a constant depending on the second derivatives of v (and of the domain, of Σ and of
the choice of the xi ).
So finally, by setting ε2 small enough (v being fixed for a given ε), one deduces (119).
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7.4. Proof of Lemma 6

As Γ1 is connected in the boundary of a regular domain, and as it is disjoint from Γ2, it is one
of the Jordan curves composing the boundary.
Then, one can observe that it is equivalent to prove this density in the higher-derivativesHölder

spaces Ck,α . Let us hence prove this later density.
Consider g in C∞(Γ1) (we can trivially restrict ourselves to the case when g has this

regularity). We want to approximate it by a ∂νy(u). For that, we consider the vector field
ĝ :Γ1 → R2 such that ĝ · ν = g and ĝ · τ = 0 on Γ1.
By Proposition 4, one can find φ ∈ H(Ω) ∩ C∞(Ω;C) such that

∥

∥ĝ − φ
∥

∥

Ck+1(Γ1)
< ε.(181)

(Here ĝ is the complex conjugate of ĝ.)
As for (171) we consider a modified function φ2 such that the circulation of its complex

conjugate around any connected component of the boundary is 0.
As the circulation of ĝ around the connected components of Γ1 is of order ε, the distance

between φ and φ2 (in norm Ck,α(Ω)) is of order ε.
Now, because the circulation of φ2 around any connected component of the boundary is 0, and

because φ2 is holomorphic in Ω , one gets that φ2 is the gradient of a harmonic function (regular
up to the boundary), say

φ2 = ∇hφ2 inΩ.

Since hφ2 is defined up to a constant, one can moreover require that is satisfies
∫

Γ1

hφ2 dx = 0.(182)

Now we have to modify hφ2 in order to have a corresponding harmonic function whose trace
is exactly zero along Γ1. Precisely we define h3 by:

'h3 = 0 inΩ,

h3 = hφ2 on Γ1,

h3 = 0 on Γ2.

With (181), (182) and ĝ.τ = 0, one gets that ‖h3‖Ck+1,α(Ω) is of order ε. So hφ2 − h3 solves
the problem raised by Lemma 6.
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