Gradient flow on control space with rough initial condition

Paul Gassiat

CEREMADE, Université Paris-Dauphine

Finance and Stochastics Seminar Imperial College London, May 2024

Joint work with Florin Suciu (Paris Dauphine)

Outline

Problem description

2 Motivation from deep learning

Results

Outline

Problem description

2 Motivation from deep learning

Results

(Sub-Riemannian type) control problem

Consider the controlled ODE

$$dX_t = \sum_{i=1}^d V_i(X_t)u^i(t)dt, \quad X_0 = x \in \mathbb{R}^n$$

and the problem, for a fixed $y \in \mathbb{R}^n$,

Find
$$u \in L^2([0,1], \mathbb{R}^d)$$
 s.t. $X_1 = y$.

Under the Hörmander bracket-generating condition,

$$\forall z \in \mathbb{R}^n$$
, $\operatorname{Lie}(V_1, \dots, V_d)_{|z} = \mathbb{R}^n$,

the classical **Chow-Rashevskii theorem** (1938) guarantees the existence of such a control.

(Simplest example : Heisenberg group, i.e. d=2, n=3, $V_1=\partial_x-\frac{y}{2}\partial_z$, $V_2=\partial_y+\frac{x}{2}\partial_z$. Corresponds to finding a planar path with fixed endpoints and prescribed area.)

Gradient flow

Find
$$u \in L^2([0,1], \mathbb{R}^d)$$
 s.t. $X_1 = y$.

This problem is classical in the (deterministic) control community (**(non-holonomic) motion planning**) with many applications (robotics,...), and many specialized algorithms.

We are interested (see next section for motivation) in a very simple / non-specific gradient flow procedure : consider

$$u \in L^2 \mapsto \mathcal{L}(u) = \|y - X_1^u\|_{\mathbb{R}^n}^2$$
,

and solve the gradient flow (in $L^2[0,1]$)

$$\frac{d}{ds}u(s) = -\nabla \mathcal{L}(u(s)),$$

hoping that $u(s) \to_{s \to \infty} u_{\infty}$ a solution of the problem.

(Some gradient methods have already been considered in the control literature, in particular the continuation method by Sussmann '93, Sussmann and Chitour '96).

Gradient flow: first properties

$$u \in L^2 \mapsto \mathcal{L}(u) = \|y - X_1^u\|_{\mathbb{R}^n}^2$$
,

$$\frac{d}{ds}u(s)=-\nabla\mathcal{L}(u(s)),$$

 \bullet Good news : no strict local minimum for ${\cal L}$ (under bracket-generating condition).

Immediate computation:

$$\nabla \mathcal{L}(u(s)) = (y - X_1^u) \cdot_{\mathbb{R}^n} \nabla X_1^u.$$

- Bad news: in general, saddle points! possible at each control u s.t. $d_u X_1: L^2 \to \mathbb{R}^n$ is not onto. (singular controls in sub-Riemannian geometry).
 - For instance, if d < n, u = 0 is always singular. $(d_u X_1(0) \text{ only spans } \{V_1(x), \dots, V_d(x)\}.)$
- Other serious problem : no penalization term on $u: \to u(s)$ may diverge to "infinity".

Stochastic initial condition

The existence of saddle points means we cannot hope for convergence from any starting point.

→ what about for random initial condition ?

Singular controls are rare : for instance, one part of Malliavin ('76) 's stochastic proof of Hörmander's theorem relies on the fact that

If $u = \dot{W}$ (white noise), then, a.s. , u is non-singular.

(More recently, rough path generalizations to other Gaussian processes, e.g. Cass-Friz '10 and subsequent literature.)

 ${f Q}:$ Does stochasticity / roughness of starting point help for the gradient flow to converge ? (Or at least : to prove it that it does)

Rest of the talk: (very partial) answer to this question.

Outline

Problem description

2 Motivation from deep learning

Results

Motivation from deep learning

Supervised learning :

given a map $x \in \mathbb{R}^n \mapsto y(x) \in \mathbb{R}^n$ and probability measure μ , want to find Φ in a certain class s.t.

$$\mathcal{E} = \int \mu(dx) \left| \Phi(x) - y(x) \right|^2$$

is small. Typically, we only have access to finite $(x_i, y_i = y(x_i))_{i=1,...,N}$, and we instead try to minimize the empirical loss

$$\widehat{\mathcal{E}} = \frac{1}{N} \sum_{i=1}^{N} |\Phi(x_i) - y_i|^2.$$

Deep residual neural networks :

 $\Phi(x) = X_L$, where

$$X_0 = x$$
, $X_{k+1} = X_k + \delta_k \sigma(X_k, \theta_k)$,

Can be seen as discretization of ODE

$$x_0 = x$$
, $dX_t = \sigma(X_t, \theta_t)dt$

Many papers drawing on this connection. (starting with E '17, Haber-Ruthotto '17, Chen et al. '18, ...)

ResNets as Rough / Stochastic dynamics

Several people have suggested that ResNets should be understood via S/RDE and not just classical ODE.

- Cohen, Cont, Rossier, Xu '22: empirical roughness of layer weights, scaling limits.
- Marion, Fermanian, Biau, Vert '22. Hayou '22 : SDE limits for initialization choices $X_{k+1} = X_k + L^{-1/2}\sigma(X_k)W_k$, W Gaussian $\mathcal{N}(0, I_m)$.
- Bayer, Friz, Tapia '22: (discrete) rough path bounds as a robustness measure for ResNets.

The N-point control problem

Consider σ of the form $\sigma(X_t, \theta_t) = \sum_{i=1}^d \sigma_i(X_t)\theta_t^i$. For the ODE limit :

The problem of minimizing empirical loss can be written as

find
$$\theta$$
 s.t. $X_1(\theta, x_i) = y_i, \quad i = 1, \dots, N.$ (*)

This is in fact a problem of the form introduced in the first section, but in $\mathcal{M} = (\mathbb{R}^n)^N \setminus \Delta$.

• Question studied by control-theoretic methods by several people (Agrachev-Sarychev '21, Scagliotti '22,...) In particular, Cuchiero, Larsson, Teichmann '21: There exist d=5 fixed vector fields s.t. for any arbitrary N, there exists a solution to (*).

Motivating question: training of ResNets via gradient descent

Q: Can we obtain theoretical results guaranteeing convergence of (stochastic) gradient descent for ResNets? Does stochasticity/ roughness of the initial condition help? (and what about generalization?)

Note: we are considering a regime where **depth** is **large** but **width** is **fixed**, whereas most results in the ML literature require some relation between width n and data size N.

```
(when d = \# parameters per layer < nN = \# data dimension \approx sub-Riemannian control problem.)
```

(No answers in this talk!)

Outline

1 Problem description

2 Motivation from deep learning

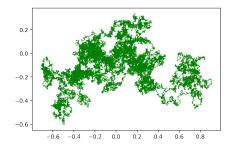
Results

Irregular controls

We want to consider (replacing u by $z = \int_0^{\cdot} u_t dt \in C([0,1], \mathbb{R}^d)$) a solution to

$$X_t = x + \int_0^t V(X_s) dz_s \tag{1}$$

where $z:[0,1]\to\mathbb{R}^d$ is irregular (e.g. Brownian motion).



z is not absolutely continuous,

Note : if $z = B(\omega)$ is a Brownian path, then a.s. :

z only in $C^{1/2-\epsilon}$.

Trajectory of a 2d Brownian motion.

But one can still make sense of (1) (+regularity of flow, etc) via Itô calculus (1950s), or **rough path theory** (Lyons '98).

Rough path theory

We will formulate everything in the **rough path** (Lyons '98) framework : For $1/3 < \alpha \le 1/2$, a C^{α} rough path is the data of

$$z = \left(\int_{s}^{t} dz_{u}, \int_{s \leqslant u_{1} \leqslant u_{2} \leqslant t} dz_{u_{2}} \otimes dz_{u_{1}}\right)_{s < t}$$

satisfying some algebraic and Hölder-type analytic conditions. (similar definition for arbitrary $0 < \alpha$ with more iterated integrals :

$$z \in C^{\alpha}\left([0,T],G^{\lfloor \alpha^{-1}\rfloor}(\mathbb{R}^d)\right).$$

For

$$X_t = x + \int_0^t V(X_s) dz_s,$$

the map

$$z \mapsto X$$

is then continuous (for the corresponding "rough path" topology), under suitable regularity assumptions on the coefficients V.

Rough path translation

In our setting, we will want to consider

$$z = w + h$$

where w is the initial condition (irregular, a C^{α} rough path), and h is in the tangent space $\mathcal{H} = H^1([0,1], \mathbb{R}^d)$.

Note that for any such w,h, we can define canonically the "sum" $w\oplus h$ by letting

$$\int (w \oplus h)d(w \oplus h) = \int wdw + \int wdh + \int hdw + \int hdh.$$

(This follows from $\mathcal{H} \subset C^{1-var}$).

The map $(w, h) \mapsto w \oplus h$ is then smooth.

The gradient flow setup

We fix:

- V_1, \ldots, V_d smooth, bracket-generating vector fields on \mathbb{R}^n .
- initial condition : w, a $C^{\alpha}([0,1], \mathbb{R}^d)$ -geometric rough path, $0 < \alpha < 1$.
- tangent space : a Hilbert space $\mathcal{H}=H^1([0,1],\mathbb{R}^d)$ and consider the RDE

$$dX_t^{w,h} = \sum_i V^i(X_t)d(w_t \oplus h_t), \quad X_0 = x.$$

For $g = \frac{1}{2} |\cdot -y|^2$, the map

$$h \in \mathcal{H} \mapsto \mathcal{L}(h) := g\left(X_1^{w;h}\right)$$

is smooth. In particular, we can consider the gradient flow trajectory

$$h(0) = 0$$
, $\frac{d}{ds}h(s) = -\nabla_{\mathcal{H}}\mathcal{L}(h(s))$

which defines a trajectory $(h(s))_{s \ge 0}$ with values in \mathcal{H} . (Remark : rough path theory is definitely much more convenient than Itô calculus here, even if w is a Brownian motion !)

Some preliminary positive results

We have the following results.

Proposition ("Chow-Rashevskii with rough drift")

Under the bracket-generating condition, for any $x, y \in \mathbb{R}^n$, any fixed w, there exists a smooth path h such that

$$X_1^{w;h}(x)=y.$$

Proposition

Let $\mathbb P$ be the law of (enhanced) Brownian motion on $C^{lpha}([0,1],\mathbb R^d)$. Then

$$\mathbb{P}(w:h(s)\rightarrow_{s\to\infty}h_{\infty} \text{ with } \mathcal{L}(h_{\infty})=0)>0.$$

(Brownian motion could be replaced by any non-degenerate Gaussian rough path).

In other words : we do not lose anything from starting from a rough initial condition. Do we gain anything ?

True roughness (Hairer-Pillai '11, Friz-Shekhar ' 12)

Recall that w is a.e. truly β -rough, if, for a.e. s in [0,1],

$$\forall 0 \neq v \in \mathbb{R}^d \limsup_{t \downarrow s} \frac{|w_{s,t} \cdot v|}{|t - s|^{\beta}} = +\infty.$$

Under this assumption, if $\beta < 2\alpha$, then

$$\int_0^{\infty} \sum_i f_s^i dw_s^i \equiv 0 \quad \Rightarrow \quad f^i \equiv 0.$$

(Most classical stochastic processes, such as (fractional) Brownian motion, satisfy this condition a.s.).

Lemma

Let w be a.e. truly β -rough, and $h \in C^{q-var}$, with $\frac{1}{q} > \beta$, then w + h is a.e. truly β -rough.

In particular, for our gradient flow, if the initial condition is truly rough, so is w + h(s) at any time $s \ge 0$.

Expressions for $\nabla_{\mathcal{H}}\mathcal{L}$

Recall that for our gradient flow:

$$\nabla_{\mathcal{H}}\mathcal{L}(w;h) = (X_1^{w;h} - y) \cdot_{\mathbb{R}^n} \nabla_{\mathcal{H}} X_1^{w;h}.$$

A classical computation yields, for $\xi \in \mathbb{R}^n$,

$$\left\|\xi\cdot\nabla_{\mathcal{H}}X_{1}^{w;h}\right\|_{\mathcal{H}}^{2}=\sum_{i}\int_{0}^{1}\left(J_{t\to1}V_{i}(X_{t})\cdot_{\mathbb{R}^{n}}\xi\right)^{2}dt$$

where $J_{t o 1}$ is the Jacobian matrix of the flow $X_t \mapsto X_1.$

In addition, for any vector field W,

$$J_{t\to 1}W(X_t) = W(X_1) - \sum_i \int_t^1 J_{t\to 1}[W, V^j](X_t)d(w+h)_t^i.$$

True roughness \Rightarrow saddle-points are at infinity

An iteration then implies the following (standard result from Malliavin calculus, cf e.g.Friz-Hairer chap. 11)

Proposition

Under the bracket-generating condition, if w is truly rough, then

$$\xi \in \mathbb{R}^n \setminus \{0\} \Rightarrow \xi \cdot \nabla_{\mathcal{H}} X_1^{w;0} \neq 0.$$

Combined with the lemma from a previous slide, this means that all the saddle points of $\mathcal L$ are now at infinity !

Corollary

Assume that w is truly rough, then if $(h(s))_{s \ge 0}$ is bounded in \mathcal{H} , it converges to a minimizer of \mathcal{L} .

(Remark : a similar result holds for $\mathcal{L}^{\mu}(h) = \int \mu(dx) |y(x) - X_1^x(w \oplus h)|^2$.)

Global convergence results

We have convergence to a minimum in two simple (but non-trivial) cases.

Theorem

(Elliptic) Assume that for all $z \in \mathbb{R}^N$,

$$span \{V_1(z), \ldots, V_d(z)\} = \mathbb{R}^n,$$

then for all r.p. w, for all x, y,

$$\lim_{s\to\infty} h_s = h_\infty \in \mathcal{H}, \quad \mathcal{L}(h_\infty) = 0. \tag{ConvMin}$$

(Step-2 nilpotent) Assume that (the V_i are bracket-generating and)

$$\forall i,j,k,[V_i,[V_j,V_k]]\equiv 0.$$

Then, with $\mathbb P$ the law of Brownian motion, for $\mathbb P$ -a.e. w, for all x,y, (ConvMin) holds.

(Remark : in 2nd case, we could replace BM by fBm with $H < \frac{1}{2}$ but not $H > \frac{1}{2}$!)

Convergence for discrete approximations

The continuity properties of rough path theory allow for simple proofs of convergence of discrete approximations.

For instance, assume that we know that for w a Brownian motion, the g.f. solution $h \to h_\infty$ (non-degenerate minimum) a.s.

For fixed N, let $\mathcal{H}_N \sim \mathbb{R}^{Nd}$ the space of piecewise linear controls, linear on [i/N, (i+1)/N]. Let h^N be the gradient flow :

$$\frac{d}{ds}h^{N}(s) = -\nabla_{\mathcal{H}_{N}}\mathcal{L}(h^{N}(s)), \quad \dot{h}^{N,j}(0) = \frac{1}{\sqrt{N}}Z_{ij} \text{ on } [i/N,(i+1)/N],$$

where the Z_{ij} are i.i.d. $\mathcal{N}(0,1)$.

Then the convergence for B.M. implies

$$\lim_{N\to\infty}\mathbb{P}\left(h^N(s)\to_{s\to+\infty}h^N_\infty \ \text{with} \ \mathcal{L}(h^N_\infty)=0\right)=1.$$

Major ingredient of proof: Łojasiewicz inequality

Consider a function $L: H \to \mathbb{R}_+$ satisfying, for some c > 0,

$$\forall x \in H, \quad \left| (\nabla L)(x) \right|^2 \geqslant c^2 L(x).$$
 (Ł)

Then, for the gradient flow $\dot{x}(s) = -\nabla L(x(s))$, it holds that

- $L(x(s)) \leqslant L(x(0))e^{-c^2s}$ converges to 0.
- More importantly : $x(s) \to_{s\to\infty} x_{\infty}$, where $L(x_{\infty}) = 0$. Proof : (Łojasiewicz 1960's)

$$\frac{d}{ds}\left\{2\sqrt{L}(x(s))+c\int_0^s|\dot{x}(u)|du\right\}\leqslant 0$$

which implies that the trajectory $(x(s); s \ge 0)$ has finite length, and, in particular, converges (to a minimizer).

(Łloc)

Local Łojasiewicz inequality

Proposition

Assume that $L: H \to \mathbb{R}_+$ satisfies,

$$\forall x \in H, \quad \left| (\nabla L)(x) \right|^2 \geqslant c^2(|x|)L(x)$$

where $c(\cdot)$ is decreasing, and satisfies $\int_{-\infty}^{+\infty} c(r)dr = +\infty$. Then for the gradient flow $\dot{x}(s) = -\nabla L(x(s))$, it holds that

$$x(s) \rightarrow_{s \rightarrow \infty} x_{\infty}$$
, where $L(x_{\infty}) = 0$.

Proof: (Łojasiewicz's argument again)

$$\frac{d}{ds}\left\{\frac{1}{2}\sqrt{L}(x(s))+C\left(|x_0|+\int_0^s|\dot{x}(u)|du\right)\right\}\leqslant 0$$

with $C = \int_0^{\cdot} c$.

For instance, one can have $c(r) = \frac{c}{1+r^{\alpha}}$, $\alpha \leq 1$.

Arguments of proof

In our case, we have,

$$\frac{\|\nabla \mathcal{L}\|_{\mathcal{H}}^2}{\mathcal{L}} \geqslant c(w; h)^2,$$

where

$$c(w; h)^{2} = \inf_{|\xi|=1} \|\xi \cdot_{\mathbb{R}^{n}} \nabla_{\mathcal{H}}(X_{1})\|_{\mathcal{H}}^{2}$$
$$= \inf_{|\xi|=1} \sum_{i} \int_{0}^{1} \left(J_{t \to 1} V_{i}(X_{t}) \cdot_{\mathbb{R}^{n}} \xi\right)^{2} dt$$

where $J_{t\to 1}$ is the Jacobian matrix of the flow of X between t and 1.

(Familiar object from Malliavin calculus : c is the smallest eigenvalue of the Malliavin matrix at w + h for the functional X_1).

In both cases, we prove

$$c(w;h)^2 \gtrsim \frac{1}{1+\|h\|_{\mathcal{U}}^2}$$

Proof in the elliptic case

$$c(w; h)^{2} = \inf_{|\xi|=1} \sum_{i} \int_{0}^{1} (J_{t \to 1} V_{i}(X_{t}) \cdot_{\mathbb{R}^{n}} \xi)^{2} dt$$

$$\geqslant \int_{0}^{1} |\lambda_{-}(J_{t \to 1} J_{t \to 1}^{T})| dt$$

$$\gtrsim \int_{0}^{1} e^{-c||h||_{\mathbf{1}-var;[t;\mathbf{1}]}} \gtrsim \frac{1}{1+||h||_{H^{1}}^{2}}$$

using that (Sobolev embedding) $||h||_{1-var;[t;1]} \lesssim ||h||_{H^1}(1-t)^{1/2}$.

Remark 1: replacing H^1 by another Sobolev space H^δ , $\delta \in (1/2,1]$ does not change the exponent appearing in the Łojasiewicz inequality...).

Remark 2: Sussmann and Chitour '93, '96 proved convergence for their method of continuation using a similar inequality under less restrictive assumptions (but regular controls).

Step-2 nilpotent case

• The nilpotent hypothesis yields (letting $z = X_1$)

$$J_{t,1}V_i(X_t) = V_i(z) - \sum_i [V_j, V_i](z)(w+h)_{t,1}^j.$$

This yields

$$c(w;h)^2 \gtrsim \inf_{\sum_{i,j} \xi_{i,j}^2 = 1} \sum_i \left(\int_0^1 dt \left(\xi_{ii} + \sum_j \xi_{ij} (w^j + h^j)_{t,1} \right)^2 \right)$$

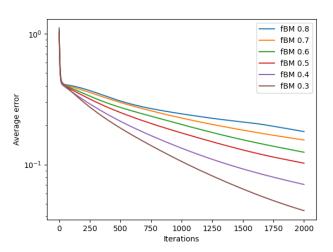
For w B.M.,

$$\|w-h\|_{L^2}\geqslant \frac{C(w)}{1+\|h\|_{H^1}}.$$

(This is a similar result to the fact that the norm of w in the Besov space $\mathcal{B}_{2,\infty}^{1/2}$ is $\geqslant 1$ a.s.).

Numerical experiment

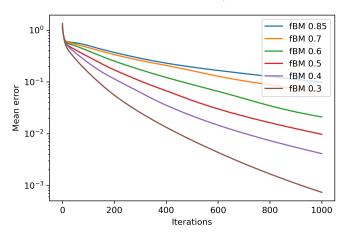
Mean error over 100 runs



(rank d = 10, n = 55 (step 2 nilpotent), 100 time points, learning rate= 0.1)

Numerical experiment

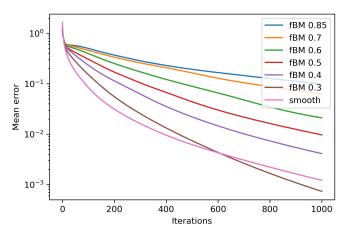
Mean error after 100 experiments



(rank d = 2, step 3 nilpotent (n = 5), 100 time points, learning rate= 0.1)

Numerical experiment : smooth = rough ?

Mean error after 100 experiments



(rank d = 2, step 3 nilpotent (n = 5), 100 time points, learning rate= 0.1)

Conclusion: (many) remaining questions

We are able to show convergence of gradient flow for the control problem

$$\inf_{h} |X_1(h) - y|^2$$

with rough (Brownian) initialization in the simplest non-trivial cases (elliptic, step-2 nilpotent).

Can we do better?

- Convergence for more general vector fields: Step-3 nilpotent, arbitrary nilpotent, general case?
- Convergence for discretized problems? (Quantitative discretized roughness, number of steps vs. number of Lie brackets needed,...)
- Variants of gradient descent ? (stochastic, ...)
- Applications to Deep Learning?
- Other criteria than roughness ?