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© Introduction

@ Spectral theory in an abstract setting
@ Spectral mapping theorem
@ Weyl theorem
@ Krein-Rutmann theorem
@ Small perturbation theorem

© On a FitzHugh-Nagumo statistical model for neural networks
@ Well-posedness and existence of steady states
@ Spectral analysis for vanishing connectivity
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Revisit the spectral theory in an abstract setting

Spectral theory for general operator and its semigroup in general (large) Banach
space, without regularity (# eventually norm continuous), without symmetry (#
Hilbert space and self-adjoint op) and without (or with) positivity (Banach lattice)

e Spectral map Theorem — ¥(e") ~ &™) and w(A) = s(A)

e Weyl's Theorem — (quantified) compact perturbation ess(A + B) =~ L ess(B)
e Small perturbation — X(A.)~X(A)if Ac = A

o Krein-Rutmann Theorem — s(A) =supReX(A) € L4(A) when Sp >0

e functional space extension (enlargement and shrinkage)
— X(L)~X(L)when L =L
< tide of spectrum phenomenon

Structure: operator which splits as
N=A+B, A=<B, Bdissipative

Examples: Boltzmann, (kinetic) Fokker-Planck, Growth-Fragmentation operators
and W?P(m) weighted Sobolev spaces
S.Mischler (CEREMADE & IUF) Semigroups spectral analysis September 15-19, 2014 4 /33



Applications / Motivations :

e (1) Convergence rate in large Banach space for linear dissipative and
hypodissipative PDEs (ex: kinetic Fokker-Planck, growth-fragmentation)

e (2) Long time asymptotic for nonlinear PDEs via the spectral analysis of
linearized PDEs (ex: Boltzmann, Landau, Keller-Segel) in natural ¢ space

e (3) Existence, uniqueness and stability of equilibrium in “small perturbation
regime” in large space for nonlinear PDEs (ex: inelastic Boltzmann, Wigner-
Fokker-Planck, parabolic-parabolic Keller-Segel, neural network)

Is it new?
e Simple and quantified versions, unified theory (sectorial, KR, general) which
holds for the “principal” part of the spectrum
o first enlargement result in an abstract framework by Mouhot (CMP 2006)
e Unusual splitting
A= Ay + By = A. +A;+Bo

—~ ~ =~ =

compact dissipative smooth dissipative
e The applications to these linear(ized) “kinetic” equations and to these nonlinear
problems are clearly new
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Old problems

e Fredholm, Hilbert, Weyl, Stone  (Functional Analysis & semigroup Hilbert
framework) < 1932

e Hyle, Yosida, Phillips, Lumer, Dyson, Dunford, Schwartz, ...
(semigroup Banach framework & dissipative operator) 1940-1960

e Kato, Pazy, Voigt (analytic operator, positive operator) 1960-1975

e Engel, Nagel, Gearhart, Metz, Diekmann, Priiss, Arendt, Greiner, Blake,
Mokhtar-Kharoubi, Yao, ... 1975-
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Still active research field

e Semigroup school (> 0, bio): Arendt, Blake, Diekmann, Engel, Gearhart,
Greiner, Metz, Mokhtar-Kharoubi, Nagel, Priss, Webb, Yao, ...

e Schrodinger school / hypocoercivity and fluid mechanic: Batty, Burq,
Duyckaerts, Gallay, Helffer, Hérau, Lebeau, Nier, Sjostrand, Wayne, ...

e Probability school (diffusion equation): Bakry, Barthe, Bobkov, Cattiaux, Douc,
Gozlan, Guillin, Fort, Ledoux, Roberto, Rockner, Wang, ...

e Kinetic school (~ Boltzmann):

> Guo, Strain, ..., in the spirit of Hilbert, Carleman, Grad, Ukai works (Spectral
analysis of the linearized (in)homogeneous Boltzmann equation, existence and
convergence to the equilibrium in “small spaces”)

> Carlen, Carvalho, Toscani, Otto, Villani, ... (log-Sobolev inequality)

> Desvillettes, Villani, Mouhot, Baranger, Neuman, Strain, Dolbeault,
Schmeiser, ... (Poincaré inequality & hypocoercivity)

> Arkeryd, Esposito, Pulvirenti, Wennberg, Mouhot, ... (Spectral analysis of the
linearized (in)homogeneous Boltzmann equation, existence and convergence to
the equilibrium in “large spaces”)
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Outline of the talk

@ Spectral theory in an abstract setting
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Typical main issue

For a given operator A in a Banach space X, we want to prove
(1) TNNA;={&) (or=0), & =0
with £(A) = spectrum of A, A, :=={z € C, Rez > a}

(2) A, = finite rank projection, i.e. § € Y4(N)
_ at
)Gl —_
(3) ISA(l = Mag)lx—x < Coe™,  a< Re&y

Definition:

We say that L — a is hypodissipative iff ||e!||x_,x < C et

s(A) := sup ReX(A) = spectral bound

w(A) :=inf{a € R, s.t. L — ais hypodissipative } = growth bound
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Spectral mapping theorem - characterization

Th 1. (M., Scher) Ja*, 3n

(0) A=A+ B, where A is B¢ -bounded with 0 < (<1,

(1) ||SB * (ASB)(*Z)HX%X < Ce? Va>a*, Vi>0,

(2) 1S5 * (ASE)*)||xprcy < Cre™, Va > a*, with ¢ > ¢/,
)

(3) there exists a projector 1 which commutes with A such that Ag := Ax,,
Xo = R(I — H), Z(Ao) N Aa* = and /\1 = /\‘X1 S B(Xl), Xl = RI

is equivalent to

(4) there exists a projector I which commutes with A such that
N = /\‘X1 S B(Xl), X1 := RN

Sa(t) (1 = M) xox < G €%, Va>a*

In particular (spectral mapping theorem on the principal part of the spectrum)
(™) N Ag = TN v >0 5> 5"

and
max(s(A), a*) = max(w(A), a*)
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Sketch of the proof

We split the semigroup into invariant linear sub-manifolds (eigenspaces)
S, =NS,+ n+ S,
and write the (iterated) Duhamel formula

N—-1

=) Sp# (ASp)) + Sp x (ASp)M)
£=0

These two identities together

N—-1

Sco= NS +NH{Y Spx(ASE) I} + Nt S+ (ASE)W
=0

For the last term, we use the inverse Laplace transform formula
a+iM
NSe + (ASg) M (t) = lim — e” N+ Rr(2)(AR5(2))" dz

and we conclude by showing

IRA(2)(ARs(2))V] < C/ly?, Vz=a+iy, [yl > M, a> a,
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Weyl's theorem - characterization

Th 2. (M., Scher) 3a*, 3n
(0) A = A+ B, where A is B¢ -bounded with 0 < ¢’ < 1,

(1) ||Ss * (AS)*9 || xx < e, Ya>a*, V>0,

(2) |58 * (ASB)(*”)HX%D(,\C) < Cpe?t, Va> a*, with ¢ > ¢,

(3) [T I(ASE) ||y e~ dt < 00, Va > a*, with Y CC X,
is equivalent to

(4') there exist £1,...,&5 € A,, there exist Ty, ..., M, some finite rank
projectors, there exist T; € B(RI;) such that Al; = ;A = T;1;,
Y(T;) = {&}, in particular

Z(A) N Aa = {51) "'7£J} C ztJ/(z)

and there exists a constant C, such that
J
ISa(t) = > e'iMjllxox < Goe™, Va>a"
j=1
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Krein-Rutmann for positive operator

Th 4. (M. & Scher) On a “Banach lattice of functions” X,
(1) A such as in Weyl's Theorem for some a* € R;
(2) 3b > a* and ¥ € D(A*) N X, \{0} such that A*¢ > b);
(3) Sa is positive (A satisfies Kato's inequalities/weak maximum principle);
(4) A satisfies a strong maximum principle.
Defining A := s(A), there holds
a®* < A=w(N\) and A€ X4(N),

and there exists 0 < f,, € D(A) and 0 < ¢ € D(A*) such that

Ny =Moo, NP =Xo, RIMp = Vect(fy),
and then

|_|/\7)\f- = <f,¢> fx VFfeX.

Moreover, there exist a € (a*,\) and C > 0 such that for any fp € X

ISA(t)fo — eMManfollx < Ce™ ||y — Marfollx vt >0.
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Small perturbation

Th 5. (M. & Mouhot; Tristani)
Assume

(0) A\e =A.+B-in X;, Xo1 CC Xo=X CC Xq, A: < Be,

(1) IS5, * (A:SB.)" ) ||xx, < Cre™, Va>a*, Ve>0,i=0,4+1,
(2) 1158, * (A:SB.) M || x5 x,, < Coe®, Va>a*, i=0,-1,

(3) X,'+1 C D(BE\X,-)7 D(AE|X,') for i =—1,0 and

Az = Aol x—x,_y + IBe = Bollx,—x,_, <m(e) =0, i=0,1,
(4) the limit operator satisfies (in both spaces Xy and Xi)
Y(Ao) N A, ={0}, 0 simple
Then
T(A)NAa={), & simple, &5 —0
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Discussion / perspective

e With Theorem 1 at hand, the growth analysis of the semigroup Sp reduces to
the spectral analysis (spectrum and eigenspace) for its generator A

e In Theorems 1, 2, 3, 4 one can take n =1 in the simplest situations (most of
space homogeneous equations in dimension d < 3), but one need to take n > 2
for the space inhomogeneous Boltzmann equation and the kinetic Fokker-Planck
equation

e Open problem: Beyond the “dissipative case”?

> example of the Fokker-Planck equation for “soft confinement potential” and
relation with “weak Poincaré inequality” by Rockner-Wang

> Links with semi-uniform stability by Lebeau & co-authors, Burq, Liu-R,
Batkal-E-P-S, Batty-D, ...

>> applications to the Boltzmann and Landau equations associated with “soft
potential”

> spectral mapping theorem, Krein-Rutman theorem, extension theorem
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Outline of the talk

© On a FitzHugh-Nagumo statistical model for neural networks
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A FitzHugh-Nagumo statistical model
Oif = Q.(Tr, f) = Ox(Af) + 0, (Bf) + 92,f on (0,00) x R?
complemented withy an initial condition
f(0,.)=f >0 inR%.

where

A= A(x,v) =ax—bv, B=B.][Jf]=B(x,v;Jr)
B(x,vip)=v:—v+x+e(v—p), Jr:= [pvIF(x,v)dvdx

@ t > 0 is the time variable, v € R is the membrane potential of one neuron,
x € R is an auxiliary variable

@ f = f(t,x,v) >0 is the time-dependent density of neurons in state (x, v) € R?
@ a, b, e are positive parameters and ¢ is the connectivity of the network

The equation being in divergence form the number of neurons is a constant along
time (that's better!):

/f(t,x,v)dxdv:/ fodxdv = 1.
R2

R2
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Motivation: microscopic description

e As a simplification of the Hodgin-Huxley 4d ODE, FitzHugh-Nagumo 2d ODE
describes the electric activity of one neuron and writes

V=v—V3 =X+l = —Bo + lexe

X =bv —ax = —A,
with le = i(t) + oW exterior input split as a deterministic part + a stochastic
noise. We assume i(t) = 0.

e For a ngtwqu of N coupled neurons, the associated model writes for the state
Z, = (X[, V;) of the neuron labeled i € {1,..., N}

Vi=[-By(X, V') Zgu —W)dt + o dW'

dX" = —AX' ) V)dt

where €;; > 0 corresponds to the connectivity between the two neurons labeled i
and j. The model takes into account an intrinsic deterministic dynamic + mean
field interaction + stochastic noise.
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Motivation: to a statistical description (mean field limit)

We assume ¢ := /N, (Z3..., Z}') are i.i.d. random variables with same law f,
and we pass to the limit N — oo. _
We get that (21, ..., ZN) is chaotic which means that any two neurons Z! and 2/
are asymptotically independent and Z! — Z: = (X, V¢) which is a solution to
the nonlinear ODS

P

= [=Bo(
X =—A(

v, V) —e(V—E(V))]dt + o dW

,V)dt.

From Ito calculus we immediately see that the law f(t,.) := L(X;, V;) satisfies
the associated backward Kolmogrov equation which is nothing but the FHN

nonlinear statistical equation (here and below we make the choice o := /2 for
the sake of simplification of notations).
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Global existence and uniqueness for the evolution PDE

We introduce the weight function my = mo(x, v) := 14 x?/2 4+ v?/2 and the
weighted Lebesgue spaces LP(m) associated to the norm

[Fllo(my = Mmllces (Fllwrem) = [Fllogmy + [Vl o(m)
and the shorthand L := LP(mg’?).

Th 8. M., Quininao, Touboul

For any fy € & = LI N L[tlogL! N P(R?) there exists a unique global solution
f € C(J0,0); L N'P) to the FHN statistical equation. It also satisfies

[ fim < max(Co [ fom).  [fllsimy < max(Gas o)

It depends continuously in the initial datum: f, ; — f; in L% for any time t > 0 if
fao — fo in L} and \|f,,70||L1 + H(f,0) < C.
For any 7 > 0 there exists C, such that

sup ||l < G,
t>7
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Steady state : existence, uniqueness and stability

Th 9. M., Quininao, Touboul

There exists at least one stationary solution G to the FHN statistical equation:

3G € HY(m)NP(R?), 0= 0,(AG)+ d,(B:[uc]G)+92,G inR?

Th 10. M., Quininao, Touboul

There exists e* > 0 such that in the small connectivity regime ¢ € (0,e*) the
stationary solution is unique and exponentially stable: there exist nf > 0, a < 0
such that 7 — oo when ¢ — 0 and

VhelanP, |fy— Glly < nZ there holds [|f(t) — G|y < Ce'Vt>0

e We follow a strategy introduced in M., Mouhot (CMP 2009) for the inelastic homogenous
Boltzmann equation and improved in Tristani (arXiv 2013) in a weakly inhomogeneous setting.
e But we fundamentally use the fact that the limit equation (for e = 0) is positive and it is then
exponentially asymptotically stable thanks to the Krein-Rutmann theorem (Theorem 4)

e We also use some “hypocoercive” calculus tricks developed by Hérau and Villani for the
kinetic Fokker-Planck equation

S.Mischler (CEREMADE & IUF) Semigroups spectral analysis September 15-19, 2014 22 /33



Proof - L} estimate

The vector field (A, B) does not derive from a potential (even in the case £ = 0) but has

the following “confinement property”
—xA—vB = —ax’+bxv— v —(1+&)xv+ eux
2

1 €
< C(a,b,e) — gx2 — §v4+2;;12.

Also observe (Cauchy-Schwarz inequality)
I < /fvzdxdv Vf e P(R?).
Lemma (uniform in time Lj estimate, k > 2)

For mo := 14 x?/2 + v?/2 and any f € P(R?), there holds for C; > 0
/Qg[u, flmo < G (1+ %) — G / f(1+ x>+ vY.
As a consequence, for any f € P(R?)
/Qs[jf, flmo < G — Cz/fmm
and for any fo € P(R?)

jf(t /ﬂ 0<max C /fomo Vt>0, m_mg/2.
2
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Proof - H! estimate

In the same way for m = "™

% / Pm? = 2/95[% FFm? < cl/ -G / £2 m?mo — / 10, F[2m?,
but we do not know how to conclude (in order to get uniform in times bound) !?
We introduce the (equivalent) twisted norm (reminiscent of hypocoercivity theory)

Hf”?Hl(m) = ||f|ﬁ2(m) + Hva”iZ(m) +a”°(V.f, Vof)i2m + aHvaH%Z(m)
for & > 0 small enough. For the associated scalar product (-, -)

(Qc[u, f], ) G / -G / 2 m*mo — a/\avf\2m2 - (15/6/ |0, F|*m?
Kil[fllan — KelIf 30
by using Nash inequality

IN

A

2
(£l < ClFll e[l
Lemma uniform in times ' estimate)

For any f € P(R?)

K
|#llragm < max (- [ llsam) ¥t 0.
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Proof - local a priori bound and existence

We compute
%/flogf _ /(8Wf)|ogf+/(8x(Af)+6V(Bf))|ogf

_ 7/(6vff)2 +/(8XA+8VB)f

< —Iv(f)+/mof, Z.(f) ::/(8\,:)2.

We conclude by standard (weak L' compacteness) argument to the existence of a
solution £ € C([0, o0); L') such that

;
sup/f(m§+|ogf)+/ T.(f)dt< Cr YT>0
[0,T] 0

forany fo € LiNPN L' log L .
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More about the proof - uniqueness
For any two solutions f; et f» to the FHN equation
Oef; = Ox(AF) + 0, (Bif)) + O3
with B := By + ¢(v — J5), the difference f = f, — f; satisfies
Oif = O (AF) + 8, (Bif) + £ TrDo o + O F.
As a consequence, by Kato's inequality
|| < O(Alf]) + 0u(Bilf) + e |0ufal | T¢| + O |-

Using the inequality

1/2 A, FH|*\1/2
/|avf2|mo < (/fzmg) (/' f;' ) <cnn)”
we get

d
— f
dt/| |mo

We conclude to the uniqueness by Gronwall lemma.

IN

/|f‘(_A8XmO_Bavm(])+€CIV(f'2)1/2/|f‘m0+/|f|

IN

(C—l—sIv(fz))/|f|mo,
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Proof - existence of stationary solution

Define
Z={f e H(m)NP; |[fllsa(m < Ki/Ka}

and
S = (S¢) by Sify := f; solution of the FHN equation.

e Z is a convex and strongly compact subset of the Banach space L3;
e S leaves Z invariant and it is a L3-continuous semigroup.

A direct application of the Schauder fixed point theorem implies
dG € Zsuchthat ;G=G Vt>0

or equivalently

G is a stationary solution to the FHN equation (for any given a, b,e > 0).

We may simplify that existence part by working in the space of symmetric solutions S
(i.e. f e Siff f(—x,—v) = f(x,v)) in which space the FHN equation is linear.
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Proof - rough spectral analysis of the linearized operator

For any stationary state G. € Z, we define the linearized operator
Loh = 0(Ah) + 8,((Bo + e(v — pc.))h) — epund, G- + 92 h

We write
Le=A+B., Ah:= Mxgr(x,v)h

and we have

(1) 1155 * (AS5) g < Cre™*

and

(2) 1155 * (AS5)"" llequ (my, m (mmy) < Coe™"
As a consequence, the Weyl theorem (Theorem 2) implies

Y(L)N A_; = finite C X4(L).
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Proof of estimates (1) and (2)
o the estimate
(1) 1S5 * (ASE)“|lsx) < Cee™"

is a consequence of the fact that

> A€ B(X), X = L'(m), L*(m), H*(m);

> B is —1-dissipative in X = L*(m), L?(m), H'(m) as a consequence of the already
established estimates

/Qe[u, fIFPtmP < Cl/f"— cszpm"m0

and the similar estimate in H*(m).

e the estimate

(2) IS5 * (ASB)(*H)HB(Ll(m),Hl(mmo)) < Gef
is similar to the Nash argument in the proof of the stability of Z. More precisely,
introducing

F(t, h) = Hh“%1(m) + t.Hh”%Z(m) + t.HVvhHé(m) + t*(Vvh, Vih) 2(m) + t.Hvth%Z(m)
we are able to prove (for convenient exponents e > 1)

& F(tss(t)n) <0, Vee[o,T]
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Spectral and semigroup analysis of the linear operator L

We observe that in X = LP(m)
Loh = 8. (Ah) + d,((Boh) + d2,h

is such that

(1) L = A+ By as above with a* = —1;

(2) 3Gy € Z, LoGop = 0 and [,61 =0;

(3) Lo is strongly positive, in the sense that

> S, is a positive semigroup : fo > 0 implies Sg,(t)fo > 0;

> Lo satisfies a weak maximum principle: (Lo — a)f <0 and a large imply f > 0;

> Lo satisfies Kato inequality : Lo0(f) > 0'(f)Lof, 0(s) = |s|, s+;

> Lo satisfies a strong maximum principle: (Lo — p)f < 0 and f € X \{0} imply f > 0.

The Peron-Frobenius-Krein-Rutman theorem asserts
Go P LoGy =0, Gp isunique and stable.

More precisely

(1) 3a < 0 such that X(Lo) N A, = {0};

(2) 0 is simple and kerLy = vectGp;

(3) Moh = (h)Gy and Ly is invertible from R(/ — o) onto X.
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Uniqueness in the small connectivity regime ~ implicit function theorem

From the the Krein-Rutman theorem, for any solution Lof = g € L*(m) with (g) =0
11l 2m) < ClIgl 2(m)-
Using the additional estimate
Vf /(Eof)fm0m2 < Cl/f2m2 - ,{1/f2m§m2 — K1 /(Gvf)2mom2,
we deduce the stronger bound
Il = [Fll2gmty + IV Flli2minrzy < CllEl2(m)-
For any two stationary solutions, we now write
G.—F. = £5'[£oG.—LoF.]

e L5 [o.((v = T(F)F. - (v = 7(6.))6.)]

and then
Fe — Gellv

IN

e Cllo (v = TR - 6+ (T(F) - 7(6)6.)

e C||Fe — Ge|lv-

12(m)

IA

which in turn implies that necessarily ||F. — G.||v = 0 for ¢ > 0 small enough.
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Stability in the small connectivity regime

The above Krein-Rutman theorem on Ly and the following properties on L.
Le— Ly and LI1=0

imply (thanks to Theorem 5)

Y(L)NA,={0}, a<0, esmall >0.

For any solution f the function h := f — G, satisfies
Oth = Loh — €0, [un h].

From the spectral mapping theorem, we may compute (rigorously at the level of the
Duhamel formulation)

d
bz < 2a||l[7> + 2al|@uAllL> + & |nl || lli2 10w hll 2

IN

2alhl| 2 + C ||Al| 2.
As a consequence, the set C := {||h||?, < |a|/C} is stable. Then for any ho € C, we get
IA(t) 2 < C e,
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Open questions

e What about the “large” connectivity regime: ¢ is not small?
> unstability of “the” steady state?

> periodic solutions? local stability of one of them?

e What about a Hodgin-Huxley statistical model based on the Hodgin-Huxley 4d
ODE sytem?

e What about elapsed time (with delay) type model?
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