
PRESCRIBING THE MOTION OF A SET OF PARTICLES
IN A 3D PERFECT FLUID

O. GLASS AND T. HORSIN

Abstract. We establish a result concerning the so-called Lagrangian controllability of
the Euler equation for incompressible perfect fluids in dimension 3. More precisely we
consider a connected bounded domain of R3 and two smooth contractible sets of fluid
particles, surrounding the same volume. We prove that given any initial velocity field,
one can find a boundary control and a time interval such that the corresponding solution
of the Euler equation makes the first of the two sets approximately reach the second
one.

1. Introduction

1.1. Presentation of the problem. In this paper, we are concerned with the La-
grangian controllability of the three dimensional Euler equation for perfect incompressible
fluids by means of a boundary control. The problem under view is the following.

Let Ω be a smooth bounded domain of R3 and let Γ be a nonempty open part of its
boundary ∂Ω. Given T > 0, we consider the classical Euler system for perfect incom-
pressible fluids in Ω:

∂tu+ (u · ∇)u+∇p = 0 in (0, T )× Ω,(1)

divu = 0 in (0, T )× Ω,(2)

u|t=0 = u0 in Ω.(3)

As boundary conditions, one usually considers the impermeability condition on ∂Ω:

u · n = 0 on (0, T )× ∂Ω,

where n stands for the unit outward normal vector field on ∂Ω. However, in the problem
under view, the impermeability condition is merely imposed on ∂Ω \ Γ:

(4) u · n = 0 on (0, T )× (∂Ω \ Γ).

Consequently, since we do not prescribe boundary values for u on (0, T )×Γ, the problem
stated as above is underdetermined. It is in fact an implicit control problem; in other
words, we consider the boundary values on Γ as a control on this system, i.e. a way to
influence the fluid in a prescribed way. If one wants to close the system, as shown by
Khazhikov [14], one may consider as boundary conditions on Γ the following ones:

u · n on (0, T )× Γ and curlu ∧ n on {(t, x) ∈ (0, T )× Γ such that u · n < 0},
that is, the normal part of the velocity field on Γ and the tangential entering vorticity. We
refer to [14] for more details on this notion of boundary values. Due to the complexity of
this formulation of boundary values, and as in the literature concerning the controllability
of the Euler equation (see e.g. [3], [4], [8], [9]), we prefer not to refer to them explicitely
and to look for the solution (u, p) itself. Once a solution of (1)-(4) is given, its suitable
trace on (0, T )× Γ can be thought as the control.
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The question that we raise is the possibility of prescribing the motion of a set of particles
driven by a fluid governed by (1)-(4). It is classical in fluid mechanics that one can
describe the motion of a fluid from two different points of view. One possibility, referred
as the Eulerian description of the fluid, is to describe the velocity of fluid particles that
pass “through” a given point. The other possibility, referred as the Lagrangian description
of the fluid consists in following fluid particles along the flow. To that purpose one has
to solve the differential equation associated to the velocity field.

The notion of controllability that we consider in this paper is different from the usual
notion of controllability and, in some sense, closer to the Lagrangian description of the
fluid than the usual notion of controllability. The standard sense of controllability would
refer to the possibility of driving the velocity field (the state of the system), from one
prescribed value to a fixed target. The study of the controllability of the Euler equation
has been initiated by J.-M. Coron in [3] and [4], and then studied by the first author
in [8] and [9]. Also related to the boundary control of the velocity field, the question
of asymptotic stabilization of this system around zero was studied by J.-M. Coron in
2-D simply connected domains (see [5]) and by the first author for what concerns more
general 2-D domains (see [10]).

In this paper, we consider the problem of prescribing the displacement of a set of
particles, rather than the velocity field in final time. In [11], the authors showed that in
2-D, one can indeed prescribe approximately the motion of some specific sets of fluids.
The goal of the present paper is to consider the case of the dimension 3.

1.2. Notations and definitions. In this section, we fix the notations and give the basic
definitions.

In the sequel, smooth curves, surfaces or maps will mean C∞ ones. We will denote by
Cω the class of real analytic curves/surfaces. The volume of a borelian set A in R3 will
be denoted by |A|. Given a suitably regular vector field u, we will denote by φu the flow
of u, defined (when possible) by

(5) ∂tφ
u(t, s, x) = u(t, φu(t, s, x)) and u(s, s, x) = x.

For A a subset of R3 and η > 0, we will denote:

Vη(A) := {x ∈ R3 / d(x,A) < η}.
We will also use the notation Lp(0, T ;X(Ω(t))) or Ck([0, T ];X(Ω(t))) of time-dependent
functions with values in a space X of functions on a domain depending on time Ω(t) ⊂
R3. This refers to the space functions that can be extended to Lp(0, T ;X(R3)) or
Ck([0, T ];X(R3)).

We now recall some definitions from differential geometry (see e.g. [13]).

Definition 1. A Jordan surface γ in R3 is the image of S2 by some homeomorphism h.
According to the Jordan-Brouwer Theorem (see [2] or [12]), R3 \ γ has two connected
components, one of which is bounded and will be denoted by int(γ). Moreover when the
homeomorphism h is a diffeomorphism, we have a unit outward normal vector field on γ,
which we will denote by ν.

Definition 2. Two Jordan surfaces γ0 and γ1 embedded in R3 are said to be isotopic in
Ω, if there exists a continuous map I : [0, 1] × S2 → Ω such that I(0) = γ0, I(1) = γ1

and for each t ∈ [0, 1], I(t, ·) is an homeomorphism of S2 into its image. When, for some
k ∈ N\{0}, this homeomorphism is a Ck-diffeomorphism with respect the space variable,
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I will be said to be a Ck-isotopy, or, when k = ∞, a smooth isotopy. A one-parameter
continuous family of diffeomorphisms of Ω is called a diffeotopy of Ω.

When their regularity is not specified, the geometrical objects are considered to be
smooth in the sequel. We are now in position to define the Lagrangian controllability
(the corresponding two-dimensional notion was introduced in [11]).

Definition 3. Let T > 0 be a given time. We will say that the exact lagrangian con-
trollability of (1)-(4) holds if given two Jordan surfaces γ0 and γ1 included in Ω such
that

γ0 and γ1 are isotopic in Ω,(6)

|int(γ0)| = |int(γ1)|,(7)

and given a regular initial data u0 satisfying

divu0 = 0 in Ω,(8)

u0 · n = 0 on ∂Ω \ Γ,(9)

there exists a solution (u, p) of (1)-(4) such that one has

∀t ∈ [0, T ], φu(t, 0, γ0) ⊂ Ω,(10)

φu(T, 0, γ0) = γ1.(11)

up to reparameterization.

Let us say a few words concerning the regularity of u. In general, strong solutions of
the Euler equation are considered in a Hölder or Sobolev space with respect to x, which
is included in the space of Lipschitz functions. In the sequel, the solutions will be taken
in the Hölder space Ck,α(Ω), k ≥ 1.

If the exact Lagrangian controllability does not occur, one may try to weaken this
definition as follows.

Definition 4. We will say that the approximate Lagrangian controllability of (1)-(4)
holds in time T and in norm Ck if given γ0, γ1 and u0 as above, and given any ε > 0,
there exists a solution (u, p) of (1)-(4) such that (10) holds and that

(12) ‖φu(T, 0, γ0)− γ1‖Ck(S2) < ε,

up to reparameterization.

Remark 1. It is easy to see that the conditions that γ0 and γ1 should be isotopic and
enclose the same volume are necessary in order that a smooth volume-preserving flow
drives γ0 to γ1. In particular |int(γ0)| = |int(γ1)| comes from the incompressibility of the
fluid.

Remark 2. Condition (10) allows to make sure that one “controls” the fluid zone for
all time by making it stay in the domain; Conditions (11) or (12) would not have a clear
meaning without it.

1.3. Main result. The main result of this paper is the following, establishing an ap-
proximate Lagrangian controllability property.

Theorem 1. Let α ∈ (0, 1) and k ∈ N\{0}. Consider u0 ∈ Ck,α(Ω;R3) satisfying (8)-(9)
and γ0 and γ1 two contractible C∞ embeddings of S2 in Ω satisfying (6)-(7). Then for
any ε > 0, there exist a time T > 0 and a solution (u, p) in L∞(0, T ;Ck,α(Ω;R4)) to
(1)-(4) on [0, T ] such that (10) and (12) hold (up to reparameterization).
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Remark 3. Let us check that, as in the two-dimensional case (see [11]), the exact lagra-
gian controllability does not hold. As is classical, in 3-D the vorticity of the fluid

(13) ω := curlu,

satisfies the equation

(14) ∂tω + (u · ∇)ω = (ω · ∇)u.

Denoting w(t, x) = ω(t, φu(t, 0, x)), we see that

∂tw = (w · ∇)u(t, φu(t, 0, x)).

Thus if initially curlu0 = 0 in a neighborhood of γ0 then curlu = 0 in a neighborhood of
φu(t, 0, γ0) as long as (10) is true.

Now, since u satisfies (2), for each time t, in such a neighborhood of φu(t, 0, γ0) and
away from ∂Ω, u(t, ·) is locally the gradient of a harmonic function, and hence is real
analytic . Therefore, if γ0 is a real-analytic submanifold, so will be φu(t, 0, γ0) for each
t ∈ [0, T ]. It follows that the exact Lagrangian controllability does not hold in general,
since one may take γ1 smooth but non analytic.

Remark 4. As will be clear from the proof, the time T whose existence is granted by
Theorem 1 can be made arbitrarily small. The result does not require a time long enough
in order for the controllability property to take place, but a time small enough to make
sure that no blow up phenomenon occurs.

Let us now briefly describe the strategy to prove Theorem 1. First, we use a construc-
tion due to A. B. Krygin [16] to obtain a solenoidal vector field X ∈ C∞0 ((0, 1)× Ω;R3),
such that

∀t ∈ [0, 1], φX(t, 0, γ0) ⊂ Ω,

φX(1, 0, γ0) = γ1.

Then we will prove that there exist potential flows (that is, time-dependent gradients of
harmonic functions in Ω), which approximate suitably the action of X on γ0. This gives
us a solution (ū, p̄) of (1)-(4) with u0 = 0 and T = 1 such that

‖φū(0, t, γ0)− φX(0, t, γ0)‖Ck(S2) ≤ ε.

Then we will use a time-rescaling argument due to J.-M. Coron [4] (see also [8]), to get
the result for non trivial u0 and T small enough.

The rest of the paper is divided as follows. In Section 2, we consider the existence of
the above mentionned vector field X, and then of the potential flows. In Section 3, we
prove Theorem 1 by constructing the solution (u, p) taking the initial condition u0 into
account.

Acknowledgements. The authors are partially supported by the Agence Nationale de
la Recherche (ANR-09-BLAN-0213-02). They thank Jean-Pierre Puel for many useful
discussions leading to this paper.

2. Potential flows

2.1. A solenoidal vector field mapping γ0 onto γ1. The vector field X is obtained
as a direct consequence of the following result due to A. B. Krygin.
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Theorem 2 ([16]). If γ0 and γ1 are as in Theorem 1, then there exists a volume-preserving
diffeotopy h ∈ C∞([0, 1] × Ω; Ω) such that ∂th is compactly supported in (0, 1) × Ω,
h(0, γ0) = γ0 and h(1, γ0) = γ1.

A direct consequence is that the smooth vector field

(15) X(t, x) := ∂th(t, h−1(x)),

is compactly supported in (0, 1)× Ω and satisfies

φX(1, 0, γ0) = γ1,

and
divX = 0 in (0, 1)× Ω.

2.2. Moving the fluid zone by potential flows. In this subsection we prove the
following.

Proposition 1. Let γ0 be a C∞ contractible two-sphere embedded in Ω and consider
X ∈ C0([0, 1];C∞(Ω;R3)) a solenoidal vector field such that

(16) ∀t ∈ [0, 1], φX(t, 0, γ0) ⊂ Ω,

and let
γ1 = φX(1, 0, γ0).

For any ε > 0 and k ∈ N there exists θ ∈ C∞0 ((0, 1)× Ω;R) such that

∀t ∈ [0, 1], ∆xθ = 0 in Ω,(17)

∂θ

∂n
= 0 on [0, 1]× (∂Ω \ Γ),(18)

∀t ∈ [0, 1], φ∇θ(t, 0, γ0) ⊂ Ω,(19)

‖φ∇θ(1, 0, γ0)− γ1‖Ck(S2) ≤ ε,(20)

up to reparameterization.

As in [11] we prove this proposition by assuming first that γ0 is an embedded real
analytic 2-sphere and that X is real analytic in x. Then we progressively reduce the
assumptions to the framework of Proposition 1.

2.2.1. Case of an analytic 2-sphere moved by an analytic isotopy. The goal of this para-
graph is to prove the following proposition.

Proposition 2. The conclusions of Proposition 1 are satisfied if we assume that γ0 is an
analytic 2-sphere (i.e. γ0 is the image of S2 by a real-analytic embedding f0) and that X
is moreover in C0([0, 1];Cω(Ω;R3)).

It is clear that in that case, φX is volume preserving real analytic isotopy between γ0

and γ1. The first step to establish Proposition 2 is the following.

Lemma 1. Let t 7→ γ(t) be a C0([0, 1];Cω(S2)) family of contractible 2-spheres in Ω and
X ∈ C([0, 1];Cω(Ω)) be a family of vector field such that

(21)

∫
γ(t)

X · ν dσ = 0,

then there exists η > 0 and ψ ∈ C0([0, 1];C∞(Vη[int(γ(t))];R)) such that

∀t ∈ [0, 1], ∆xψ = 0 in Vη[int(γ(t))],(22)

∀t ∈ [0, 1],
∂ψ

∂ν
= X · ν on γ(t).(23)
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In other words, Lemma 1 expresses that the solution of the Neumann system

(24)

{
∆xψ = 0 in int(γ(t)),
∂ψ
∂ν

= X · ν on γ(t),

can be extended across the boundary γ(t) uniformly in t.

Proof. An equivalent lemma in dimension 2 is given in [11]. By means of real analytical
local charts (see e.g. the analytic inverse theorem in [15]), γ(t) is locally mapped to the
plan {x3 = 0} by some φ with φ(int(γ(t))) ⊂ {x3 > 0}. Moreover, we can require that

dφ(ν) is normal to x3 = 0 on {x3 = 0}.

To obtain this property, consider

φ̂ : (x1, x2, x3) 7→ (x1, x2, 0) + x3dφφ−1(x1,x2,0)(ν).

Then φ̂ is analytic and invertible (locally) in a neighborhood of {x3 = 0}. Now, replace

φ by φ̂−1 ◦ φ to obtain the requirement.
Now call

g := ∂x3(ψ ◦ φ−1);

it satisfies

a · ∇2g + b · ∇g + cg = 0,

with a real-analytic Dirichlet boundary condition given on x3 = 0 and analytic coefficients
a, b and c. We use the following result of Cauchy-Kowalevsky type (see e.g. Morrey [17,
Theorem 5.7.1’])

Theorem 3. Let f , a, b and c be real analytic functions on

GR := BRN (0, R) ∩ {(x1, ..., xN), xN ≥ 0},

and y ∈ H2(GR) satisfying

a · ∇2y + b · ∇y + c = f in GR and y = 0 on xN = 0.

Assume that for some constant A and L we have

(25) |∇pa(x)|, |∇pb(x)|, |∇pc(x)|, |∇pf(x)| ≤ LA|p|,

for any multi-index p. There exists then R′ < R depending only on N , A, L and R such
that y may be extended analytically on BRN (0, r) for any r < R′.

Thus for each x ∈ γ(t), ∇xψ · ν can be analytically extended on a neighborhood Ux
of x across γ(t). Integrating ∇ψ · ν along ν we deduce that ψ is real analytic and by
unique continuation its extension is also harmonic on Ux. Moreover, using the continuity
of γ in the variable t from [0, 1] to Cω(S2)1 (so that the coefficients satisfy (25) uniformly
in time), we can find Ux so that ψ is analytically extended on in Ux for each s in some
neighborhood of t. Using the compactness of ∪t{(t, γ(t))} we see that we can choose
η > 0 uniform in t, such that for all t, ψ can be analytically (and hence harmonically)
extended in Vη(γ(t)). Lemma 1 follows. �

1We refer to [15] for a definition of the topology on this space.
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Back to the proof of Proposition 2. We take γ(t) = φX(t, 0, γ0). Due to the regularity of
X, γ(t) is analytic for any t, and applying Lemma 1 we deduce a function ψ. Reducing
η > 0 given by Lemma 1 if necessary, we may assume that Vη(γ(t)) does not meet ∂Ω.

By compactness of [0, 1], for a given ε > 0 we can choose 0 ≤ t1 < · · · < tN ≤ 1 and
δ1, . . . , δN such that

[0, 1] ⊂ ∪Ni=1(ti − δi, ti + δi),

∀t ∈ [ti − δi, ti + δi], γ(t) ⊂ Vη/2(γ(ti)),

∀s, t ∈ [ti − δi, ti + δi], ‖ψ(s, ·)− ψ(t, ·)‖Ck(Vη(γ(ti)))
≤ ε.(26)

For each i = 1, . . . , N , we consider

Ki := Vη/2[int(γ(ti))] ∪ Vη/2(∂Ω \ Γ),

ψi := ψ(ti, ·).
Reducing η again if necessary, we may assume that the connected component of Ω\Ki in
R3 \Ki meets R3 \Ω. This is possible since the connected component of Ω \ [int(γ(ti))∪
(∂Ω \ Γ)] in R3 \ Ki does meet R3 \ Ω, since Γ 6= ∅. It follows that each connected
component of R3 \Ki meets R3 \ Ω.

Now we use the following harmonic approximation theorem (see [6, Theorem 1.7]):

Theorem 4. Let O be an open set in RN and let K be a compact set in RN such that
that O∗ \K is connected, where O∗ is the Alexandroff compactification of O. Then, for
each function u which is harmonic on an open set containing K and each ε > 0, there is
a harmonic function v in O such that ‖v − u‖∞ < ε on K.

Recall that the Alexandroff compactification of O is obtained by adding a point, say
{∞} to O and to consider the topology generated by the open sets of O, and the sets of
the form {∞} ∪ (O \K), with K a subset of O.

Remark 5. One may state the same result with the Ck norm instead of the uniform one.
It suffices to consider a compact K̃ whose interior contains K, apply the above result on
K̃ and use standard properties of harmonic functions.

We choose points Y1, ..., YP in each connected component of R3 \ Ki, outside Ω. We
apply the preceding result with O = R3 \ {Y1, . . . , YP} and K = Ki. In that case, O∗ can
be thought as the quotient of S3 = R3 ∪ {∞} by the identification of Y1, . . . , YP and ∞.

Therefore, for any ν > 0, we get a map ψ̂i in C∞(R3 \ {Y1, ..., YP};R) such that ψ̂i is
harmonic on R3 \ {Y1, ..., YP} and such that

‖ψ̂i − ψi‖Ck+2(Vη/2[int(γ(ti))])
< ν,(27)

‖ψ̂i‖Ck+2(Vη/2(∂Ω\Γ)) < ν.(28)

Since ψ̂i is harmonic in Ω, there holds

(29)

∫
∂Ω

∇ψ̂i · n dσ = 0.

In order for (4) to be satisfied we consider di in C∞(∂Ω;R) such that

di = ∇ψ̂i · n on ∂Ω \ Γ,(30)

‖di‖Ck+1(∂Ω) ≤ C‖∇ψ̂i · n‖Ck+1(∂Ω),(31) ∫
∂Ω

di dσ = 0.(32)
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and introduce the harmonic function hi in Ω by the Neumann problem

∆hi = 0 in Ω,(33)

∂hi
∂n

= di in Ω,(34) ∫
Ω

hi = 0.

Note that in particular that by standard elliptic estimates,

(35) ‖hi‖Ck+1(Ω̄) ≤ Cν.

We introduce

(36) ψ̌i := ψ̂i − hi.

Taking a partition of unity χi associated to the covering of [0, 1] by the intervals (ti −
δi, ti + δi), we define

(37) θ(t, x) :=
N∑
n=1

χi(t)ψ̌i(x).

Due to (30) and (34), θ satisfies (18). Moreover according to (26), (27), (28) and (35) we
have for ν small enough with respect to ε and for some C > 0

(38) sup
t∈[0,1]

‖∇θ −∇ψ‖Ck(Vη/3[γ(t)]) ≤ Cε.

In particular by supposing ε small enough, we have a uniform estimate

(39) ‖∇θ‖Ck(φ∇θ(0,t,γ0)) ≤ ‖∇ψ‖Ck(φ∇ψ(0,t,γ0)) + 1.

As long as φ∇θ(t, 0, γ0) remains in Vη/3(γ(t)) one has, using Gronwall’s lemma,

‖φ∇θ(t, 0, γ0)− φ∇φ(t, 0, γ0)‖∞
≤ ‖∇θ(t, ·)−∇φ(t, ·)‖C0([0,1];C0(Vη/3[γ(t)]) exp(‖∇ψ‖L1(0,1;Lip(Vη/3[γ(t)])).

Then by reducing ε if necessary, we get thanks to (38) that this is valid for all time in
[0, 1]. Differentiating φ with respect to x up to the order k, we obtain in the same way
that for all t ∈ [0, 1],

‖φ∇θ(t, 0, γ0)− φ∇φ(t, 0, γ0)‖Ck([0,1])

≤ ‖∇θ −∇φ‖C0([0,1];Ck(Vγ/3(γ(t))) exp(C‖∇ψ‖L1((0,1);Wk+1,∞(Vη/3[γ(t)]))).

This ends the proof Proposition 2. �

2.2.2. Case of a smooth 2-sphere moved by a special analytic isotopy. In this paragraph,
Proposition 2 is extended to the following.

Proposition 3. The conclusions of Proposition 1 are satisfied if we assume that γ0 is
a smooth 2-sphere (i.e. γ0 is the image of S2 by f0 a C∞ embedding) and that X is
moreover in C0([0, 1];Cω(Ω;R3)).
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Proof. Due to a result of H. Whitney (see [19]), γ0 is imbedded in a smooth family of
surfaces γν , ν ∈ (−ν0, ν0), with γ0 = γν for ν = 0, γν ∩ γν′ = ∅ for ν 6= ν ′ and γν real
analytic for ν 6= 0. It follows that either for ν > 0 or for ν < 0, one has

(40) γ0 ⊂ int[γν ].

Without loss of generality, we assume that (40) holds for ν > 0. The family γν being
smooth with respect its parameters, one has

(41) γν → γ0 in C∞(S2) as ν → 0+.

We can then apply Proposition 2 to X on γν for ν > 0 small. We construct a θε such
that (17), (18), (19) and (20) apply for γν instead of γ0. The construction also generates
a family ψ satisfying (24) in int[φX(t, 0, γν)].

Now we have uniform bounds on the ‖∇ψ‖Ck(φ∇ψ(t,0,γν)) with respect to ν, because
the constants of the elliptic estimates (see e. g. [7, Theorem 6.30 and Lemma 6.5]) are
uniform with respect to ν thanks to (41). We deduce from (39) that we have uniform
bounds on ‖∇θε‖Ck(φ∇θε (t,0,γν)) as ν → 0+. By Gronwall’s lemma one gets

‖φ∇θε(t, 0, γ̃0)− φ∇θε(t, 0, γ0)‖Ck(S2) ≤

Ck‖γ0 − γν‖Ck(S2) exp

(∫ 1

0

‖∇θε‖Ck+1(int(φ∇θε (t,0,γν)) dt

)
.

Hence we deduce the claim by taking ν small enough. Of course by reparameterizing X
and thus θ in time we can always assume that θ is compactly supported in time. �

2.2.3. Case of smooth embedded contractible two-sphere moved by a smooth isotopy. We
now prove Proposition 1.

Proof of Proposition 1. In the general case, we assume that X is merely C∞(Ω;R3). Let
λ > 0 such that

max
t∈[0,1]

dist(φX(t, 0, γ0), ∂Ω) > 2λ.

We define Ut := Vλ(int(γ(t))). Reducing λ if necessary, we can obtain that for all t, Ut is
diffeomorphic to a ball.

Now we can use Whitney’s approximation theorem (see e.g. [15, Proposition 3.3.9]),
for any µ > 0 and any k ∈ N there exists Xµ ∈ C([0, 1];Cω(R3)) such that

‖Xµ −X‖C([0,1];Ck+1(Ut)) ≤ µ.

Moreover, we can ask that

divXµ = 0 in [0, 1]× R3.

To see this, we use the fact that Ut is a topological ball; hence its second de Rham
cohomology space is trivial, and any divergence-free vector field (in particular X) on Ut
is of the form curlA. Hence for each time t one can apply Whitney’s approximation
theorem (at order k+ 2) on ϕA where X = curlA and ϕ(t, x) is a smooth cutoff function
equal to 1 on Ut and to 0 for d(x,Ut) ≥ 2λ. We obtain an approximating vector field
Bµ and define Xµ := curlBµ. Using as before the compactness of the time interval [0, 1]
and a partition of unity (as for the proof of Proposition 2), we can obtain a smooth
approximation uniformly in time.

Now we apply Proposition 3 with X̃µ, apply Gronwall’s lemma and get the result for
µ small enough. �
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3. Proof of Theorem 1

This section is devoted to the proof of Theorem 1. As in [4, 8, 11], we start with the
case where u0 is small, and then treat the general case.

3.1. Preliminaries. First we introduce some functions on Ω in order to take its topology
into account, more precisely to describe its first de Rham cohomology space. We recall
the following construction.

Let Σ1, ...,Σg be g smooth manifolds with boundaries of dimension n− 1 inside Ω such
that:

• for all i in {1, . . . , g}, ∂Σi ⊂ ∂Ω and Σi is transverse to ∂Ω,
• for all i, j in {1, . . . , g}2 with i 6= j, Σi and Σj intersect transversally (which, by

definition, includes the case of an empty intersection),
• Ω \ ∪gi=1Σi is simply connected.

For i = 1, . . . , g, we consider

Xi := {p ∈ H1(Ω \ ∪gk=1Σk), [p]i = constant, [p]j = 0, j 6= i},
where [p]k = p|Σ+

k
− p|Σ−k is the jump of p on each arbitrarily fixed side of Σk in Ω. Then

by Lax-Milgram’s Theorem there exists a unique qi ∈ Xi such that for all p ∈ Xi∫
Ω

∇qi · ∇p dx = [p]i,

which leads to the existence of a unique pi such that

∆pi = 0 in Ω \ ∪gk=1Σk,

∂npi = 0 on ∂Ω,

[pi]i = 1 and [pi]j = 0 for j 6= i,

[∂nqi]i = 0,

and we take

Qi := ∇pi,
which is regular in Ω. Then we have the following result.

Proposition 4 (see e.g. [18], Appendix I, Proposition 1.1). For any X ∈ L2(Ω;R3) such
that curlX = 0 in Ω, there exist χ in H1(Ω;R) and α1, . . . , αg in R such that

(42) X = ∇χ+

g∑
i=1

αiQi.

3.2. A fixed point operator. Now we introduce an operator, whose fixed point will
give a solution of our problem when taking u0 (suitably small) into account.

We introduce R > 0 such that

Ω ⊂ BR := BR3(0, R).

We introduce a linear continuous extension operator π : C(Ω;R3) → C0(BR;R3) such

that ∀k ∈ N and all β ∈ (0, 1), π is continuous from Ck,β(Ω;R3) to Ck,β
0 (BR;R3).

Let δ ∈ (0, 1), and consider µ ∈ C∞0 ([0,+∞);R) with support in [0, δ] and with value
1 on a neighborhood of 0.

Given ε > 0 we denote

ȳ := ∇θ,
10



the potential flow obtained by Proposition 1 with X obtained from Theorem 2. For some
ν ∈ (0, 1) which will be small in the sequel we define with α ∈ (0, 1):

Xν :=
{
u ∈ L∞((0, 1);Ck,α(Ω;R3)), divu = 0 in (0, 1)× Ω, ‖u− ȳ‖L∞(0,1;Ck,α(Ω)) ≤ ν

}
.

It is straightforward to check that Xν is a closed convex subset of L∞((0, 1)× Ω).

We extend ȳ by π and still denote ȳ the extended function. Now, given u ∈ Xν , we
associate F (u) as follows. First, we introduce

ũ := ȳ + π(u− ȳ) = π(u).

Next we consider ωu ∈ L∞(0, 1;Ck−1,α(BR;R3)) as the solution of the following transport
equation:

ωu(·, 0) = curl π(u0) in B(0, R),(43)

∂tωu + (ũ · ∇)ωu = (ωu · ∇)ũ− (div ũ)ωu in (0, 1)×BR.(44)

Due the support of ũ, one sees by using characteristics that the system (43)-(44) is well-
posed and that indeed ωu has the claimed regularity (details for obtaining the regularity
can be found in [8]).

Now observing that

curl (a ∧ b) = (div b)a− (div a)b+ (b · ∇)a− (a · ∇)b,

we easily deduce that
div (ωu) = 0 in BR,

so that ωu can be written in the form curl v̂ in BR. Hence it is classical (since
∫
∂Ω
u0·n dσ =∫

∂Ω
ȳ · n dσ = 0) that there exists a unique v ∈ L∞(0, 1;Ck,α(Ω;R3)) such that

curl v = ωu in [0, 1]× Ω,(45a)

div v = 0 in [0, 1]× Ω,(45b)

v · n = µ(t)u0 · n+ ȳ · n on [0, 1]× ∂Ω,(45c) ∫
Ω

v ·Qi dx = 0, i = 1, . . . , g.(45d)

According to Proposition 4, we can determine g time-dependent functions λ1, . . . , λg such
that, if we define

(46) V := v +

g∑
i=1

λi(t)Qi,

we have for all j = 1, . . . , g

(47)

∫
Ω

V (0) ·Qj dx =

∫
Ω

u0 ·Qj dx = 0,

and for all t ∈ [0, 1],

(48)

∫
Ω

V (t, x)·Qj(x) dx−
∫

Ω

u0(x)·Qj(x) dx = −
∫ t

0

∫
Ω

(u(τ, x)∧ωu(τ, x))·Qj(x) dx dτ.

This is possible in a unique way since the matrix (
∫

Ω
Qi ·Qj dx)i,j is invertible, as a Gram

matrix of independent functions.
Now we finally define

F (u) := V.
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3.3. Finding a fixed point. Our goal is to prove hereafter:

Proposition 5. Given ν > 0, if ‖u0‖Cj,α(Ω) is small enough, F admits a fixed point in
Xν.

We will use the following lemma (see e.g. [1, Theorem 3.14]):

Lemma 2. Let j ∈ N, a ∈ (0, 1). Let f , v, and g be elements of L∞(0, 1;Cj,α(BR;R3))
satisfying

∂tf + (v · ∇)f = g,

with v and f(0, ·) compactly supported in BR. Then for some C > 0 depending on j and
α only, there holds

‖f(t, ·)‖Cj,α(BR) ≤ exp

(
C

∫ t

0

V (s) ds

)
[
‖f(0, ·)‖Cj,α(BR) +

∫ t

0

exp

(
−C

∫ τ

0

V (s) ds

)
‖g(τ, ·)‖Cj,α(BR) dτ

]
,

with

V (s) := ‖∇v(s, ·)‖Cj−1,α(BR) if j ≥ 1 and V (s) := ‖∇v(s, ·)‖L∞(BR) if j = 0.

Proof of Proposition 5. We establish Proposition 5 and find a fixed point of F in Xν

via Schauder’s fixed point theorem. Accordingly, we prove that, ν being fixed and for
‖u0‖Ck,α small enough, F sends Xν into itself, that F is continuous and F (Xν) is relatively
compact for the uniform topology on Xν .

• Using Lemma 2, we see that

‖ωu(t, ·)‖Ck−1,α(BR) ≤ exp

(
C

∫ t

0

V (s) ds

)[
‖ωu(0, ·)‖Ck−1,α(BR)

+ C

∫ t

0

exp

(
−C

∫ τ

0

V (s) ds

)
‖ũ(τ, ·)‖Ck,α(BR)‖ωu(τ, ·)‖Ck−1,α(BR) dτ

]
,

with as before

V (s) := ‖∇ũ(s, ·)‖Ck−2,α(BR) if k ≥ 2 and V (s) := ‖∇ũ(s, ·)‖L∞(BR) if k = 1.

We apply Gronwall’s lemma to

t 7→ ‖ωu(t, ·)‖Ck−1,α(BR) exp

(
−C

∫ t

0

V (s) ds

)
,

and deduce

‖ωu(t)‖Ck−1,α(BR) ≤ ‖ωu(0)‖Ck−1,α(BR)e
C‖ũ‖

L∞(0,1;Ck,α(BR)) .

Thus with the definition of Xν and the continuity of π, we obtain that

(49) ‖ωu(t)‖Ck−1,α(BR) ≤ ‖ωu(0)‖Ck−1,α(BR)e
C(‖y‖

L∞(0,1;Ck,α(Ω))
+1)
.

Now by (48) we have

|λi(t)| ≤ C(|λi(0)|+ t‖ωu‖C0,α(BR)‖u‖C1,α(BR)),

and thus, with (47), (49) and the definition of Xµ, we deduce

(50) |λi(t)| ≤ C‖u0‖Ck,α(BR)

(
1 + te

C(‖y‖
L∞(0,1;Ck,α(Ω))

+1)
[‖y‖L∞(0,1;Ck,α(Ω)) + ν]

)
.
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Thus, by combining (49), (50), and the elliptic estimates given by (45)-(46), we infer that

(51) ‖F (u)− ȳ‖L∞(0,1;Ck,α(Ω)) ≤ C(‖y‖k,α)‖u0‖Ck,α(Ω),

for some constant C depending on k, α and y. It follows that for ‖u0‖Ck,α(Ω) small enough,
F sends Xν into itself.

• That F (Xν) is relatively compact is seen easily: given (un) ∈ XN
ν , the sequence (F (un))

belongs to Xν and, following the construction, it is easy to see that (∂tF (un)) is bounded
in L∞(0, 1;Ck−1(Ω)). The conclusion follows then from Ascoli’s theorem.

• Finally, that F is continuous for the uniform topology can be seen as follows. Let
us be given (un) ∈ XN

ν converging uniformly to u ∈ Xν . The flows Φn associated to
ũn converge uniformly towards the flow Φ associated to ũ. Hence one can see that ωun
converges uniformly to ωu. Due to the bounds on ωu, this convergence also takes place
in L∞(0, 1;Ck−1,β(BR)) for any β < α. We deduce in a straightforward manner the
convergence of (vn) and (λni ) corresponding to un towards v and λi corresponding to u,
and the conclusion follows.

It follows that F admits a fixed point u inXν . This concludes the proof of Proposition 5.
�

3.4. Relevance of the fixed point. Call u the fixed point obtained above.

1. Let us first check that u is a solution of the Euler equation in [0, 1] × Ω. From (44),
and since ũ = u in [0, 1]× Ω, we deduce that

curl (∂tu+ (u · ∇)u) = 0 in [0, 1]× Ω.

From (48) and (u · ∇)u = ∇ |u|
2

2
+ (curlu) ∧ u, we see that∫

Ω

(∂tu+ (u · ∇)u) ·Qi dx = 0,

which together with Proposition 4 proves the claim.

2. Now we prove that ū fulfills the requirements of Theorem 1 for ‖u0‖Ck,α small enough.
Given x ∈ BR, we have

φ̇ū(t, 0, x)−φ̇ȳ(t, 0, x) = ū(t, φū(t, 0, x))−ȳ(t, φū(t, 0, x))+ȳ(t, φū(t, 0, x))−ȳ(t, φȳ(t, 0, x)).

We deduce easily that for a constant C > 0 depending on y only,

|φ̇ū(t, 0, x)− φ̇ȳ(t, 0, x)| ≤ ν + C|φū(t, 0, x)− φȳ(t, 0, x)|.

Thus by Gronwall’s lemma we have |x(t) − y(t)| ≤ Cν where C depends only on ȳ.
Reasoning in the same way for the derivatives (up to order k) with respect to x of the
flows, we obtain

‖φũ(t, 0, ·)− φy(t, 0, ·)‖Ck(BR) ≤ Cν.

Hence taking ν small enough (and hence ‖u0‖Ck,α even smaller), we can obtain (10) and
(12) for T = 1. In order words, there exists c > 0, such that for any u0 in Ck,α with
‖u0‖Ck,α ≤ c, one can find a solution of the Euler equation for T = 1, satisfying (10) and
(12).
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3. Let us now explain how we can obtain the result without the condition of smallness
of u0 (but for T small enough). Given u0 ∈ Ck,α(Ω), we rescale it by considering

v0 = ρu0,

with ρ > 0 small enough so that v0 satisfies ‖v0‖Ck,α ≤ c . Applying the above construc-
tion to v0 gives us a solution (u, p) of (1)-(3) defined on t ∈ [0, 1] with u(0, ·) = v0 such
that

‖φu(1, 0, γ0)− γ1‖∞ < ε.

If we define uρ by

uρ(t, x) =
1

ρ
u

(
t

ρ
, x

)
,

then uρ is defined on t ∈ [0, ρ] and

‖φuρ(ρ, 0, γ0)− γ1‖ < ε.

This concludes the proof of Theorem 1.
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[3] J.-M. Coron. Contrôlabilité exacte frontière de l’équation d’Euler des fluides parfaits incompressibles

bidimensionnels. C.R. Acad. Sci. Paris, 317:271–276, 1993.
[4] J.-M. Coron. On the controllability of 2-D incompressible perfect fluids. J. Math. Pures Appl. (9),

75(2):155–188, 1996.
[5] J.-M. Coron. On the null asymptotic stabilization of the two-dimensional incompressible Euler equa-

tions in a simply connected domain. SIAM J. Control Optim., 37(6):1874–1896 (electronic), 1999.
[6] S. Gardiner. Harmonic approximation. London Mathematical Society Lecture Note Series 221. Cam-

bridge university press, 1995.
[7] D. Gilbarg., N. Trudinger. Elliptic partial differential equations of second order. Classics in Mathe-

matics. Springer-Verlag, Berlin, 2001. Reprint of the 1998 edition.
[8] O. Glass. Exact boundary controllability of 3-D Euler equation. ESAIM Control Optim. Calc. Var.,

5:1–44 (electronic), 2000.
[9] O. Glass. An addendum to a J.-M. Coron theorem concerning the controllability of the Euler system

for 2D incompressible inviscid fluids. J. Math. Pures Appl. (9), 80(8):845–877, 2001.
[10] O. Glass. Asymptotic stabilizability by stationary feedback of the two-dimensional Euler equation:

the multiconnected case. SIAM J. Control Optim., 44(3):1105–1147, 2005.
[11] O. Glass, T. Horsin. Approximate Lagrangian controllability for the 2-d Euler equations. application

to the control of the shape of vortex patch. J. Math. Pures Appl., 93:61–90, 2010.
[12] V. Guillemin, A. Pollack. Differential topology. Prentice-Hall, Inc., Englewood Cliffs, N.J., 1974.
[13] M. W. Hirsch. Differential topology, Graduate Texts in Mathematics, 33. Springer-Verlag, New York,

1994.
[14] A. Kazhikov. Note on the formulation of the problem of flow through a bounded region using

equations of perfect fluid. PMM USSR, 44:672–674, 1981.
[15] S. Krantz, H. Parks. A Primer of Real Analytic Functions. Birkhäuser, Basel Boston Berlin, 1992.
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