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(Sub-Riemannian type) control problem

Consider the controlled ODE

dXt =
d∑

i=1

Vi (Xt)u
i (t)dt, X0 = x ∈ Rn

and the problem, for a fixed y ∈ Rn,

Find u ∈ L2([0, 1],Rd) s.t. X1 = y .

Under the Hörmander bracket-generating condition,

∀z ∈ Rn, Lie(V1, . . . ,Vd)|z = Rn,

the classical Chow-Rashevskii theorem (1938) guarantees the existence
of such a control.
(Simplest example : Heisenberg group, i.e. d = 2, n = 3,
V1 = ∂x − y

2∂z , V2 = ∂y +
x
2∂z . Corresponds to finding a planar path

with fixed endpoints and prescribed area.)
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Gradient flow

Find u ∈ L2([0, 1],Rd) s.t. X1 = y .

This problem is classical in the (deterministic) control community
((non-holonomic) motion planning) with many applications
(robotics,...), and many specialized algorithms.
We are interested (see next section for motivation) in a very simple /
non-specific gradient flow procedure : consider

u ∈ L2 7→ L(u) = ∥y − X u
1 ∥

2
Rn ,

and solve the gradient flow (in L2[0, 1])

d

ds
u(s) = −∇L(u(s)),

hoping that u(s) →s→∞ u∞ a solution of the problem.
(Some gradient methods have already been considered in the control
literature, in particular the continuation method by Sussmann ’93,
Sussmann and Chitour ’96).
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Gradient flow : first properties

u ∈ L2 7→ L(u) = ∥y − X u
1 ∥

2
Rn ,

d

ds
u(s) = −∇L(u(s)),

Good news : no strict local minimum for L (under
bracket-generating condition).

Immediate computation :

∇L(u(s)) = (y − X u
1 ) ·Rn ∇X u

1 .

Bad news : in general, saddle points ! possible at each control u
s.t. duX1 : L2 → Rn is not onto. (singular controls in
sub-Riemannian geometry).
For instance, if d < n, u = 0 is always singular.
(duX1(0) only spans {V1(x), . . . ,Vd(x)}.)
Other serious problem : no penalization term on u : → u(s) may
diverge to ”infinity”.
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Stochastic initial condition

The existence of saddle points means we cannot hope for convergence
from any starting point.
−→ what about for random initial condition ?

Singular controls are rare : for instance, one part of Malliavin (’76) ’s
stochastic proof of Hörmander’s theorem relies on the fact that

If u = Ẇ (white noise), then, a.s. , u is non-singular.

(More recently, rough path generalizations to other Gaussian processes,
e.g. Cass-Friz ’10 and subsequent literature.)

Q : Does stochasticity / roughness of starting point help for the gradient
flow to converge ? (Or at least : to prove it that it does)

Rest of the talk : (very partial) answer to this question.
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Motivation from deep learning
Supervised learning :
given a map x ∈ Rn 7→ y(x) ∈ Rn and probability measure µ, want
to find Φ in a certain class s.t.

E =

∫
µ(dx) |Φ(x)− y(x)|2

is small. Typically, we only have access to finite
(xi , yi = y(xi ))i=1,...,N , and we instead try to minimize the empirical
loss

Ê =
1
N

N∑
i=1

|Φ(xi )− yi |2 .

Deep residual neural networks :
Φ(x) = XL, where

X0 = x , Xk+1 = Xk + δkσ(Xk , θk),

Can be seen as discretization of ODE

x0 = x , dXt = σ(Xt , θt)dt

Many papers drawing on this connection.
(starting with E ’17, Haber-Ruthotto ’17, Chen et al. ’18, ...)
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ResNets as Rough / Stochastic dynamics

Several people have suggested that ResNets should be understood via
S/RDE and not just classical ODE.

Cohen, Cont, Rossier, Xu ’22 : empirical roughness of layer weights,
scaling limits.

Marion, Fermanian, Biau, Vert ’22. Hayou ’22 : SDE limits for
initialization choices
Xk+1 = Xk + L−1/2σ(Xk)Wk , W Gaussian N (0, Im).

Bayer, Friz, Tapia ’22 : (discrete) rough path bounds as a
robustness measure for ResNets.
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The N-point control problem

Consider σ of the form σ(Xt , θt) =
∑d

i=1 σi (Xt)θ
i
t .

For the ODE limit :
The problem of minimizing empirical loss can be written as

find θ s.t. X1(θ, xi ) = yi , i = 1, . . . ,N. (∗)

This is in fact a problem of the form introduced in the first section,
but in M = (Rn)N \∆.

Question studied by control-theoretic methods by several people
(Agrachev-Sarychev ’21, Scagliotti ’22,...)
In particular, Cuchiero, Larsson, Teichmann ’21 : There exist d = 5
fixed vector fields s.t. for any arbitrary N, there exists a solution to
(∗).
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Motivating question : training of ResNets via gradient
descent

Q : Can we obtain theoretical results guaranteeing convergence of
(stochastic) gradient descent for ResNets ? Does stochasticity/ roughness
of the initial condition help ? (and what about generalization ?)

Note : we are considering a regime where depth is large but width is
fixed, whereas most results in the ML literature require some relation
between width n and data size N.

(when d = # parameters per layer < nN = # data dimension
≈ sub-Riemannian control problem.)

(No answers in this talk !)



Problem description Motivation from deep learning Results

Outline

1 Problem description

2 Motivation from deep learning

3 Results



Problem description Motivation from deep learning Results

Irregular controls

We want to consider (replacing u by z =
∫ ·
0 utdt ∈ C ([0, 1],Rd)) a

solution to

Xt = x +

∫ t

0
V (Xs)dzs (1)

where z : [0, 1] → Rd is irregular (e.g. Brownian motion).

Trajectory of a 2d Brownian motion.

Note : if z = B(ω) is a
Brownian path, then a.s. :

z is not absolutely continuous,

z only in C 1/2−ϵ.

But one can still make sense of (1) (+regularity of flow, etc) via Itô
calculus (1950s), or rough path theory (Lyons ’98).
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Rough path theory

We will formulate everything in the rough path (Lyons ’98) framework :
For 1/3 < α ⩽ 1/2, a Cα rough path is the data of

z =

(∫ t

s

dzu,

∫
s ⩽ u1 ⩽ u2 ⩽ t

dzu2 ⊗ dzu1

)
s<t

satisfying some algebraic and Hölder-type analytic conditions.
(similar definition for arbitrary 0 < α with more iterated integrals :
z ∈ Cα

(
[0,T ],G ⌊α−1⌋(Rd)

)
).

For

Xt = x +

∫ t

0
V (Xs)dzs ,

the map
z 7→ X

is then continuous (for the corresponding ”rough path” topology), under
suitable regularity assumptions on the coefficients V .
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Rough path translation

In our setting, we will want to consider

z = w + h

where w is the initial condition (irregular, a Cα rough path), and h is in
the tangent space H = H1([0, 1],Rd).

Note that for any such w , h, we can define canonically the ”sum” w ⊕ h
by letting∫

(w ⊕ h)d(w ⊕ h) =

∫
wdw +

∫
wdh +

∫
hdw +

∫
hdh.

(This follows from H ⊂ C 1−var ).

The map (w , h) 7→ w ⊕ h is then smooth.
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The gradient flow setup

We fix :
V1, . . . ,Vd smooth, bracket-generating vector fields on Rn.
initial condition : w , a Cα([0, 1],Rd)-geometric rough path,

0 < α < 1.
tangent space : a Hilbert space H = H1([0, 1],Rd)

and consider the RDE

dXw ,h
t =

∑
i

V i (Xt)d(wt ⊕ ht), X0 = x .

For g = 1
2 | · −y |2, the map

h ∈ H 7→ L(h) := g
(
Xw ;h

1

)
is smooth. In particular, we can consider the gradient flow trajectory

h(0) = 0,
d

ds
h(s) = −∇HL(h(s))

which defines a trajectory (h(s))s ⩾ 0 with values in H.
(Remark : rough path theory is definitely much more convenient than Itô
calculus here, even if w is a Brownian motion !)
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Some preliminary positive results

We have the following results.

Proposition (”Chow-Rashevskii with rough drift”)

Under the bracket-generating condition, for any x , y ∈ Rn, any fixed w ,
there exists a smooth path h such that

Xw ;h
1 (x) = y .

Proposition

Let P be the law of (enhanced) Brownian motion on Cα([0, 1],Rd). Then

P (w : h(s) →s→∞ h∞ with L(h∞) = 0) > 0.

(Brownian motion could be replaced by any non-degenerate Gaussian
rough path).

In other words : we do not lose anything from starting from a rough
initial condition. Do we gain anything ?
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True roughness (Hairer-Pillai ’11, Friz-Shekhar ’ 12)

Recall that w is a.e. truly β-rough, if, for a.e. s in [0, 1],

∀0 ̸= v ∈ Rd lim sup
t↓s

|ws,t · v |
|t − s|β

= +∞.

Under this assumption, if β < 2α, then∫ ·

0

∑
i

f is dw
i
s ≡ 0 ⇒ f i ≡ 0.

(Most classical stochastic processes, such as (fractional) Brownian
motion, satisfy this condition a.s.).

Lemma

Let w be a.e. truly β-rough, and h ∈ C q−var , with 1
q > β, then w + h is

a.e. truly β-rough.

In particular, for our gradient flow, if the initial condition is truly rough,
so is w + h(s) at any time s ⩾ 0.
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Expressions for ∇HL

Recall that for our gradient flow :

∇HL(w ; h) = (Xw ;h
1 − y) ·Rn ∇HXw ;h

1 .

A classical computation yields, for ξ ∈ Rn,∥∥∥ξ · ∇HXw ;h
1

∥∥∥2

H
=

∑
i

∫ 1

0
(Jt→1Vi (Xt) ·Rn ξ)2 dt

where Jt→1 is the Jacobian matrix of the flow Xt 7→ X1.

In addition, for any vector field W ,

Jt→1W (Xt) = W (X1)−
∑
j

∫ 1

t

Jt→1[W ,V j ](Xt)d(w + h)it .
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True roughness ⇒ saddle-points are at infinity

An iteration then implies the following (standard result from Malliavin
calculus, cf e.g.Friz-Hairer chap. 11)

Proposition

Under the bracket-generating condition, if w is truly rough, then

ξ ∈ Rn \ {0} ⇒ ξ · ∇HXw ;0
1 ̸= 0.

Combined with the lemma from a previous slide, this means that all the
saddle points of L are now at infinity !

Corollary

Assume that w is truly rough, then if (h(s))s ⩾ 0 is bounded in H, it
converges to a minimizer of L.

(Remark : a similar result holds for Lµ(h) =
∫
µ(dx) |y(x)− X x

1 (w ⊕ h)|2.)
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Global convergence results

We have convergence to a minimum in two simple (but non-trivial) cases.

Theorem

(Elliptic) Assume that for all z ∈ RN ,

span {V1(z), . . . ,Vd(z)} = Rn,

then for all r.p. w , for all x , y ,

lim
s→∞

hs = h∞ ∈ H, L(h∞) = 0. (ConvMin)

(Step-2 nilpotent) Assume that (the Vi are bracket-generating and)

∀i , j , k , [Vi , [Vj ,Vk ]] ≡ 0.

Then, with P the law of Brownian motion, for P-a.e. w , for all x , y ,
(ConvMin) holds.

(Remark : in 2nd case, we could replace BM by fBm with H < 1
2 but not

H > 1
2 !)
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Convergence for discrete approximations

The continuity properties of rough path theory allow for simple proofs of
convergence of discrete approximations.

For instance, assume that we know that for w a Brownian motion, the
g.f. solution h → h∞(non-degenerate minimum) a.s.

For fixed N, let HN ∼ RNd the space of piecewise linear controls, linear
on [i/N, (i + 1)/N]. Let hN be the gradient flow :

d

ds
hN(s) = −∇HN

L(hN(s)), ḣN,j(0) =
1√
N
Zij on [i/N, (i + 1)/N],

where the Zij are i.i.d. N (0, 1).
Then the convergence for B.M. implies

lim
N→∞

P
(
hN(s) →s→+∞ hN∞ with L(hN∞) = 0

)
= 1.
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Major ingredient of proof : Łojasiewicz inequality

Consider a function L : H → R+ satisfying, for some c > 0,

∀x ∈ H, |(∇L)(x)|2 ⩾ c2L(x). (Ł)

Then, for the gradient flow ẋ(s) = −∇L(x(s)), it holds that

L(x(s)) ⩽ L(x(0))e−c2s converges to 0.

More importantly : x(s) →s→∞ x∞, where L(x∞) = 0.
Proof : (Łojasiewicz 1960’s)

d

ds

{
2
√
L(x(s)) + c

∫ s

0
|ẋ(u)|du

}
⩽ 0

which implies that the trajectory (x(s); s ⩾ 0) has finite length, and,
in particular, converges (to a minimizer).
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Local Łojasiewicz inequality

Proposition

Assume that L : H → R+ satisfies,

∀x ∈ H, |(∇L)(x)|2 ⩾ c2(|x |)L(x) (Łloc)

where c(·) is decreasing, and satisfies
∫ +∞

c(r)dr = +∞.
Then for the gradient flow ẋ(s) = −∇L(x(s)), it holds that

x(s) →s→∞ x∞, where L(x∞) = 0.

Proof : (Łojasiewicz’s argument again)

d

ds

{
1
2

√
L(x(s)) + C

(
|x0|+

∫ s

0
|ẋ(u)|du

)}
⩽ 0

with C =
∫ ·
0 c . □

For instance, one can have c(r) = c
1+rα , α ⩽ 1.
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Arguments of proof

In our case, we have,
∥∇L∥2

H
L

⩾ c(w ; h)2,

where

c(w ; h)2 = inf
|ξ|=1

∥ξ ·Rn ∇H(X1)∥2
H

= inf
|ξ|=1

∑
i

∫ 1

0
(Jt→1Vi (Xt) ·Rn ξ)2 dt

where Jt→1 is the Jacobian matrix of the flow of X between t and 1.

(Familiar object from Malliavin calculus : c is the smallest eigenvalue of
the Malliavin matrix at w + h for the functional X1).

In both cases, we prove

c(w ; h)2 ≳
1

1 + ∥h∥2
H
.
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Proof in the elliptic case

c(w ; h)2 = inf
|ξ|=1

∑
i

∫ 1

0
(Jt→1Vi (Xt) ·Rn ξ)2 dt

⩾
∫ 1

0

∣∣λ−(Jt→1J
T
t→1)

∣∣ dt
≳

∫ 1

0
e−c∥h∥1−var ;[t;1] ≳

1
1 + ∥h∥2

H1

using that (Sobolev embedding) ∥h∥1−var ;[t;1] ≲ ∥h∥H1(1 − t)1/2.

Remark 1 : replacing H1 by another Sobolev space Hδ, δ ∈ (1/2, 1] does
not change the exponent appearing in the Łojasiewicz inequality...).

Remark 2 : Sussmann and Chitour ’93, ’96 proved convergence for their
method of continuation using a similar inequality under less restrictive
assumptions (but regular controls).
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Step-2 nilpotent case

The nilpotent hypothesis yields (letting z = X1)

Jt,1Vi (Xt) = Vi (z)−
∑
j

[Vj ,Vi ](z)(w + h)jt,1.

This yields

c(w ; h)2 ≳ inf∑
i,j ξ

2
i,j=1

∑
i

∫ 1

0
dt

ξii +
∑
j

ξij(w
j + hj)t,1

2


For w B.M.,

∥w − h∥L2 ⩾
C (w)

1 + ∥h∥H1
.

(This is a similar result to the fact that the norm of w in the Besov
space B

1/2
2,∞ is ⩾ 1 a.s.).
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Numerical experiment

(rank d = 10, n = 55 (step 2 nilpotent), 100 time points, learning
rate= 0.1)
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Numerical experiment

(rank d = 2, step 3 nilpotent (n = 5), 100 time points, learning
rate= 0.1)
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Numerical experiment : smooth = rough ?

(rank d = 2, step 3 nilpotent (n = 5), 100 time points, learning
rate= 0.1)
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Conclusion : (many) remaining questions

We are able to show convergence of gradient flow for the control problem

inf
h
|X1(h)− y |2

with rough (Brownian) initialization in the simplest non-trivial cases
(elliptic, step-2 nilpotent).

Can we do better ?
Convergence for more general vector fields : Step-3 nilpotent,
arbitrary nilpotent, general case ?

Convergence for discretized problems ? (Quantitative discretized
roughness, number of steps vs. number of Lie brackets needed,...)

Variants of gradient descent ? (stochastic, ...)

Applications to Deep Learning ?
Other criteria than roughness ?
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