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Revisit the spectral theory in an abstract setting

Spectral theory for general operator and its semigroup in general (large) Banach
space, without regularity ( 6= eventually norm continuous), without symmetry ( 6=
Hilbert space and self-adjoint op) and without (or with) positivity (Banach lattice)

• Spectral map Theorem ↪→ Σ(etΛ) ' etΣ(Λ) and ω(Λ) = s(Λ)

• Weyl’s Theorem ↪→ (quantified) compact perturbation Σess(A+B) ' Σess(B)

• Small perturbation ↪→ Σ(Λε) ' Σ(Λ) if Λε → Λ

• Krein-Rutmann Theorem ↪→ s(Λ) = sup<eΣ(Λ) ∈ Σd(Λ) when SΛ ≥ 0

• functional space extension (enlargement and shrinkage)
↪→ Σ(L) ' Σ(L) when L = L|E
↪→ tide of spectrum phenomenon

Structure: operator which splits as

Λ = A+ B, A ≺ B, B dissipative

Examples: Boltzmann, (kinetic) Fokker-Planck, Growth-Fragmentation operators
and W σ,p(m) weighted Sobolev spaces
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Applications / Motivations :

• (1) Convergence rate in large Banach space for linear dissipative and
hypodissipative PDEs (ex: kinetic Fokker-Planck, growth-fragmentation)

• (2) Long time asymptotic for nonlinear PDEs via the spectral analysis of
linearized PDEs (ex: Boltzmann, Landau, Keller-Segel) in natural ϕ space

• (3) Existence, uniqueness and stability of equilibrium in “small perturbation
regime” in large space for nonlinear PDEs (ex: inelastic Boltzmann, Wigner-
Fokker-Planck, parabolic-parabolic Keller-Segel, neural network)

Is it new?

• Simple and quantified versions, unified theory (sectorial, KR, general) which
holds for the “principal” part of the spectrum

• first enlargement result in an abstract framework by Mouhot (CMP 2006)

• Unusual splitting
Λ = A0︸︷︷︸

compact

+ B0︸︷︷︸
dissipative

= Aε︸︷︷︸
smooth

+Ac
ε + B0︸ ︷︷ ︸

dissipative

• The applications to these linear(ized) “kinetic” equations and to these nonlinear
problems are clearly new
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Old problems

• Fredholm, Hilbert, Weyl, Stone (Functional Analysis & semigroup Hilbert

framework) ≤ 1932

• Hyle, Yosida, Phillips, Lumer, Dyson, Dunford, Schwartz, ...
(semigroup Banach framework & dissipative operator) 1940-1960

• Kato, Pazy, Voigt (analytic operator, positive operator) 1960-1975

• Engel, Nagel, Gearhart, Metz, Diekmann, Prüss, Arendt, Greiner, Blake,
Mokhtar-Kharoubi, Yao, ... 1975-
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Still active research field

• Semigroup school (≥ 0, bio): Arendt, Blake, Diekmann, Engel, Gearhart,
Greiner, Metz, Mokhtar-Kharoubi, Nagel, Prüss, Webb, Yao, ...

• Schrodinger school / hypocoercivity and fluid mechanic: Batty, Burq,
Duyckaerts, Gallay, Helffer, Hérau, Lebeau, Nier, Sjöstrand, Wayne, ...

• Probability school (diffusion equation): Bakry, Barthe, Bobkov, Cattiaux, Douc,
Gozlan, Guillin, Fort, Ledoux, Roberto, Röckner, Wang, ...

• Kinetic school (∼ Boltzmann):

B Guo, Strain, ..., in the spirit of Hilbert, Carleman, Grad, Ukai works (Spectral
analysis of the linearized (in)homogeneous Boltzmann equation, existence and
convergence to the equilibrium in “small spaces”)

B Carlen, Carvalho, Toscani, Otto, Villani, ... (log-Sobolev inequality)

B Desvillettes, Villani, Mouhot, Baranger, Neuman, Strain, Dolbeault,
Schmeiser, ... (Poincaré inequality & hypocoercivity)

B Arkeryd, Esposito, Pulvirenti, Wennberg, Mouhot, ... (Spectral analysis of the
linearized (in)homogeneous Boltzmann equation, existence and convergence to
the equilibrium in “large spaces”)
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Typical main issue

For a given operator Λ in a Banach space X , we want to prove

(1) Σ(Λ) ∩∆a = {ξ1} (or = ∅), ξ1 = 0

with Σ(Λ) = spectrum of Λ, ∆α := {z ∈ C, <e z > α}

(2) ΠΛ,ξ1 = finite rank projection, i.e. ξ1 ∈ Σd(Λ)

(3) ‖SΛ(I − ΠΛ,ξ1)‖X→X ≤ Ca e
at , a < <eξ1

Definition:
We say that L− a is hypodissipative iff ‖etL‖X→X ≤ C eat

s(Λ) := sup<eΣ(Λ) = spectral bound
ω(Λ) := inf{a ∈ R, s.t. L− a is hypodissipative } = growth bound
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Spectral mapping theorem - characterization

Th 1. (M., Scher) ∃a∗, ∃n
(0) Λ = A+ B, where A is Bζ′ -bounded with 0 ≤ ζ ′ < 1,

(1) ‖SB ∗ (ASB)(∗`)‖X→X ≤ C` e
at , ∀ a > a∗, ∀ ` ≥ 0,

(2) ‖SB ∗ (ASB)(∗n)‖X→D(Λζ) ≤ Cn e
at , ∀ a > a∗, with ζ > ζ ′,

(3) there exists a projector Π which commutes with Λ such that Λ0 := Λ|X0
,

X0 := R(I − Π), Σ(Λ0) ∩∆a∗ = ∅ and Λ1 := Λ|X1
∈ B(X1), X1 := RΠ

is equivalent to

(4) there exists a projector Π which commutes with Λ such that
Λ1 := Λ|X1

∈ B(X1), X1 := RΠ

‖SΛ(t) (I − Π)‖X→X ≤ Ca e
at , ∀ a > a∗

In particular (spectral mapping theorem on the principal part of the spectrum)

Σ(etΛ) ∩∆eat = etΣ(Λ)∩∆a ∀ t ≥ 0, a > a∗

and
max(s(Λ), a∗) = max(ω(Λ), a∗)
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Sketch of the proof

We split the semigroup into invariant linear sub-manifolds (eigenspaces)

SL = ΠSL + Π⊥ SL

and write the (iterated) Duhamel formula

SL =
N−1∑
`=0

SB ∗ (ASB)(∗`) + SL ∗ (ASB)(∗N)

These two identities together

SL = Π SL + Π⊥ {
N−1∑
`=0

SB ∗ (ASB)(∗`)}+ Π⊥ SL ∗ (ASB)(∗N)

For the last term, we use the inverse Laplace transform formula

Π⊥SL ∗ (ASB)(∗N)(t) = lim
M→∞

i

2π

∫ a+iM

a−iM
ezt Π⊥RΛ(z)(ARB(z))N dz

and we conclude by showing

‖RΛ(z)(ARB(z))N‖ ≤ C/|y |2, ∀ z = a + iy , |y | ≥ M, a > a∗
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Weyl’s theorem - characterization

Th 2. (M., Scher) ∃a∗, ∃n
(0) Λ = A+ B, where A is Bζ′-bounded with 0 ≤ ζ ′ < 1,

(1) ‖SB ∗ (ASB)(∗`)‖X→X ≤ C` e
at , ∀ a > a∗, ∀ ` ≥ 0,

(2) ‖SB ∗ (ASB)(∗n)‖X→D(Λζ) ≤ Cn e
at , ∀ a > a∗, with ζ > ζ ′,

(3′)
∫∞

0 ‖(ASB)(∗n+1)‖X→Y e−at dt <∞, ∀ a > a∗, with Y ⊂⊂ X ,

is equivalent to

(4′) there exist ξ1, ..., ξJ ∈ ∆̄a, there exist Π1, ...,ΠJ some finite rank
projectors, there exist Tj ∈ B(RΠj) such that ΛΠj = ΠjΛ = TjΠj ,
Σ(Tj) = {ξj}, in particular

Σ(Λ) ∩ ∆̄a = {ξ1, ..., ξJ} ⊂ Σd(Σ)

and there exists a constant Ca such that

‖SΛ(t)−
J∑

j=1

etTj Πj‖X→X ≤ Ca e
at , ∀ a > a∗
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Krein-Rutmann for positive operator

Th 4. (M. & Scher) On a “Banach lattice of functions” X ,
(1) Λ such as in Weyl’s Theorem for some a∗ ∈ R;
(2) ∃b > a∗ and ψ ∈ D(Λ∗) ∩ X ′+\{0} such that Λ∗ψ ≥ b ψ;
(3) SΛ is positive (Λ satisfies Kato’s inequalities/weak maximum principle);
(4) Λ satisfies a strong maximum principle.

Defining λ := s(Λ), there holds

a∗ < λ = ω(Λ) and λ ∈ Σd(Λ),

and there exists 0 < f∞ ∈ D(Λ) and 0 < φ ∈ D(Λ∗) such that

Λf∞ = λ f∞, Λ∗φ = λφ, RΠΛ,λ = Vect(f∞),

and then
ΠΛ,λf = 〈f , φ〉 f∞ ∀ f ∈ X .

Moreover, there exist α ∈ (a∗, λ) and C > 0 such that for any f0 ∈ X

‖SΛ(t)f0 − eλt ΠΛ,λf0‖X ≤ C eαt ‖f0 − ΠΛ,λf0‖X ∀ t ≥ 0.
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Small perturbation

Th 5. (M. & Mouhot; Tristani)
Assume
(0) Λε = Aε + Bε in Xi , X−1 ⊂⊂ X0 = X ⊂⊂ X1, Aε ≺ Bε,
(1) ‖SBε ∗ (AεSBε)(∗`)‖Xi→Xi

≤ C` e
at , ∀ a > a∗, ∀ ` ≥ 0, i = 0,±1,

(2) ‖SBε ∗ (AεSBε)(∗n)‖Xi→Xi+1
≤ Cn e

at , ∀ a > a∗, i = 0,−1,

(3) Xi+1 ⊂ D(Bε|Xi
),D(Aε|Xi

) for i = −1, 0 and

‖Aε −A0‖Xi→Xi−1
+ ‖Bε − B0‖Xi→Xi−1

≤ η1(ε)→ 0, i = 0, 1,

(4) the limit operator satisfies (in both spaces X0 and X1)

Σ(Λ0) ∩∆a = {0}, 0 simple

Then

Σ(Λε) ∩∆a = {ξε1}, ξε1 simple, ξε1 → 0
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Discussion / perspective

• With Theorem 1 at hand, the growth analysis of the semigroup SΛ reduces to
the spectral analysis (spectrum and eigenspace) for its generator Λ

• In Theorems 1, 2, 3, 4 one can take n = 1 in the simplest situations (most of
space homogeneous equations in dimension d ≤ 3), but one need to take n ≥ 2
for the space inhomogeneous Boltzmann equation and the kinetic Fokker-Planck
equation

• Open problem: Beyond the “dissipative case”?
B example of the Fokker-Planck equation for “soft confinement potential” and
relation with “weak Poincaré inequality” by Röckner-Wang
B Links with semi-uniform stability by Lebeau & co-authors, Burq, Liu-R,
Bátkal-E-P-S, Batty-D, ...
B applications to the Boltzmann and Landau equations associated with “soft
potential”
B spectral mapping theorem, Krein-Rutman theorem, extension theorem
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A FitzHugh-Nagumo statistical model

∂t f = Qε(Jf , f ) = ∂x(Af ) + ∂v (Bf ) + ∂2
vv f on (0,∞)× R2

complemented withy an initial condition

f (0, .) = f0 ≥ 0 in R2.

where {
A = A(x , v) = ax − bv , B = Bε[Jf ] = B(x , v ;Jf )
B(x , v ;µ) = v3 − v + x + ε (v − µ), Jf :=

∫
R2 v f (x , v) dvdx

t ≥ 0 is the time variable, v ∈ R is the membrane potential of one neuron,
x ∈ R is an auxiliary variable

f = f (t, x , v) ≥ 0 is the time-dependent density of neurons in state (x , v) ∈ R2

a, b, ε are positive parameters and ε is the connectivity of the network

The equation being in divergence form the number of neurons is a constant along
time (that’s better!): ∫

R2

f (t, x , v)dxdv =

∫
R2

f0dxdv ≡ 1.
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Motivation: microscopic description

• As a simplification of the Hodgin-Huxley 4d ODE, FitzHugh-Nagumo 2d ODE
describes the electric activity of one neuron and writes

v̇ = v − v3 − x + Iext = −B0 + Iext

ẋ = bv − ax = −A,

with Iext = i(t) + σẆ exterior input split as a deterministic part + a stochastic
noise. We assume i(t) ≡ 0.

• For a network of N coupled neurons, the associated model writes for the state
Z i

t := (X i
t ,V i

t) of the neuron labeled i ∈ {1, ...,N}

dV i = [−B0(X i ,V i )−
N∑
j=1

εij (V i − V j)]dt + σ dW i

dX i = −A(X i ,V i )dt

where εij > 0 corresponds to the connectivity between the two neurons labeled i
and j . The model takes into account an intrinsic deterministic dynamic + mean
field interaction + stochastic noise.
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Motivation: to a statistical description (mean field limit)

We assume εij := ε/N, (Z1
0 ...,ZN

0 ) are i.i.d. random variables with same law f0
and we pass to the limit N →∞.
We get that (Z1

t , ...,ZN
t ) is chaotic which means that any two neurons Z i

t and Z j
t

are asymptotically independent and Z i
t → Z̄t = (X̄t , Ȳt) which is a solution to

the nonlinear ODS

V̄ = [−B0(X̄ , V̄)− ε (V̄ − E(V̄))]dt + σ dW
X̄ = −A(X̄ , V̄)dt.

From Ito calculus we immediately see that the law f (t, .) := L(X̄t , V̄t) satisfies
the associated backward Kolmogrov equation which is nothing but the FHN
nonlinear statistical equation (here and below we make the choice σ :=

√
2 for

the sake of simplification of notations).
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Global existence and uniqueness for the evolution PDE

We introduce the weight function m0 = m0(x , v) := 1 + x2/2 + v2/2 and the
weighted Lebesgue spaces Lp(m) associated to the norm

‖f ‖Lp(m) = ‖fm‖Lp , ‖f ‖W 1,p(m) = ‖f ‖Lp(m) + ‖∇f ‖Lp(m),

and the shorthand Lpk := Lp(m
k/2
0 ).

Th 8. M., Quininao, Touboul

For any f0 ∈ E0 := L1
4 ∩ L1 log L1 ∩ P(R2) there exists a unique global solution

f ∈ C ([0,∞); L1 ∩ P) to the FHN statistical equation. It also satisfies∫
ftm ≤ max(Cm,

∫
f0m), ‖ft‖H1(m) ≤ max(C2, ‖f0‖H1(m)).

It depends continuously in the initial datum: fn,t → ft in L1
2 for any time t ≥ 0 if

fn,0 → f0 in L1
2 and ‖fn,0‖L1

4
+ H(fn,0) ≤ C .

For any τ > 0 there exists Cτ such that

sup
t≥τ
‖ft‖H1 ≤ Cτ .
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Steady state : existence, uniqueness and stability

Th 9. M., Quininao, Touboul

There exists at least one stationary solution G to the FHN statistical equation:

∃G ∈ H1(m) ∩ P(R2), 0 = ∂x(AG ) + ∂v (Bε[µG ]G ) + ∂2
vvG in R2.

Th 10. M., Quininao, Touboul

There exists ε∗ > 0 such that in the small connectivity regime ε ∈ (0, ε∗) the
stationary solution is unique and exponentially stable: there exist η∗ε > 0, a < 0
such that η∗ε →∞ when ε→ 0 and

∀ f0 ∈ L1
2 ∩ P, ‖f0 − G‖L1

2
≤ η∗ε there holds ‖f (t)− G‖L1

2
≤ C eat ∀ t ≥ 0

• We follow a strategy introduced in M., Mouhot (CMP 2009) for the inelastic homogenous
Boltzmann equation and improved in Tristani (arXiv 2013) in a weakly inhomogeneous setting.
• But we fundamentally use the fact that the limit equation (for ε = 0) is positive and it is then
exponentially asymptotically stable thanks to the Krein-Rutmann theorem (Theorem 4)
• We also use some “hypocoercive” calculus tricks developed by Hérau and Villani for the
kinetic Fokker-Planck equation
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Proof - L1
k estimate

The vector field (A,B) does not derive from a potential (even in the case ε = 0) but has
the following “confinement property”

−x A− v B = −ax2 + bxv − v 4 − (1 + ε)xv + εµx

≤ C(a, b, ε)− a

2
x2 − 1

2
v 4 + 2

ε2

a
µ2.

Also observe (Cauchy-Schwarz inequality)

J 2
f ≤

∫
f v 2dxdv ∀ f ∈ P(R2).

Lemma (uniform in time L1
k estimate, k ≥ 2)

For m0 := 1 + x2/2 + v 2/2 and any f ∈ P(R2), there holds for Ci > 0∫
Qε[µ, f ]m0 ≤ C1 (1 + µ2)− C2

∫
f (1 + x2 + v 4).

As a consequence, for any f ∈ P(R2)∫
Qε[Jf , f ]m0 ≤ C3 − C2

∫
f m0,

and for any f0 ∈ P(R2)

J 2
f (t) ≤

∫
ft m0 ≤ max

(C3

C2
,

∫
f0 m0

)
∀ t ≥ 0, m = m

k/2
0 .
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Proof - H1 estimate

In the same way for m = eκm0

d

dt

∫
f 2m2 = 2

∫
Qε[µ, f ] f m2 ≤ C1

∫
f 2 − C2

∫
f 2 m2m0 −

∫
|∂v f |2m2,

but we do not know how to conclude (in order to get uniform in times bound) !?

We introduce the (equivalent) twisted norm (reminiscent of hypocoercivity theory)

‖f ‖2
H1(m) := ‖f ‖2

L2(m) + ‖∇x f ‖2
L2(m) + α5/6(∇x f ,∇v f )L2(m) + α‖∇v f ‖2

L2(m)

for α > 0 small enough. For the associated scalar product 〈·, ·〉

〈Qε[µ, f ], f 〉 ≤ C1

∫
f 2 − C2

∫
f 2 m2m0 − α

∫
|∂v f |2m2 − α5/6

∫
|∂x f |2m2

≤ K1‖f ‖H1 − K2‖f ‖2
H1

by using Nash inequality
‖f ‖2

L2 ≤ C‖f ‖L1‖f ‖H1 .

Lemma uniform in times H1 estimate)

For any f0 ∈ P(R2)

‖ft‖H1(m) ≤ max
(K1

K2
, ‖f0‖H1(m)

)
∀ t ≥ 0.
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Proof - local a priori bound and existence

We compute

d

dt

∫
f log f =

∫
(∂vv f ) log f +

∫
(∂x(Af ) + ∂v (Bf )) log f

= −
∫

(∂v f )2

f
+

∫
(∂xA + ∂vB)f

≤ −Iv (f ) +

∫
m0f , Iv (f ) :=

∫
(∂v f )2

f
.

We conclude by standard (weak L1 compacteness) argument to the existence of a
solution f ∈ C([0,∞); L1) such that

sup
[0,T ]

∫
f (m2

0 + log f ) +

∫ T

0

Iv (f ) dt ≤ CT ∀T > 0

for any f0 ∈ L1
4 ∩ P ∩ L1 log L1.
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More about the proof - uniqueness

For any two solutions f1 et f2 to the FHN equation

∂t fi = ∂x(Afi ) + ∂v (Bi fi ) + ∂2
vv fi

with Bi := B0 + ε(v − Jfi ), the difference f = f2 − f1 satisfies

∂t f = ∂x(Af ) + ∂v (B1f ) + εJf ∂v f2 + ∂2
vv f .

As a consequence, by Kato’s inequality

∂t |f | ≤ ∂x(A|f |) + ∂v (B1|f |) + ε |∂v f2| |Jf |+ ∂2
vv |f |.

Using the inequality∫
|∂v f2|m0 ≤

(∫
f2 m

2
0

)1/2(∫ |∂v f2|2
f2

)1/2

≤ C Iv (f2)1/2

we get

d

dt

∫
|f |m0 ≤

∫
|f |(−A∂xm0 − B∂vm0) + εC Iv (f2)1/2

∫
|f |m0 +

∫
|f |

≤ (C + εIv (f2))

∫
|f |m0.

We conclude to the uniqueness by Gronwall lemma.
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Proof - existence of stationary solution

Define
Z := {f ∈ H1(m) ∩ P; ‖f ‖H1(m) ≤ K1/K2}

and
S = (St) by St f0 := ft solution of the FHN equation.

• Z is a convex and strongly compact subset of the Banach space L1
2;

• S leaves Z invariant and it is a L1
2-continuous semigroup.

A direct application of the Schauder fixed point theorem implies

∃G ∈ Z such that StG = G ∀ t ≥ 0

or equivalently

G is a stationary solution to the FHN equation (for any given a, b, ε > 0).

We may simplify that existence part by working in the space of symmetric solutions S
(i.e. f ∈ S iff f (−x ,−v) = f (x , v)) in which space the FHN equation is linear.
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Proof - rough spectral analysis of the linearized operator

For any stationary state Gε ∈ Z, we define the linearized operator

Lεh := ∂x(Ah) + ∂v ((B0 + ε(v − µGε))h)− εµh∂vGε + ∂2
vvh

We write
Lε = A+ Bε, Ah := MχR(x , v) h

and we have

(1) ‖SB ∗ (ASB)(∗k)‖B(X ) ≤ Ck e
−t

and

(2) ‖SB ∗ (ASB)(∗n)‖B(L1(m),H1(mm0)) ≤ Cn e
−t

As a consequence, the Weyl theorem (Theorem 2) implies

Σ(L) ∩∆−1 = finite ⊂ Σd(L).
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Proof of estimates (1) and (2)

• the estimate
(1) ‖SB ∗ (ASB)(∗k)‖B(X ) ≤ Ck e

−t

is a consequence of the fact that
B A ∈ B(X ), X = L1(m), L2(m), H1(m);
B B is −1-dissipative in X = L1(m), L2(m), H1(m) as a consequence of the already
established estimates∫

Qε[µ, f ]f p−1mp ≤ C1

∫
f p − C2

∫
f pmpm0

and the similar estimate in H1(m).

• the estimate
(2) ‖SB ∗ (ASB)(∗n)‖B(L1(m),H1(mm0)) ≤ Cn e

−t

is similar to the Nash argument in the proof of the stability of Z. More precisely,
introducing

F(t, h) := ‖h‖2
L1(m) + t•‖h‖2

L2(m) + t•‖∇vh‖2
L2(m) + t•(∇vh,∇xh)L2(m) + t•‖∇xh‖2

L2(m)

we are able to prove (for convenient exponents • ≥ 1)

d

dt
F(t, SB(t)h) ≤ 0, ∀ t ∈ [0,T ].
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Spectral and semigroup analysis of the linear operator L0

We observe that in X = Lp(m)

L0h = ∂x(Ah) + ∂v ((B0h) + ∂2
vvh

is such that
(1) L = A+ B0 as above with a∗ = −1;
(2) ∃G0 ∈ Z, L0G0 = 0 and L∗0 1 = 0;
(3) L0 is strongly positive, in the sense that
B SL0 is a positive semigroup : f0 ≥ 0 implies SL0 (t)f0 ≥ 0;
B L0 satisfies a weak maximum principle: (L0 − a)f ≤ 0 and a large imply f ≥ 0;
B L0 satisfies Kato inequality : L0θ(f ) ≥ θ′(f )L0f , θ(s) = |s|, s+;
B L0 satisfies a strong maximum principle: (L0 − µ)f ≤ 0 and f ∈ X+\{0} imply f > 0.

The Peron-Frobenius-Krein-Rutman theorem asserts

G0 ∈ P L0G0 = 0, G0 is unique and stable.

More precisely
(1) ∃a < 0 such that Σ(L0) ∩∆a = {0};
(2) 0 is simple and kerL0 = vectG0;
(3) Π0h = 〈h〉G0 and L0 is invertible from R(I − Π0) onto X .

S.Mischler (CEREMADE & IUF) Semigroups spectral analysis September 15-19, 2014 30 / 33



Uniqueness in the small connectivity regime ∼ implicit function theorem

From the the Krein-Rutman theorem, for any solution L0f = g ∈ L2(m) with 〈g〉 = 0

‖f ‖L2(m) ≤ C ‖g‖L2(m).

Using the additional estimate

∀ f
∫

(L0f )f m0m
2 ≤ C1

∫
f 2m2 − κ1

∫
f 2m2

0m
2 − κ1

∫
(∂v f )2m0m

2,

we deduce the stronger bound

‖f ‖V := ‖f ‖L2(mH) + ‖∇v f ‖L2(mH1/2) ≤ C ‖g‖L2(m).

For any two stationary solutions, we now write

Gε − Fε = L−1
0

[
L0 Gε − L0 Fε

]
= εL−1

0

[
∂v
(

(v − J (Fε))Fε − (v − J (Gε))Gε
)]

and then

‖Fε − Gε‖V ≤ εC
∥∥∥∂v((v − J (Fε))(Fε − Gε) + (J (Fε)− J (Gε))Gε

)∥∥∥
L2(m)

≤ εC ‖Fε − Gε‖V .

which in turn implies that necessarily ‖Fε − Gε‖V = 0 for ε > 0 small enough.
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Stability in the small connectivity regime

The above Krein-Rutman theorem on L0 and the following properties on Lε

Lε → L0 and L∗ε1 = 0

imply (thanks to Theorem 5)

Σ(Lε) ∩∆a = {0}, a < 0, ε small > 0.

For any solution f the function h := f − Gε satisfies

∂th = Lεh − ε∂v [µh h].

From the spectral mapping theorem, we may compute (rigorously at the level of the
Duhamel formulation)

d

dt
‖h‖2

L2 ≤ 2a‖h‖2
L2 + 2a‖∂vh‖2

L2 + ε |µh| ‖h‖L2 ‖∂vh‖L2

≤ 2a‖h‖2
L2 + C ‖h‖4

L2 .

As a consequence, the set C := {‖h‖2
L2 ≤ |a|/C} is stable. Then for any h0 ∈ C, we get

‖h(t)‖L2 ≤ C eat .
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Open questions

• What about the “large” connectivity regime: ε is not small?

B unstability of “the” steady state?

B periodic solutions? local stability of one of them?

• What about a Hodgin-Huxley statistical model based on the Hodgin-Huxley 4d
ODE sytem?

• What about elapsed time (with delay) type model?
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