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Abstract

Existence of global weak solutions to a spatially inhomogeneous kinetic model for coalescing
particles is proved, each particle being identified by its mass, momentum and position. The
large time convergence to zero is also shown. The cornestone of our analysis is that, for
any nonnegative and convex function, the associated Orlicz norm is a Liapunov functional.
Existence and asymptotic behaviour then rely on weak and strong compactness methods in
L1 in the spirit of the DiPerna-Lions theory for the Boltzmann equation.

1 Introduction

We consider the Cauchy problem for a kinetic equation modelling (at a mesoscopic level) the dy-
namic of a system of particles undergoing coalescence (or sticky) process. More precisely, describing
the gas of particles by the density f(t, x,m, p) ≥ 0 of particles with mass m ∈ R+ := (0,+∞) and
momentum p ∈ R3 at time t ≥ 0 and position x ∈ Ω ⊂ R3, we study the existence and long time
behaviour of solutions to the equation

∂tf + v · ∇xf = Q(f) in (0,+∞)× Ω× Y, (1.1)
f(0) = f in in Ω× Y. (1.2)

Here and below, in order to shorten the notations, we introduce the mass-momentum variable
y := (m, p) ∈ Y := R+ × R3 and the velocity variable v = p/m. The collision operator Q(f) is
given by Q(f) = Q1(f)−Q2(f), where

Q1(f)(y) =
1
2

∫
R3

∫ m

0

a(y′, y − y′) f(y′) f(y − y′) dm′dp′, (1.3)

Q2(f)(y) =
∫

R3

∫ ∞

0

a(y, y′) f(y) f(y′) dm′dp′. (1.4)

The meaning of these terms is the following. Denoting by {y} = (m, p) a particle of mass-
momentum y, Q1(f)(y) accounts for the formation of particles {y} by coalescence of smaller ones,
i.e., by the reaction

{y′}+ {y − y′} a(y′,y−y′)−→ {y} , y′ = (m′, p′) ∈ (0,m)× R3,

and Q2(f)(y) describes the depletion of particles {y} by coagulation with other particles, i.e., by
the reaction

{y}+ {y′} a(y,y′)−→ {y + y′} , y′ ∈ Y.
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At a microscopic level, the collision of two particles {y} and {y′} leads to the formation (by
coalescence) of a single particle {y′′} with rate a(y, y′), the mass and momentum being conserved
during the collision. In other words,

{y}+ {y′} a(y,y′)−→ {y′′} with y′′ = (m′′, p′′) = (m+m′, p+ p′).

In contrast to the Boltzmann equation for elastic collisions, this is an irreversible microscopic
process. Observe, in particular, that it does not preserve the kinetic energy:

Φke(y, y′) :=
|p|2

2m
+
|p′|2

2m′ −
|p′′|2

2m′′ =
mm′

2(m+m′)
|v − v′|2 ≥ 0.

Particles evolving according to these rules are met, for instance, in dense sprays involved in
combustion reactions, where liquid droplets are carried by a gaseous phase and undergo coalescence
processes (due to collisions). The dynamics of the density of liquid droplets are then described by
equation (1.1) [3, 36, 37, 38], see also [10, 12, 27]. In this context, the coalescence kernel a is given
by

a(y, y′) = aHS(y, y′) := (r + r′)2 |v − v′|, (1.5)

where r = m1/3, r′ = (m′)1/3 denote the radii of the particles and v = p/m, v′ = p′/m′, their
velocities. Note that this kernel corresponds to the well-known cross section for hard spheres in
the Boltzmann theory. In fact, equation (1.1) only takes into account coalescence and neglects the
fragmentation of the droplets due to the action of the gas, as well as the condensation/evaporation
of the droplets and the elastic (grazing) collisions of Boltzmann type. However, all these effects
may be met together, for instance, in combustion theory [39]. In this case, one usually considers
the following equation [21]

∂tg +∇x(v g) +∇v(β g) + ∂r(ω g) = Qcoll(g) +Qbr(g),

for the density g(t, x, r, v) of droplets which, at time t ≥ 0, are at the position x ∈ Ω with a radius
r > 0 (droplets are supposed to be spheres), and velocity v ∈ R3. In this equation, β and ω denote
the droplet acceleration and evaporation rate, respectively, the term Qbr(g) represents the effects
of the break-up of the droplets due to the action of the gas, and the term Qcoll(g) represents the
effects of binary collisions between particles. It includes both elastic collisions and collisions giving
rise to the coalescence of the colliding particles. Similar equations may also be found in aerosol
theory [24].

Another physical situation in which coalescence occurs may be found in stellar dynamics in
the modelling of clouds of particles (galaxies!) interacting by an attractive Manev pair potential
−α/r − ε/r2 (see [6, 25] and the references therein). In particular, for α = 0 and ε = 1, the
associated cross-section is

a(y, y′) = aNP (y, y′) :=
m+m′

mm′
1

|v − v′|2
. (1.6)

In both models described here, the coalescence rate a corresponds to the collision frequency.
But, collisions may not always result in a coagulation event. This fact can be accounted for by
the introduction of a coalescence efficiency E (representing the probability that the two colliding
particles do really stick). Then a(y, y′) = E(y, y′) a0(y, y′), where a0 is the frequency of collisions
and may be given, for instance, by (1.5) or (1.6), see [37].

Let us now describe the coalescence rate a that we will consider in this paper. We assume that
a fulfils the symmetry and positivity conditions

0 < a(y, y′) = a(y′, y) a.e. on Y 2, (1.7)
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and the structure condition

a(y, y′) ≤ a(y, y + y′) + a(y′, y + y′) , y, y′ ∈ Y. (1.8)

We also require the growth conditions

aδ,R(M) := sup
y′∈Yδ,R

∫
Yδ,R

a(y, y′)1a(y,y′)≥M dy −→
M→∞

0, (1.9)

ωδ,R(R′) := sup
p′∈R3,m′≥R′

∫
Yδ,R

a(y, y′)
|y′|

dy −→
R′→∞

0, (1.10)

for any R > δ, with Yδ,R := (δ,R)× BR. In particular, the coalescence kernel aHS and aNP fulfil
the above assumptions, as it is shown in Appendix B.

As for Ω, we may consider the case of the whole space Ω = R3, the case of the 3-dimensional
torus Ω = T or the case of a bounded domain of R3. In the latter cases, one has to supplement
(1.1) with either periodic boundary conditions or, for instance, no-incoming flux conditions

γf = 0 on {x ∈ ∂Ω , n(x) · v < 0} , (1.11)

where γf stands for the trace of f on the boundary and n(x) denotes the outward normal unit
vector field. In order to simplify the presentation, we only consider the case Ω = R3 in the sequel.
However, we keep the notation Ω to differentiate between the space of positions and the space of
momenta (or velocities).

We finally require that the initial datum has finite total number of particles, finite total mass
and finite mean momentum, that is,

0 ≤ f in ∈ L1 (Ω× Y, (1 +m+ |p|) dydx) . (1.12)

Our main result is the following.

Theorem 1.1 Assume that the coalescence kernel a fulfils the assumptions (1.7)–(1.10) and that
the initial datum satisfies (1.12). There exists at least a solution f ≥ 0 to the coalescence equation
(1.1)-(1.2) which satisfies

f ∈ C([0,+∞);L1(Ω× Y )), Q(f) ∈ L1(ΩT × Y )

for all T > 0, where ΩT := (0, T )× Ω. Moreover,

∂tρ+ divx j ≤ 0 in D′(ΩT ), with ρ =
∫

Y

mf dy, j =
∫

Y

p f dy, (1.13)

and, in particular,

t 7−→
∫

Ω

∫
Y

mf(t, x, y) dydx is a non-increasing function of time. (1.14)

Finally, the solution satisfies

f(t) → 0 in L1(Ω× Y ) as t→ +∞. (1.15)

Furthermore, if f in ∈ Lp(Ω× Y ) for some p ∈ [1,∞], then

t 7−→ ‖f(t)‖Lp(Ω×Y ) is a non-increasing function of time. (1.16)

Finally, if supp f in ⊂ VR = {(x, y) ∈ Ω× Y, |v| ≤ R} for some R > 0, then supp f(t) ⊂ VR for any
t ≥ 0. If f inm |v|2 ∈ L1(Ω× Y ) (that is, f in has finite kinetic energy), then

t 7−→ ‖f(t)m |v|2‖L1(Ω×Y ) is a non-increasing function of time. (1.17)
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It is worth mentioning that (1.15) somehow means that the mean mass of the particles grows
without bound as time goes to infinity. But, the total mass of the system∫

Y

f(t,m, p)mdpdm

is expected to remain constant through time evolution, at least for coalescence rates with a mod-
erate growth with respect to m. Indeed, we recall that, for the classical Smoluchowski coagulation
equation which corresponds to (1.1) when f = f(t,m), a loss of mass takes place in finite time
for coalescence rates such that a(m,m′) ≥ (mm′)α, α > 1/2. This phenomenon is usually refered
to as the occurrence of gelation, see [1, 22] and the references therein. In our general setting, the
total mass conservation is still an open problem. In the spatially homogeneous case f = f(t,m, p),
the total conservation is proved in [23] for the coalescence rate aHS .

To our knowledge, the existence of solutions to the coalescence equation (1.1) has not been
studied yet when the distribution function f depends on the four variables (t, x,m, p). In the
spatially homogeneous case f = f(t,m, p), existence and uniqueness of solutions are established
in [37], while a numerical scheme is developed in [38]. Let us point out that, in [37, 38], the
formulation of (1.1) is different and involves the variables (r, v) (with r = m1/3, v = p/m) instead
of (m, p). Nevertheless, the two formulations are equivalent as it is shown in Appendix A. When
the distribution function f = f(t,m) does not depend on (x, p), the equation (1.1) reduces to
the classical Smoluchowski coagulation equation which has been extensively studied since the
pioneering work of Melzak [32]. We refer to the survey by Aldous [1] and the book by Dubovski [20]
for a more detailed description. When the distribution function f = f(t, x,m) does not depend on
the momentum, a related equation, the diffusive coagulation equation, has received much attention
recently. In this equation, the evolution of f with respect to the position x ∈ Ω is modelled by
a diffusion term −d(m)∆xf instead of the advection term v · ∇xf . Since the works by Bénilan
& Wrzosek [5] and Collet & Poupaud [11] concerning the discrete diffusive coagulation equation,
existence of solutions to the continuous diffusive coagulation equation has been investigated in
[2, 13, 29, 33]. Let us point out here that the key estimates used in of Theorem 1.1 are in the spirit
of [28, 29, 33]. We finally mention that, very recently, a kinetic equation (with velocity variable)
for particles undergoing linear fragmentation has been studied in [21, 26].

Remark 1.2 On the one hand, it is likely that our existence result state in Theorem 1.1 extends to
the case where the droplets acceleration and evaporation are taken into account (that is, ∇v(βf) +
∂m(ωf) is added to the left-hand side of (1.1)), under suitable assumptions on the acceleration
and evaporation rates. Following [29], linear fragmentation kernel should also be added to equation
(1.1) under, for instance, an assumption of weakness of the fragmentation mechanism with respect
to the coalescence mechanism. On the other hand, the present analysis does not carry over to the
case where elastic collisions are also included and a collision term of Boltzmann type is added to
the right-hand side of (1.1). In that case, the Lp-norms are no longer Liapunov functionals and
we do not know how to remedy to this fact.

Let us now give some comments on Theorem 1.1. It turns out that Theorem 1.1 is a consequence
of a stability result (see Section 3) which asserts that a sequence (fn) of solutions to (1.1) satisfying
natural bounds converges weakly in L1, up to a subsequence, to a solution to (1.1). Roughly
speaking, the main mathematical difficulty is to prevent the formation of a Dirac mass at some
point of the phase space Ω × Y . The structure assumption (1.8) allows us to prove that, for
any nonnegative and convex function, the associated Orlicz norm is a Liapunov functional, which
prevents concentration by the Dunford-Pettis theorem. In fact, we can prove the weak compactness
in L1 of both (fn) and (Q(fn)). Strong compactness in L1 of y-averages of fn then follows by the
velocity averaging lemma of solutions to the transport equation. The remainder of the proof is
then performed in the spirit of the DiPerna-Lions theory for the Boltzmann equation [15].

Let us finally remark that, for the kernel aHS , stationary solutions to (1.1) are

S(m, p) = µ(m) δv=u (1.18)
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with µ ∈M1(0,+∞) is a bounded measure and u ∈ R3. Theorem 1.1 implies that the zero solution
is the only stationary state which is reached in the long time when starting from an L1 initial data.
We thus identify more accurately the asymptotic state than in [37]. Let us also mention that, if
St,x is a solution to (1.1) which is a stationary solution for each (t, x), that is, St,x is given by
(1.18) with µ = µt,x and u = u(t, x), it satisfies

∂tSt,x + v · ∇xSt,x = 0.

Introducing %(t, x) :=< m,µt,x >, we realize that (%, u) satisfies the pressureless gases system

∂t%+ ∂x(%u) = 0, ∂t(%u) + ∂x(%u2) = 0, (1.19)

see [8, 9, 40] and the references therein.

We now outline the contents of this paper. In the next section, we collect some qualitative and
formal information on the solutions. They lead to the natural bounds that one can expect on the
solutions. In Section 3 we specify the notion of solution we deal with, and state the key stability
theorem (Theorem 3.2) which is proved in Section 4. Section 5 is devoted to the proof of the
convergence of the solutions to zero for large times. We then briefly explain in Section 6 how the
stability result adapts to prove Theorem 1.1. We finally establish the equivalence between the two
formulations radius-velocity (r, v) and mass-momentum (m, p) of (1.1) in Appendix A and then
check that the coalescence kernels aHS and aNP given by (1.5) and (1.6) do satisfy (1.8)-(1.10) in
Appendix B.

Acknowledgements. We gratefully acknowledge the partial support of the European Research
Training Network HYKE HPRN-CT-2002-00282 during this work. The first and third authors
were partially supported by CNRS and UPV/EHU through a PICS between the Universidad del
Páıs Vasco and the Ecole Normale Supérieure. We also thank Pierre Degond for fruitful discussions
which motivate us to extend Theorem 1.1 to initial data with possibly infinite kinetic energy.

2 Conservation laws and Liapunov functionals

In this section we derive some (formal) conserved quantities and non-increasing ones as well.
Let us start with the following fundamental (and formal) identity: for any φ : Y → R+ there

holds ∫
Y

Q(f) φ dy =
1
2

∫
Y

∫
Y

a(y, y′) f f ′ (φ′′ − φ− φ′) dy′dy. (2.1)

This identity is obtained after changing variables and applying (without justification) the Fubini
theorem to Q1(f). Here and below, we put g = g(y), g′ = g(y′) and g′′ = g(y + y′) to shorten
notations.

Suitable choices of functions φ in (2.1) lead to several qualitative information on the solution
f to the coalescence equation (1.1), and on the reaction term Q(f) as well. We list some of them
now.

• Mass conservation. With the choice φ(y) = m, the term φ′′ − φ− φ′ vanishes and we deduce the
total mass conservation:∫

Ω

∫
Y

mf(t, x, y) dydx =
∫

Ω

∫
Y

m f in(x, y) dydx , t ≥ 0. (2.2)

• Momentum conservation. Similarly, with the choice φ(y) = p, the term φ′′−φ−φ′ also vanishes
and we deduce the mean momentum conservation:∫

Ω

∫
Y

p f(t, x, y) dydx =
∫

Ω

∫
Y

p f in(x, y) dydx , t ≥ 0. (2.3)
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It is next clear from (2.1) that, if φ : Y → R is subadditive, that is,

φ(y + y′) ≤ φ(y) + φ(y′) for all (y, y′) ∈ Y 2 , (2.4)

the following map

t 7→
∫

Ω

∫
Y

f(t, x, y)φ(y) dydx

is a non-increasing function of time. We now identify several classes of functions satisfying (2.4):
we first consider functions depending solely on m, then functions depending solely on v, and finally
functions being the product of a function of m and a function of v.

• Typical examples of subadditive functions is φ(y) = mα for α ∈ (−∞, 1]. In particular, the choice
φ(y) = 1 shows that the so-called total number of particles decreases with time (as expected)∫

Ω

∫
Y

f(t, x, y) dydx+
1
2

∫ t

0

∫
Ω

∫
Y

∫
Y

a f f ′ dy′dydxdt =
∫

Ω

∫
Y

f in(x, y) dydx. (2.5)

Another consequence is that, if supp f in(x, y) ⊂Mδ := {(x, y) ∈ Ω×Y , m > δ}, then supp f(t) ⊂
Mδ for any t ≥ 0. Indeed, it is sufficient to notice that φ(y) = 1[0,δ](m) satisfies (2.4). That means
that no particle of size smaller than δ can be created if there are none initially. A weaker version
of this fact is the following: for any non-increasing function φ : R+ → R+ (such as φ(m) = mα,
α < 0), we have

Yφ(f(t, .)) +
1
2

∫ t

0

∫
Ω

Yφ(f(τ)) dxdτ ≤ Yφ(f in) , (2.6)

with

Yφ(f) :=
∫

Ω

∫
Y

f(x, y)φ(m) dydx,

Yφ(f) :=
∫

Y

∫
Y

aφ(m) f f ′ dydx .

• For any non-decreasing and nonnegative function φ : R+ → R+, we notice that

|p+ p′| ≤ |p|+ |p′| ≤ (m+m′) max(|v|, |v′|),

and thus |v′′| ≤ max(|v|, |v′|). The monotonicity of φ then implies that φ fulfils (2.4). Consequently,

t 7−→
∫

Ω

∫
Y

f(t, x, y)φ(|v|) dydx

is a non-increasing function of time. As a first consequence of this fact, we realize that, if supp f in ⊂
VR := {(x, y) ∈ Ω× Y, |v| ≤ R}, then supp f(t) ⊂ VR for any t ≥ 0 (apply the previous result with
the choice φ = 1[R,+∞)).

• Consider now a nonnegative and non-increasing function φ1 : R+ → R and a nonnegative and
convex function φ2 : R3 → R. Then

t 7−→
∫

Ω

∫
Y

f(t, x, y)m φ1(m)φ2(v) dydx

is a non-increasing function of time. Indeed, putting φ(y) = m φ1(m) φ2(p/m), y ∈ Y , the
convexity of φ2 and the monotonicity of φ1 ensure that

φ(y + y′) = (m+m′) φ1(m+m′) φ2

(
m

m+m′ v +
m′

m+m′ v
′
)

≤ φ1(m+m′) (m φ2(v) +m′ φ2(v′))
≤ m φ1(m) φ2(v) +m′ φ1(m′) φ2(v′) ,
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and the function φ satisfies (2.4).
A first interesting consequence of this result is the decay of the kinetic energy (with the choice

φ(y) = |p|2/m, that is, φ1(m) = 1 and φ2(v) = |v|2):∫
Ω

∫
Y

f(t, x, y)
|p|2

m
dydx+

1
2

∫ t

0

∫
Ω

Eke(f(t, x, .)) dxdt =
∫

Ω

∫
Y

f in(x, y)
|p|2

m
dydx, (2.7)

where

Eke(f) :=
∫

Y

∫
Y

a
mm′

m+m′ |v − v′|2 f f ′ dy′dy . (2.8)

A more general property is actually valid. Consider a nonnegative and non-decreasing convex
function λ ∈ C1([0,+∞)) such that λ(0) = 0. With the choice φ(y) = m λ(|p|/m) (that is,
φ1(m) = 1 and φ2(v) = λ(|v|)), the function φ is subadditive and we have∫

Ω

∫
Y

f(t, x, y)mλ(|v|) dydx+
1
2

∫ t

0

∫
Ω

Eλ(f(t, x)) dxdt ≤
∫

Ω

∫
Y

f in(x, y)mλ(|v|) dydx, (2.9)

where

Eλ(f) :=
∫

Y

∫
Y

am Λ
(
|p|
m
,
|p|+ |p′|
m+m′

)
f f ′ dy′dy , Λ(A,B) :=

∫ B

A

(λ′(B)− λ′(z)) dz . (2.10)

Indeed, putting w = (|p|+ |p′|)/(m+m′), the monotonicity of λ entails that

φ(y) + φ(y′)− φ(y + y′) ≥ m′ (λ(|v′|)− λ(w)) +m (λ(|v|)− λ(w)).

The convexity of λ and the identity m′ (|v′| − w) = m (w − |v|) then imply

φ(y) + φ(y′)− φ(y + y′) ≥ m′ (|v′| − w)λ′(w)−m

∫ w

|v|
λ′(z) dz

≥ m

∫ w

|v|
(λ′(w)− λ′(z)) dz = Λ(|v|, w) .

Another consequence is the following. For any convex function ω : R3 → R+, the function

t 7−→
∫

Ω

∫
Y

f(t, x, y)ω(x− v t) dydx

is a non-increasing function of time. Indeed, for each (t, x) ∈ R+ × R3, φ : y 7→ ω(x − v t) is a
convex function of v and is thus subadditive. Therefore, after multiplying (1.1) by ω(x− v t) and
integration, the contribution of the coalescence term is nonnegative, while the terms resulting from
the free transport cancels. In particular, taking ω(z) = |z|θ, θ ≥ 1, z ∈ R3, we obtain∫

Ω

∫
Y

f(t, x, y) |x− v t|θ dydx ≤
∫

Ω

∫
Y

f in(x, y) |x|θ dydx , t ≥ 0 . (2.11)

• Finally, let Φ ∈ C1([0,+∞)) be a nonnegative and convex function satisfying Φ(0) = 0. Then

t 7−→
∫

Ω

∫
Y

Φ(f(t, x, y)) dydx

is a non-increasing function of time. More precisely, we have the following result
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Lemma 2.1 Any solution f to (1.1)-(1.2) satisfies∫
Ω

∫
Y

Φ(f(t, x, y)) dydx+
∫ t

0

∫
Ω

DΦ(f(τ, x)) dxdτ ≤
∫

Ω

∫
Y

Φ(f in(x, y)) dydx , (2.12)

where DΦ(f) := D1
Φ(f) +D2

Φ(f),

D1
Φ(f) :=

1
2

∫
Y 2
a(y, y′) (f ∨ f ′) Φ(f ∧ f ′) dydy′ ≥ 0 , (2.13)

D2
Φ(f) :=

∫
Y 2
a(y, y′) Ψ(f) f ′ 1(m,+∞)×R3(y′) dy′dy ≥ 0 ,

and Ψ(u) := u φ(u) − Φ(u) ≥ 0, φ(u) := dΦ/du(u) for u ≥ 0, . Here and below, we use the
notations f ∨ f ′ = max {f, f ′} and f ∧ f ′ = min {f, f ′}.

When Φ(u) = up, p > 1, this result has been proved in [33] for the Smoluchowski equation.

Proof. We first recall that the convex conjugate Φ∗ of Φ is a nonnegative convex function given
by

Φ∗(u) := sup
w≥0

{u w − Φ(w)}

for u ≥ 0. In addition, we have the Young inequality

u w ≤ Φ(u) + Φ∗(w) , u, w ≥ 0 , (2.14)

and the equality
Φ∗(φ(u)) = Ψ(u) , u ≥ 0 . (2.15)

By (2.14) and (2.15) we have∫
Y 2
a f f ′ φ(f ′′) dy′dy =

∫
Y 2
a (f ∧ f ′) (f ∨ f ′) φ(f ′′) dy′dy

≤
∫

Y 2
a (f ∧ f ′) {Φ(f ∨ f ′) + Φ∗(φ(f ′′))} dy′dy

≤
∫

Y 2
a (f ∧ f ′) Φ(f ∨ f ′) dy′dy +

∫
Y 2
a (f ∧ f ′) Ψ(f ′′) dy′dy.

We now use (1.8) to bound the second term of the right-hand side of the above inequality and
deduce that∫

Y 2
a f f ′ φ(f ′′) dy′dy ≤

∫
Y 2
a (f ∧ f ′) Φ(f ∨ f ′) dy′dy

+
∫

Y 2
(a(y, y′′) + a(y′, y′′)) (f ∧ f ′) Ψ(f ′′) dy′dy

≤
∫

Y 2
a (f ∧ f ′) Φ(f ∨ f ′) dy′dy + 2

∫
Y 2
a(y′, y′′) f ′ Ψ(f ′′) dy′dy

≤
∫

Y 2
a (f ∧ f ′) Φ(f ∨ f ′) dy′dy

+ 2
∫

Y 2
a f ′ Ψ(f) 1(0,m)×R3(y′) dy′dy .

Consequently,∫
Y

Q(f) φ(f) dy =
1
2

∫
Y 2
a f f ′ (φ(f ′′)− φ(f)− φ(f ′)) dy′dy

≤ 1
2

∫
Y 2
a (f ∧ f ′) Φ(f ∨ f ′) dy′dy +

∫
Y 2
a f ′ Ψ(f) 1(0,m)×R3(y′) dy′dy

−
∫

Y 2
a Ψ(f) f ′ dy′dy − 1

2

∫
Y 2
a (Φ(f) f ′ + Φ(f ′) f) dy′dy ,

8



whence (2.12). �

We summarize, in the next result, the a priori estimates on the solutions to (1.1) obtained in
this section.

Theorem 2.2 Assume that f in satisfies

K(f in) :=
∫

Ω

∫
Y

(
Φ(f in(x, y)) + f in(x, y)

(
r(m) + 1 +m+ |p|+mλ

(
|p|
m

)))
dxdy <∞,

(2.16)
for some nonnegative and non-decreasing convex functions Φ ∈ C1([0,+∞)) and λ ∈ C1([0,+∞))
such that Φ(0) = 0 and λ(0) = 0, and some nonnegative and non-increasing function r ∈
C((0,+∞)). Then a solution f to (1.1)-(1.2) formally satisfies

sup
t≥0

∫
Ω

∫
Y

(
Φ(f(t, x, y)) + f(t, x, y)

(
r(m) + 1 +m+ |p|+mλ

(
|p|
m

)))
dxdy ≤ K(f in), (2.17)∫ ∞

0

∫
Ω

(DΦ(f(τ, x)) + Y1(f(τ, x)) + Yr(f(τ, x)) + Eλ(f(τ, x))) dxdτ ≤ 2 K(f in), (2.18)

where Y1, Yr, Eλ and DΦ are defined in (2.6) (with φ = 1 and φ = r, respectively), (2.10) and
(2.12), respectively.

3 Stability result

Definition 3.1 Let f in be a nonnegative function satisfying (1.12). A weak solution to (1.1)-(1.2)
is a nonnegative function

f ∈ C([0,+∞);L1(Ω× Y )) , f(0) = f in ,

satisfying (2.17), (2.18) for some nonnegative and non-decreasing convex functions Φ ∈ C1([0,+∞))
and λ ∈ C1([0,+∞)), and some nonnegative, convex and non-increasing function r ∈ C1((0,+∞))
such that Φ(0) = 0, λ(0) = 0,

lim
u→+∞

λ′(u) = lim
u→+∞

Φ(u)
u

= +∞ and lim
m→0

r(m) = +∞ , (3.1)

together with the equation (1.1) in the sense of distributions. It must also satisfies the qualitative
properties (1.13)–(1.17). Notice that the bounds (2.17), (2.18) imply that equation (1.1) makes
sense since, for any T ∈ R+,

Qi(f) ∈ L1(ΩT × Y ), i = 1, 2. (3.2)

We now state a weak stability principle for weak solutions to (1.1)-(1.2).

Theorem 3.2 For n ≥ 1, let fn be a weak solution to (1.1)-(1.2) with initial datum fn(0). Assume
further that (2.17) and (2.18) hold uniformly with respect to n ≥ 1 with K(fn(0)) ≤ K0 for some
K0 > 0 and functions (Φ, λ, r) satisfying (3.1). Then there exist a subsequence (fnk

) of (fn) and
a function f such that f is a weak solution to (1.1)-(1.2), fnk

−→ f in C([0, T );w − L1(BR × Y )),

Qi(fnk
) ⇀ Qi(f) in L1((0, T )×BR × YR)

(3.3)

for any T,R ∈ R+ and i ∈ {1, 2}, with YR := (0, R)×BR, and∫
Y

ψ(y) fnk
dy −→

∫
Y

ψ(y) f dy in L1((0, T )×BR) (3.4)

for ψ ∈ D(Y ). Here D(Y ) denotes the space of C∞-smooth and compactly supported functions in
Y and C([0, T );w−L1(Ω×Y )) the space of weakly continuous functions from [0, T ) in L1(Ω×Y ).
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4 Proof of Theorem 3.2

In this section, we consider a sequence (fn) of solutions to (1.1) satisfying the requirements of
Theorem 3.2. We first prove that (2.17) and (2.18) guarantee the weak compactness in L1 of (fn)
and (Qi(fn)), i = 1, 2. The next step is to use the properties of the linear transport equation
to obtain the strong L1-compactness of y-averages in a way similar to the Boltzmann equation
[15]. Thanks to the strong compactness thus obtained, we may identify the limit of the nonlinear
coagulation term (Q(fn)).

4.1 Weak compactness of the coalescence term

The aim of this subsection is to prove that (2.17) and (2.18) imply the weak L1-compactness of
(fn) and (Q(fn)). While that of (fn) will follow from Lemma 2.1, the reaction terms are more
difficult to handle and will be split in several parts: an integral where either m or m′ are small, for
which a might be singular, and which will be controlled by (2.6), an integral where p′ is large, for
which a is unbounded, and which will be controlled by (2.9), and the remaining integral is over a
compact subset of Y 2 and will be controlled by (1.9) where a is large and by Lemma 2.1 elsewhere.

We first prove the claim for (fn) and (Q1(fn)).

Lemma 4.1 For each T > 0 and R > 0, the sequence (fn) is weakly compact in L1((0, T )×BR×Y )
and the sequence (Q1(fn)) is weakly compact in L1((0, T )×BR×YR), where YR is defined in (3.3).

Proof. We fix T > 0 and R > 0. Observe first that the first assertion of Lemma 4.1 is a
straightforward consequence of (2.17), (3.1) and the Dunford-Pettis theorem.

We next study the weak compactness properties of (Q1(fn)). Let E be a measurable subset of
(0, T ) × BR × YR and let M , N , δ and R1 be positive real numbers such that R1 ≥ R + 2R2/δ.
Putting ϕ = 1E and

A = An(t, x, y, y′) := a(y, y′) fn(t, x, y) fn(t, x, y′) ,

and performing the change of variables (y, y′) → (y′, y − y′), we have∫
YR

Q1(fn) ϕ dy = I1 + J1

with

2I1 =
∫ δ

0

∫
R3

∫ R

0

∫
B(−p′,R)

Aϕ′′ dydy′ +
∫ R

δ

∫
R3

∫ δ

0

∫
B(−p′,R)

Aϕ′′ dydy′

+
∫ R

δ

∫
{|p′|>R1}

∫ R

δ

∫
B(−p′,R)

Aϕ′′ dydy′

+
∫ R

δ

∫
{|p′|≤R1}

∫ R

δ

∫
B(−p′,R)

Aϕ′′ 1a≥N dydy′ (4.1)

and

J1 =
1
2

∫ R

δ

∫
{|p′|≤R1}

∫ R

δ

∫
B(−p′,R)

Aϕ′′ 1a≤N dydy′.

On the one hand, observing that

|p|
m
≤ R

δ
≤ R1

2R
≤ |p′|+ |p|

m+m′ ,
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so that

mΛ
(
|p|
m
,
|p′|+ |p|
m+m′

)
≥ Λδ,R(R1) := δΛ

(
R

δ
,
R1

2R

)
for y ∈ (δ,R)×B(−p′, R) and y′ ∈ (δ,R)×Bc

R1
, and

A = a (fn ∨ f ′n) (fn ∧ f ′n)

≤ a (fn ∨ f ′n)M 1fn∧f ′n≤M +
M

Φ(M)
a (fn ∨ f ′n) Φ(fn ∧ f ′n)1fn∧f ′n≥M

≤ a (fn + f ′n)M +
M

Φ(M)
a (fn ∨ f ′n) Φ(fn ∧ f ′n), (4.2)

we get

2I1 ≤ 1
r(δ)

∫ δ

0

∫ ∫ R

0

∫
B(−p′,R)

r(m) A dydy′ +
1
r(δ)

∫ R

δ

∫ ∫ δ

0

∫
B(−p′,R)

r(m′) A dydy′

+
1

Λδ,R(R1)

∫ R

δ

∫
{|p′|>R1}

∫ R

δ

∫
B(−p′,R)

m Λ
(
|p|
m
,
|p|+ |p′|
m+m′

)
A dydy′

+M
∫ ∫

Y 2
δ,R+R1

a1a≥N (fn + f ′n) dydy′

+
M

Φ(M)

∫ ∫
Y 2

δ,R+R1

a (fn ∨ f ′n) Φ(fn ∧ f ′n) dydy′

≤ 2
r(δ)

Yr(fn(t, x)) +
1

Λδ,R(R1)
Eλ(fn(t, x))

+2M aδ,R+R1(N)
∫

Y

fn(t, x) dy + 2
M

Φ(M)
D1

Φ(fn(t, x)) .

On the other hand, by (1.9) and (4.2), we have

J1 ≤
∫

Yδ,R+R1

∫
Yδ,R+R1

A1a≤N ϕ′′ dydy′

≤ M N

∫
Yδ,R+R1

∫
Yδ,R+R1

(fn + f ′n) ϕ′′ dydy′ +
2 M

Φ(M)
D1

Φ(fn(t, x))

≤ 2M N

∫
Y 2
fn ϕ′ dy′dy +

2 M
Φ(M)

D1
Φ(fn(t, x)) .

We now gather the previous estimates and integrate over (0, T )×BR. Owing to (2.17) and (2.18),
we end up with

2
∫ T

0

∫
BR

∫
YR

Q1(fn) ϕ dydxdt ≤ 2 K0

r(δ)
+

K0

Λδ,R(R1)
+

4 M
Φ(M)

K0

+2M aδ,R+R1(N)K0 + M N

∫ T

0

∫
BR

∫
Y 2
fn ϕ′ dy′dydxdt .

Using the already established weak compactness of (fn) in L1((0, T )× BR × Y ) and (1.9), we
may pass to the limit first as |E| → 0, then as N → +∞, R1 → +∞, and finally as M → +∞ and
δ → 0 to conclude that

lim
|E|→0

sup
n≥1

∫ T

0

∫
BR

∫
YR

Q1(fn) 1E dydxdt = 0 ,

after noticing that (3.1) implies that Λδ,R(R1) → +∞ as R1 → +∞. Therefore, (Q1(fn)) is weakly
compact in L1((0, T )×BR × YR) by the Dunford-Pettis theorem. �
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Owing to the structure of the coalescence equation (1.1), it turns out that the weak L1-
compactness of (Q1(fn)) provides some additional information on (Q2(fn)). This fact was first
observed in [28] for the discrete diffusive coagulation equation and a result in the same spirit is
also available for (1.1).

Lemma 4.2 For any R, T > 0, there exists a nonnegative and non-decreasing function Θ =
ΘR,T ∈ C1([0,+∞)) such that

θ(u) :=
dΘ
du

(u) → +∞ when u→ +∞

and ∫ T

0

∫
BR

∫
Yδ,R

θ(fn)Q2(fn) dydxdt ≤ C(δ,R, T ) (4.3)

for any δ ∈ (0, 1).

Proof. From Lemma 4.1, we know that (fn(0)), (fn) and (Q1(fn)) belong to weakly compact
subsets of L1(Ω× Y ) and L1((0, T )× B2R × Y2R), respectively. The Dunford-Pettis theorem and
a refined version of the de la Vallée-Poussin theorem [30, Proposition I.1.1] imply that there is a
nonnegative, convex and non-decreasing function Θ = ΘR,T ∈ C1([0,+∞)) such that

θ(u) :=
dΘ
du

→ +∞ as u→ +∞ and u θ(u) ≤ CΘ Θ(u) , u ≥ 0 ,

for some constant CΘ > 1 and

K1 := sup
n≥1

{∫
B2R

∫
Y2R

Θ(fn(0)) dydx+
∫ T

0

∫
B2R

∫
Y2R

(Θ(fn) + Θ(Q1(fn))) dydxdt

}
< +∞.

We fix χ ∈ D(R3 × Y ), 0 ≤ χ ≤ 1, such that χ ≡ 1 on BR × Yδ,R and suppχ ⊂ B2R × Yδ/2,2R.
We infer from (1.1) and the Young inequality that∫

Ω

∫
Y

Θ(fn(T ))χdydx+
∫

ΩT

∫
Y

θ(fn)Q2(fn)χ dydxdt

=
∫

ΩT

∫
Y

θ(fn)Q1(fn)χ dydxdt+
∫

ΩT

∫
Y

Θ(fn) v · ∇xχ dydxdt+
∫

Ω

∫
Y

Θ(fn(0))χdydx

≤
∫ T

0

∫
B2R

∫
Y2R

{Θ∗(θ(fn)) + Θ(Q1(fn))} dydxdt

+
2
δ

∫ T

0

∫
B2R

∫
Yδ/2,2R

Θ(fn) p · ∇xχ dydxdt+K1 .

Since Θ and θ are nonnegative,

Θ∗(θ(u)) ≤ u θ(u)−Θ(u) ≤ CΘ Θ(u) , u ≥ 0 ,

and since 1Yδ,R
≤ χ, we deduce from the above estimate that∫

ΩT

∫
Yδ,R

θ(fn)Q2(fn) dydxdt ≤
∫

ΩT

∫
Y

θ(fn) Q2(fn) χ dydxdt

≤ 2 K1 +
(
CΘ +

4R
δ
‖∇xχ‖L∞

) ∫ T

0

∫
B2R

∫
Y2R

Θ(fn) dydxdt ,

whence (4.3). �
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Lemma 4.3 For each R, T > 0, the sequence (Q2(fn)) is weakly compact in L1((0, T )×BR×YR).

Proof. We fix T > 0 and R > 0. Let E be a measurable subset of (0, T ) × BR × YR and M , N ,
δ, R1 and R2 be positive real numbers such that R1 ≥ R and R2 ≥ 2R2

1/δ. Putting ϕ = 1E and

A = An(t, x, y, y′) := a(y, y′) fn(t, x, y) fn(t, x, y′) ,

we have ∫
YR

Q2(fn) ϕ dy = I2 + J2 (4.4)

with

I2 =
∫ δ

0

∫
BR

∫ ∞

0

∫
R3
Aϕ dy′dy +

∫
Yδ,R

∫ δ

0

∫
R3
Aϕ dy′dy

+
∫

Yδ,R

∫ ∞

R1

∫
R3
Aϕ dy′dy +

∫
Yδ,R

∫ R1

δ

∫
{|p′|>R2}

Aϕ dy′dy

+
∫

Yδ,R

∫ R1

δ

∫
BR2

Aϕ1a≥N dy′dy (4.5)

and

J2 =
∫

Yδ,R

∫ R1

δ

∫
BR2

Aϕ1a≤N dy′dy.

On the one hand, observe again that

|p|
m
≤ R

δ
≤ R2

2R1
≤ |p|+ |p′|

m+m′ ,

so that

mΛ
(
|p|
m
,
|p|+ |p′|
m+m′

)
≥ Λδ,R(RR2/R1) := δΛ

(
R

δ
,
R2

2R1

)
for y ∈ Yδ,R and y′ ∈ (δ,R1)×Bc

R2
, and that

A = A (1fn≥M + 1fn<M ) ≤ A
θ(fn)
θ(M)

+M
a(y, y′)
|y′|

f ′n |y′|

on Yδ,R × (R1,∞) × R3. Using the growth conditions (1.9) and (1.10), a similar computation to
the one performed to estimate I1 leads to

I2 ≤ 2
r(δ)

Yr(fn(t, x)) +
1

Λδ,R(RR2/R1)
Eλ(fn(t, x))

+
1

θ(M)

∫
Yδ,R

θ(fn)Q2(fn) dy +M ωδ,R(R1)
∫

Y

|y| fn(t, x) dy

+2M aδ,R2(N)
∫

Y

fn dy + 2
M

Φ(M)
D1

Φ(fn(t, x)).

On the other hand, performing exactly the same computations as for J1, we obtain

J2 ≤ 2 M N

∫
Y 2
fn ϕ′ dy′dy +

2 M
Φ(M)

D1
Φ(fn(t, x)) .
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We integrate (4.4) over (0, T )×BR and use the estimates for I2 and J2 and Lemma 4.2 to obtain,
thanks to (2.17) and (2.18),∫ T

0

∫
BR

∫
YR

Q2(fn) ϕ dydxdt ≤ 2 K0

r(δ)
+
K(δ,R)
θ(M)

+M ωδ,R(R1)K0

+
K0

Λδ,R(RR2/R1)
+ 2M aδ,R2(N) K0 +

4 M
Φ(M)

K0

+ 2 M N

∫ T

0

∫
BR

∫
Y 2
fn ϕ′ dy′dydxdt .

Using the already established weak compactness of (fn) in L1((0, T )× BR × Y ), we may pass
to the limit first as |E| → 0, then successively as N → +∞, R2 → +∞ and R1 → +∞, and finally
as M → +∞ and δ → 0, to conclude. �

Thanks to Lemma 4.1 and Lemma 4.3, there are a subsequence of (fn) (not relabeled) and
nonnegative functions f , Q̄1, Q̄2 such that

fn ⇀ f weakly in L1((0, T )×BR × Y ) , (4.6)

and
Qi(fn) ⇀ Q̄i weakly in L1((0, T )×BR × YR) (4.7)

for i = 1, 2, T > 0 and R > 0.
It remains to identify Q̄i, i = 1, 2, in terms of f . Since Q(fn) involves quadratic terms, some

strong compactness is needed and is the subject of the next section.

4.2 Strong compactness of y-averages

Theorem 4.4 Let T > 0 and consider two bounded sequences (gn) and (Gn) of L1(ΩT × Y ) such
that

∂tgn + v · ∇xgn = Gn in ΩT × Y.

Assume further that (gn) is weakly compact in L1((0, T ) × BR × YR) for each R > 0. Then, for
any ψ = ψ(y, y′) ∈ L∞(Y 2) with compact support, there holds∫

Y

gn(t, x, y)ψ(y, y′) dy belongs to a strongly compact subset of L1((0, T )×BR × YR) (4.8)

for each R > 0.

This is a particular case of the velocity averaging lemma [7, 18, 31], noticing that v = v(y) =
p/m satisfies the nondegeneracy condition

meas {y ∈ Y , σ · v(y) = u} = 0

for every σ ∈ S2 and u ∈ R. Nevertheless, it can be seen as a consequence of the classical averaging
lemma [15, 18] as we show below.

Proof. First step. We assume further that (gn) is bounded in L2((0, T ) × BR × YR). We fix
α = α(m) ∈ Cc(R+) and observe that

g̃n(t, x, v) :=
∫ ∞

0

gn(t, x,m,mv)α(m) dm, G̃n(t, x, v) :=
∫ ∞

0

Gn(t, x,m,mv)α(m) dm

belong respectively to a bounded subset of L2
loc(ΩT × R3) and L1

loc(ΩT × R3) and satisfies

∂g̃n

∂t
+ v · ∇xg̃n = G̃n in (0, T )× Ω× R3.
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Using the classical velocity averaging lemma [18], we get that∫
R3

∫ ∞

0

gn(t, x,m,mv)α(m) dmβ(v) dv

belongs to a strongly compact subset of L1
loc(ΩT ) for every β ∈ Cc(R3).

Second step. Performing the change of variables (m, v) → (m, p = mv), the previous step and the
compactness of the support of α imply that (4.8) holds true with ψ(y, y′) = α(m) β(p/m) m−3.

We now fix χ ∈ Cc(R+) and ζ ∈ Cc(R3). Consider k ∈ N and ` ∈ N3. We deduce from
the previous step with α(m) = mk χ(m) and β(v) = v` ζ(v) that (4.8) is valid for ψ(y, y′) =
mk−|`|−3 p` χ(m)ζ(p/m). Therefore, (4.8) holds for ψ(y, y′) = ϕ(y)χ(m)ζ(p/m) for any ϕ ∈ Cc(Ȳ )
by the Stone-Weierstrass theorem.

Choosing ζ ∈ Cc(R3) such that ζ ≡ 1 on Bρ for a sufficiently large ρ (depending on the support
of ϕ and χ), we realize that (4.8) is actually true for ψ(y, y′) = ϕ(y)χ(m) for any ϕ ∈ Cc(Ȳ ).
Finally, using the weak compactness of (gn), we may let χ → 1 and deduce that (4.8) is valid for
ψ(y, y′) = ϕ(y) for any ϕ ∈ Cc(Ȳ ).

We then proceed as in [15, Corollary IV.2] to remove the additional assumption that (gn) is
bounded in L2 (derenormalization technique) and to extend the result to the class of functions
ψ ∈ L∞(Y 2) (density argument), thus completing the proof of Theorem 4.4. �

4.3 Passing to the limit in the coalescence term

We aim to show that Q̄i = Qi(f) for i = 1, 2, where f , Q̄1 and Q̄2 are defined in (4.6) and (4.7).

Step 1. For n ≥ 1, we put

ρn :=
∫

Y

fn dy, ρ :=
∫

Y

f dy,

and claim that

ρn −→ ρ in L1((0, T )×BR) and a.e. in (0, T )×BR (4.9)

for each R > 0. Indeed, fix R > 0. We have ρn = ρM
n + σM

n with

ρM
n :=

∫
YM

fndy

for n ≥ 1 and M > 0. By Theorem 4.4, (ρM
n ) belongs to a strongly compact subset of L1((0, T )×

BR) for each M > 0, while σM
n satisfies

σM
n :=

∫
Y c

M

fn dy ≤ 1
M

∫
Y

fn |y| dy

and thus converges to zero in L1((0, T ) × BR) as M → +∞, the convergence being uniform with
respect to n ≥ 1 by (2.17). The claim (4.9) then readily follows.

Step 2. We next consider ϕ ∈ D(Y ) and R > 0 such that suppϕ ⊂ YR. Let δ, N , R1 and R2 be
positive real numbers such that R1 ≥ R+ 2R2/δ and R2 ≥ 2R2

1/δ, and put

b1 =
1
2
aϕ′′ 1a≤N 1X1 , b2 = aϕ1a≤N 1X2 ,

with X1 = {(y, y′) ∈ Y 2;m,m′ ∈ [δ,R], p′ ∈ BR1 , p ∈ BR(−p′)}, X2 = {(y, y′) ∈ Y 2; y ∈
Yδ,R, m

′ ∈ [δ,R1], p′ ∈ BR2}.
We first claim that, for i = 1, 2, η ∈ (0, 1) and R0 > 0, there holds

1
1 + η ρn

∫
Y

fn

∫
Y

bi f
′
n dy

′ dy ⇀
1

1 + η ρ

∫
Y

f

∫
Y

bi f
′ dy′ dy (4.10)
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weakly in L1((0, T )×BR0). Indeed, notice that, since bi ∈ L∞(Y 2) with compact support, Theo-
rem 4.4 and (4.9) imply that

1
1 + η ρn

∫
Y

bi f
′
n dy

′ → 1
1 + η ρ

∫
Y

bi f
′ dy′ a.e. in (0, T )×BR0 × YR ,

and it is bounded in L∞(ΩT × Y ) by N ‖ϕ‖L∞/η. Combining these properties with the weak
convergence (4.6) of (fn) yields (4.10) by standard integration arguments, see [29, Lemma A.2] for
instance.

We now aim at passing to the limit as η → 0. As a first consequence of Lemma 4.3 and (4.10),
we obtain that∫ T

0

∫
BR0

∫
Y 2

bi f f
′

1 + η ρ
dy′ dy dx dt ≤ lim inf

n→+∞

∫ T

0

∫
BR0

∫
Y 2

bi fn f
′
n

1 + η ρn
dy′ dy dx dt

≤ sup
n≥1

∫
ΩT

∫
Y

Qi(fn) dy dx dt

for each η ∈ (0, 1). The parameters R0, R, N , δ, R1, R2 and η being arbitrary, we deduce from
the Fatou lemma that∫ T

0

∫
BR0

∫
Y

∫
Y

aϕ f f ′ dy′ dy dx dt ≤ sup
n≥1

∫
ΩT

∫
Y

Q2(fn) dy dx dt <∞ . (4.11)

We next observe that, for M ≥ 1 and η ∈ (0, 1), we have

ηρn

1 + η ρn
=

ηρn

1 + η ρn
(1ρn<M + 1ρn≥M ) ≤ ηM + 1ρn≥M .

Consequently,

sup
n≥1

∫ T

0

∫
BR0

ηρn

1 + η ρn

∫
Y 2
bi fn f

′
n dy

′ dy ≤ ηM sup
n≥1

∫
ΩT

∫
YR

Q2(fn) dy dx dt

+ sup
n≥1

∫ T

0

∫
BR0

∫
YR

1ρn≥M Q2(fn) dy dx dt .

We first use (2.18) to pass to the limit as η → 0 and then use Lemma 4.3 and (4.9) to let M → +∞
and conclude that

lim
η→0

sup
n≥1

∫ T

0

∫
BR0

ηρn

1 + η ρn

∫
Y 2
bi fn f

′
n dy

′ dy dx dt = 0 .

Also, it follows from (4.10) that

lim
η→0

∫ T

0

∫
BR0

ηρ

1 + η ρ

∫
Y 2
bi f f

′ dy′ dy dx dt = 0 .

Combining the previous two identities with (4.10), we end up with∫
Y

fn

∫
Y

bi f
′
n dy

′ dy ⇀

∫
Y

f

∫
Y

bi f
′ dy′ dy (4.12)

weakly in L1((0, T )×BR0).

Step 3. We now show that Q̄i = Qi(f) for i = 1, 2. For i = 1, 2, we write∫
Y

Qi(fn)ϕdy = In
i +

∫
Y

fn

∫
Y

bi f
′
n dy

′ dy ,
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where In
1 and In

2 are given by (4.1) and (4.5) with A = a fn f
′
n, respectively. Also,∫

Y

Qi(f)ϕdy = Ii +
∫

Y

f

∫
Y

bi f
′ dy′ dy ,

where I1 and I2 are given by (4.1) and (4.5) with A = a f f ′, respectively. By (4.11) and the
analysis of Section 3, we have

In
i + Ii → 0 in L1(ΩT × Y )

uniformly with respect to n ≥ 1 as N → +∞, R2 → +∞, R1 → +∞ and δ → 0. This last fact
and (4.12) then imply that ∫

Y

Qi(fn)ϕdy ⇀

∫
Y

Qi(f)ϕdy

weakly in L1((0, T )×BR0), from which we conclude that Q̄i = Qi(f) for i = 1, 2. Owing to (4.6)
and (4.7), it is now a standard matter to pass to the limit in the equation satisfied by fn and
obtain that f satisfies (1.1) in the sense of distributions.

4.4 Further properties of f

In fact, owing to (2.17), (3.1) and the Dunford-Pettis theorem, the first assertion of Lemma 4.1
can be strenghtened.

Lemma 4.5 For T > 0 and R > 0, there is a weakly compact subset KR of L1(BR× Y ) such that
fn(t) ∈ KR for each t ∈ [0, T ] and n ≥ 1.

We now improve the convergence (4.6) of (fn) to (3.3). Consider T > 0 and R > 0. On the
one hand, it follows from Lemma 4.5 that {fn(t) , n ≥ 1} belongs to a weakly compact subset of
L1(BR × Y ) for each t ∈ [0, T ]. On the other hand, we infer from (1.1) and (2.18) that∣∣∣∣∫

Ω

∫
Y

(fn(t+ h)− fn(t)) ψ dydx
∣∣∣∣ ≤ C(ψ) K0 h

for every every ψ ∈ D(Ω× Ȳ ), t ∈ [0, T ) and h ∈ (0, T − t), whence

lim
h→0

sup
n≥1

∣∣∣∣∫
Ω

∫
Y

(fn(t+ h)− fn(t)) ψ dydx
∣∣∣∣ = 0 (4.13)

for every ψ ∈ D(Ω × Ȳ ) and t ∈ [0, T ). A density argument and Lemma 4.1 then imply that
(4.13) actually holds true for every ψ ∈ L∞(BR× Y ) (recall that a function in L∞(BR× Y ) is the
pointwise limit of a sequence of functions in D(Ω×Ȳ ) which is bounded in L∞(BR×Y )). Therefore,
a variant of the Arzelà-Ascoli theorem entails that, up to the extraction of a subsequence,

fn −→ f in C([0, T ];w − L1(BR × Y )) .

We next check that f enjoys the properties listed in Definition 3.1. Owing to (4.6) and the con-
vexity of Φ, standard weak compactness arguments entail that f satisfies (2.17). Next, proceeding
as in Section 4.3, we obtain that Y1(f), Yr(f) and Eλ(f) belong to L1(R+ × Ω) with the help of
the bound (2.18). It does not seem possible to use a similar argument to check that DΦ(f) belongs
to L1(R+ × Ω) and we thus proceed directly on the equation satisfied by f . More precisely, we
approximate Φ by a sequence of convex functions growing at most linearly at infinity and employ
approximation arguments as in [16, Section 2] to show that DΦ(f) belongs to L1(R+ × Ω). We
finally prove the strong continuity of f as in [16, Corollary II.2] with the help of the L1-bound on
r f to control the behaviour of f for small m and the following lemma to control the behaviour of
f for large x.
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Lemma 4.6
lim

R→+∞
sup

t∈[0,T ]

∫
{|x|≥R}

∫
Y

f(t, x, y) dydx = 0 .

Proof. Let A > 0. We multiply (1.1) by m ∧ A and integrate over Y , which is allowed since
Q(f) and f belong to L1(ΩT × Y ) for every T > 0. The contribution of the collision term being
nonnegative by (2.1), we get

∂

∂t

∫
Y

(m ∧A) f(t, x, y) dy + divx

∫
Y

(m ∧A) v f(t, x, y) dy ≤ 0 in D′(ΩT ), ∀A > 0.

We obtain (1.13) by passing to the limit A→ +∞.
Next, let ξ ∈ C∞(R3) be such that 0 ≤ ξ ≤ 1, ξ(x) = 0 if |x| ≤ 1/2 and ξ(x) = 1 if |x| ≥ 1.

For R ≥ 1 and x ∈ R3, we put ξR(x) = ξ(x/R). Let R ≥ 1. We now multiply (1.13) by ξR(x) and
integrate over Ωt to obtain∫

Ω

ξR(x) ρ(t, x) dx ≤
∫

Ω

ξR(x) ρin(x) dx+
‖∇ξ‖L∞

R

∫ t

0

∫
Ω

j(τ, x) dxdτ

≤
∫

Ω

ξR(x) ρin(x) dx+
‖∇ξ‖L∞

R
K(f in) t ,

thanks to (2.17).
Now, for t ∈ [0, T ] and δ ∈ (0, 1), it follows from (2.17) and the above inequality that∫

{|x|≥R}

∫
Y

f(t, x, y) dydx ≤ 1
r(δ)

∫
{|x|≥R}

∫ δ

0

∫
R3
r(m) f(t, x, y) dydx

+
1
δ

∫
{|x|≥R}

ξR(x)
∫ ∞

δ

∫
R3
mf(t, x, y) dydx

≤ K(f in)
r(δ)

+
1
δ

∫
{|x|≥R/2}

ρin(x) dx+
‖∇ξ‖L∞

δ R
K(f in)T .

Lemma 4.6 then follows from (1.12) and (3.1) by letting first R → +∞ and then δ → 0 in the
above inequality. �

Let us finally briefly explain how it is possible to get the additional qualitative properties
(1.14)–(1.17). Mass decreasing (1.14) (it should be a mass conservation but we do not know how
to prove it) is straitforwardly obtained integrating (1.13). For (1.16), we may consider a sequence
(Φk) of convex functions growing at most linearly at infinity such that Φk(s) ↗ sp as k → ∞
for any s > 0 and we first establish that ‖Φk(f(t, .))‖L1 is a non-increasing function of time by
a direct (and allowed) computation as it has been (formally) done in Lemma 2.1. Then we let
k → ∞ and we conclude by the monotoneous convergence Theorem. Concerning (1.17), we may
argue as follows. We assume that the sequence of solutions (fn) satisfies

t 7−→
∫

Ω

∫
Y

fn(t, x, y)mφ(m) Φ(|v|) dydx is a non-increasing function of time, (4.14)

for any decreasing function φ ∈ L∞(R+) and any convex function Ψ which grows at most quadrat-
icaly at infinity. In particular, ‖fn(t, .)m |v|2‖L1 is uniformally bounded. That is not a re-
strictive assumption, at least for an approximated solution, because (4.14) has been (formally)
derived in section 2. We then consider φ(m) = φR(m) = 10≤m≤R and Ψ(s) = ΨR(s) =
s2 10≤s≤R + (2Rs−R2)1s≥R and for A ≥ R we write∫

Ω

∫
Y

fn(t, x, y)mφR(m) ΨR(|v|) dydx =
∫

Ω

∫
Y

fn(t, x, y)mφR(m) ΨR(|v|)1|v|≤A dydx

+
∫

Ω

∫
Y

fn(t, x, y)mφR(m) ΨR(|v|)1|v|≤A dydx.
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Since mφR(m) ΨR(|v|)1|v|≤A ∈ L∞(Y ) and∫
Ω

∫
Y

fn(t, x, y)mφR(m) ΨR(|v|)1|v|≤A dydx ≤
2R
A

∫
Ω

∫
Y

fn(t, x, y)m |v|2 dydx ≤ 2R
A

C0,

we may pass to the limit n→∞ and we get∫
Ω

∫
Y

fn(t, x, y)mφR(m)ΨR(|v|) dydx→
∫

Ω

∫
Y

f(t, x, y)mφR(m) ΨR(|v|) dydx.

As a consequence, we have yet proved that for any R ≥ 0

t 7−→
∫

Ω

∫
Y

f(t, x, y)mφR(m) ΨR(|v|) dydx is a non-increasing function of time. (4.15)

The fact that the energy is non-increasing (1.17) then follows from (4.15), leting R→∞ and using
the monotoneous convergence Theorem.

5 Large time behaviour and pressureless gases system

We first prove the last assertion of Theorem 1.1. Let f be a weak solution to (1.1)-(1.2) in the
sense of Definition 3.1. We consider an increasing sequence (tn)n≥1, tn → +∞, of positive real
numbers and put fn(t, .) := f(tn + t, .) for t ≥ 0 and n ≥ 1. Owing to Definition 3.1, we realize
that the sequence (fn) satisfies the assumptions of Theorem 3.2. Therefore, fixing T > 0, it follows
from Theorem 3.2 that, up to the extraction of a subsequence,

fn(t) ⇀ F weakly in L1(ΩT × Y ).

Moreover, on the one hand, we infer from (4.12) with b2 = a1a≤N 1Y 2
δ,R

that∫
Y 2

δ,R

a1a≤N fn f
′
n dy

′dy ⇀

∫
Y 2

δ,R

a1a≤N F F ′ dy′dy weakly in L1((0, T )×BR).

On the other hand, the bound (2.18) yields∫
ΩT

∫
Y 2
a fn f

′
n dy

′dydxdt ≤
∫ ∞

tn

∫
Ω

Y1(f) dxdt −→ 0.

Therefore, ∫ T

0

∫
BR

∫
Y 2

δ,R

a1a≤N F F ′ dy′dydxdt = 0,

whence
aF F ′ = 0 a.e. on (0, T )× R3 × Y 2.

Consequently, F ≡ 0 a.e., since 0 ≤ F ∈ L1 and a > 0 a.e. on Y 2 by (1.7). Since f is nonnegative
with a vanishing weak limit, we actually have a strong convergence in L1.

Remark 5.1 When Ω = R3 and |x| f in ∈ L1(Ω × Y ), an alternative proof of the convergence to
zero may be performed with the help of (2.11) and (2.12). We refer to [4, 34] for more details
about this dispersion argument.

Remark 5.2 It is mathematically challenging to have a better understanding of the relationship
between the coalescence equation (1.1) and the pressureless gases system (1.19). Since colliding
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particles always stick together in the pressureless gases system, one can expect that it is the natural
hydrodynamic limit of the coalescence equation:

∂tfε + v · ∇xfε =
1
ε
Q(fε) .

This is not true if fε(0) = f in satisfies (1.12). Indeed, for i = 1, 2, we have

1
ε

∫
ΩT

∫
Y

Qi(fε) dy dx dt ≤
2
ε

∫
ΩT

Y1(fε) dx dt ≤ 4 ‖f in‖L1 ,

and ‖Φ(fε(t))‖L1 ≤ ‖Φ(f in)‖L1 for some Φ as in Definition 3.1. We may then argue as above
to prove that fε → 0 as ε → 0. It would be interesting to figure out whether, if we start from a
sequence of “well-prepared” initial data, the sequence (fε) converges to a non-trivial solution to
(1.1) of the form (1.18).

6 Proof of Theorem 1.1

The proof is essentially the same as that in [29, Section 5] and proceeds in two steps: we first
consider an approximated problem and then to use the stability result (Theorem 3.2) in order to
pass to the limit. For the sake of completeness, we sketch below the main ingredients of these two
steps.

Step 1. Approximation. We introduce the modified coalescence term

Qδ,λ(g) := Q̃δ(g) + λ g,

with
Q̃δ(g) :=

1
1 + δ ρg

Qaδ
(g), ρg :=

∫
Y

|g| dy

and where Qaδ
is defined by (1.3), (1.4) with the coalescence kernel aδ(y, y′) := min{a(y, y′), 1/δ}.

For λ ≥ δ−2 we obviously get that Qδ,λ maps X+ in X+, where the Banach space (X, ‖.‖X) is
defined by

X := {g ∈ L∞(Y ); (1 + |y|)5 g ∈ L∞(Y )} ,

with ‖g‖X := ‖(1 + |y|)5 g‖L∞ and X+ denotes the positive cone of X. Moreover,

∀g ∈ X, ‖Qδ,λ(g)‖X ≤ C‖g‖X (6.1)
∀g1, g2 ∈ X, ‖gi‖X ≤ R =⇒ ‖Qδ,λ(g2)−Qδ,λ(g1)‖L1(Y ) ≤ CR‖g2 − g1‖L1(Y ) (6.2)

for some constants depending only on δ, λ (and R).
We next consider fin ∈ L∞(Ω;X+) and T > 0. Putting B := ‖f in‖L∞(Ω;X), we define the

metric space (XT , d) by

XT :=

{
g ∈ C([0, T ];L1(Ω× Y )) ∩ L∞((0, T )× Ω;X) , sup

t∈[0,T ]

‖g(t)‖L∞(Ω;X) ≤ 2B

}
,

d(g1, g2) := sup
t∈[0,T ]

‖(g1 − g2)(t)‖L1(Ω×Y ) , g1, g2 ∈ XT ,

and the map Φ : XT → XT in the following way: for any g ∈ XT , h = Φ(g) is the unique solution
to

∂th+ v · ∇xh+ λh = Qδ,λ(g), h(0) = f in,
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with periodic boundary conditions when Ω is the torus and with the null flux boundary conditions
when Ω is bounded. It is straightforward to verify that Φ is well-defined and satisfies

g ≥ 0 =⇒ Φg ≥ 0,

by the maximum principle for λ > δ−2. In addition, we infer from (6.1) and (6.2) that there exist
T > 0 and k ∈ (0, 1) such that

g ∈ XT =⇒ Φ(g) ∈ XT

and
d (Φ(g1),Φ(g2)) ≤ k d(g1, g2) for g1, g2 ∈ XT .

By the contracting map theorem, Φ has a unique fixed point fδ in XT , which is actually a solution
to the modified coalescence equation

∂tfδ + v · ∇xfδ = Q̃δ(fδ) in (0, T )× Ω× Y, (6.3)
fδ(0) = f in in Ω× Y, (6.4)

with periodic boundary conditions when Ω is the torus and with the null flux boundary conditions
when Ω is bounded.

By standard iterative arguments, (6.1) ensures that fδ is in fact a global solution (with T = ∞)
and satisfies

‖fδ(t)‖L∞(Ω;X) ≤ exp(C(1 + t)) t ≥ 0.

Step 2. The limit δ → 0. Given now an initial data f in satisfying the condition (1.12), we
introduce the approximation f in

δ given by

f in
δ (x, y) := min

{
f in(x, y),

1
δ

}
1Ωδ

(x)1Bδ−1 (y)

with Ωδ = Ω when Ω is either the torus or a bounded domain, and Ωδ := B 1
δ

when Ω = R3.
Clearly, f in

δ ∈ X+ and we denote by fδ the corresponding solution to the modified coalescence
equation (6.3), (6.4).

We first show that, under the assumption (1.12), the initial data f in and f in
δ satisfy (2.16)

uniformly with respect to δ. For that purpose, we collect some properties of f in in the next
lemma.

Lemma 6.1 Assume that f in satisfies (1.12). There exist two nonnegative and non-decreasing
convex functions Φ ∈ C1([0,+∞)) and λ ∈ C1([0,+∞)) and a nonnegative, convex and non-
increasing function r ∈ C1((0,+∞)) depending only on f in satisfying Φ(0) = 0, λ(0) = 0, (3.1)
and such that ∫

Ω

∫
Y

Φ
(
f in(x, y)

)
+ f in(x, y)

(
r(m) + λ

(
|p|
m

))
dydx < +∞ . (6.5)

Proof. Since f in ∈ L1(Ω × Y ), the de la Vallée-Poussin theorem [14, 35] ensures that there is
a nonnegative and non-decreasing convex function Φ ∈ C1([0,+∞)) satisfying Φ(0) = 0, (3.1)
and Φ(f in) ∈ L1(Ω × Y ). Similarly, it follows from (1.12) that (x, y) 7→ p/m belongs to L1(Ω ×
Y ;mf in(x, y)dxdy) and the de la Vallée-Poussin theorem [14, 35] ensures that there is a nonnegative
and non-decreasing convex function λ ∈ C1([0,+∞)) satisfying λ(0) = 0, (3.1) and∫

Ω

∫
Y

mλ

(
|p|
m

)
f in(x, y) dydx < +∞ .
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We next notice that f in ∈ L1(Ω× Y ) implies that

(x, y) 7−→ 1
m
∈ L1(Ω× Y ;mf in(x, y)dxdy) .

Using again the de la Vallée-Poussin theorem, we conclude that there is a nonnegative, non-
increasing and convex function σ ∈ C1([0,+∞)) satisfying σ(0) = 0, σ(u)/u → +∞ as u → +∞
and

(x, y) 7−→ σ

(
1
m

)
∈ L1(Ω× Y ;m f in(x, y)dxdy) .

Putting r(m) := m σ(1/m) for m > 0, this last fact implies that f in ∈ L1(Ω×Y, r(m)dxdy), while
the behaviour of σ for large u entails that r fulfils (3.1). Next, since σ is a convex function with
σ(0) = 0, m 7→ σ(m)/m is a non-decreasing function and r is thus a non-increasing function. The
other properties of r finally follows from the properties of σ. Summarizing, we have constructed
three functions Φ, λ and r with the properties stated in Lemma 6.1 such that (6.5) holds true. �

Since f in
δ ≤ f in, we readily obtain that (6.5) holds for (f in

δ ) uniformly with respect to δ. Owing
to the properties of fδ, we may justify the computations performed in Section 2 and deduce that
the family {fδ} satisfies the bounds (2.17) and (2.18) uniformly with respect to δ (notice also that
the modified coalescence kernel aδ/(1 + δ ρfδ

) satisfies (1.7)-(1.10) uniformly with respect to δ).
Arguing as in the proof of Theorem 3.2, in the same way as it is done in [29], we deduce that there
are a subsequence (fδk

) of (fδ) and a function f such that
fδk

−→ f in C([0, T );w − L1(BR × Y )),

Q̃δ(fδk
) ⇀ Q(f) in L1((0, T )×BR × YR)

for any T > 0 and R > 0. We therefore conclude that f is a weak solution to (1.1)-(1.2) enjoying
the properties stated in Theorem 1.1.

A From (r, v) to (m, p).

We first show in this appendix that the equation (1.1) with the collision term Q(f) given by (1.3)
and (1.4) is deduced from the usual droplet equation as it is presented for instance in [38], through
a simple change of variables.

Let us consider a function g = g(t, x, r, v) which solves the equation:

∂tg + v · ∇xg = Q(g) in (0,+∞)× Ω× R+ × R3, (A.1)

where Q(g) := Q1(g)−Q2(g) is given by

Q1(g)(r, v) =
1
2

∫
R3

∫ r

0

r11

r111

B(r1, r∗, v1, v∗) g(r1, v1) g(r∗, v∗) dr∗dv∗, (A.2)

Q2(g)(r, v) =
∫

R3

∫ ∞

0

B(r, r∗, v, v∗) g(r, v) g(r∗, v∗)dr∗dv∗, (A.3)

and

r1 =
(
r3 − r∗3

)1/3
, v1 =

r3 v − r∗3 v∗

r3 − r∗3
, (A.4)

B(r, r∗, v, v∗) = E(r, r∗, v, v∗)π (r + r∗)2 |v − v∗|, (A.5)

the function E being a positive function, called the coalescence efficiency. We perform the following
change of variables:

m := r3, p := r3 v, and f(t, x,m, p) :=
m−11/3

3
g

(
t, x,m1/3,

p

m

)
.
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It then follows from (A.1) that

∂tf(t, x,m, p) =
m−11/3

3
∂tg

(
t, x,m1/3,

p

m

)
=

m−11/3

3
Q1(g)

(
t, x,m1/3,

p

m

)
− m−11/3

3
Q2(g)

(
t, x,m1/3,

p

m

)
.

We now compute the two terms on the right-hand side. Starting with Q2, we obtain

Q2(g)
(
t, x,m1/3,

p

m

)
= g

(
t, x,m1/3,

p

m

) ∫
R3

∫ ∞

0

B
(
m1/3, r∗,

p

m
, v∗

)
g(t, x, r∗ v∗) dr∗, dv∗.

We change variables under the integral

m∗ = r∗3, p∗ = r∗3 v∗, dr∗ dv∗ =
1
3
m∗−11/3 dm∗ dp∗,

and obtain,

Q2(g)
(
t, x,m1/3,

p

m

)
= 3 m11/3 f(t, x,m, p)

∫
R3

∫ ∞

0

a(m, p,m∗, p∗) f(t, x,m∗, p∗)dm∗dp∗

with

a(m, p,m∗, p∗) = B

(
m1/3,m∗1/3,

p

m
,
p∗

m∗

)
.

On the other hand, using the same change of variables and (A.4), we obtain

Q1(g)
(
t, x,m1/3,

p

m

)
=

1
2

∫
R3

∫ m1/3

0

m11/3

r111

B(r1, r∗, v1, v∗) g(t, x, r1, v1) g(t, x, r∗, v∗) dr∗ dv∗

=
3
2
m11/3

∫
R3

∫ m

0

a(m−m∗, p− p∗,m∗, p∗) f(t, x,m−m∗, p− p∗) f(t, x,m∗, p∗) dm∗ dp∗.

Using the notation y = (m, p) introduced in Section 1 and (A.5), we may write a as follows

a(y, y′) = B

(
m1/3, (m′)1/3,

p

m
,
p′

m′

)
= E(m1/3, (m′)1/3, v, v′)

(
m1/3 + (m′)1/3

)2

|v − v′|.

B Properties of aHS and aNP

We check here that Theorem 1.1 guarantees the existence of a weak solution to (1.1)-(1.2) when
the coalescence kernels are given by either (1.5) or (1.6). For that purpose, we only have to show
that these kernels enjoys the properties (1.8)-(1.10). We first consider aHS and prove the following
result.

Lemma B.1 For any α ≥ 0 the function

a(y, y′) =
(
mα +m′α)2 |v − v′|

satisfies (1.8) and (1.9). Moreover, if 0 ≤ α < 1/2, it also satisfies (1.10).

Proof. Let us start with (1.8). To this end, we notice that,

|v − v′′| =
∣∣∣∣v (m+m′)

m′′ − mv +m′v′

m′′

∣∣∣∣ =
m′

m′′ |v − v′|,
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and similarly,
|v′ − v′′| = m

m′′ |v − v′|.

Therefore,

a(y, y′′) + a(y′, y′′) =
{(
mα +m′′α)2 m′

m′′ +
(
m′α +m′′α)2 m

m′′

}
|v − v′|

≥
{(
mα +m′α)2 m′

m′′ +
(
m′α +mα

)2 m

m′′

}
|v − v′|

≥
(
mα +m′α)2 |v − v′| = a(y, y′).

On the other hand, it is clear that a is bounded on Y 2
δ,R, so that (1.9) is obviously true. Finally,

if y′ ∈ Y is such that m′ ≥ R′ ≥ 1 +R and y ∈ Yδ,R, we have

a(y, y′) ≤ (Rα +m′α)2
(
R

δ
+ |v′|

)
≤ C(R, δ)

(
m′2α +m′2α−1 |p′|

)
≤ C(R, δ)

R′1−2α
|y′|,

and (1.10) follows since α ∈ [0, 1/2). �

Lemma B.2 For α ∈ [0, 1] and γ ∈ R, we put

a(y, y′) =
(
m+m′

mm′

)α

|v − v′|γ .

If −3 < γ ≤ 0, the function a satisfies (1.8)-(1.10).

Proof. Since α ≤ 1, it follows from the formulae for |v − v′′| and |v′ − v′′| computed in the proof
of Lemma B.1 and the subadditivity of u 7→ uα that

a(y, y′′) + a(y′, y′′) ≥

{
m+m′′

mm′′

(
m′

m′′

)γ/α

+
m′ +m′′

m′m′′

( m

m′′

)γ/α
}α

|v − v′|γ

≥ a(y, y′)

{(
m′

m′′

)(α+γ)/α

+
( m

m′′

)(α+γ)/α
}α

.

Since (α+ γ)/α ≤ 1, the function u 7→ u(α+γ)/α is subadditive, from which we deduce that

a(y, y′′) + a(y′, y′′) ≥ a(y, y′)
{
m′

m′′ +
m

m′′

}γ+α

= a(y, y′) .

We next turn to (1.9). Since γ > −3, there exists q > 1 such that γ q > −3. For y′ ∈ Yδ,R, we
have ∫

Yδ,R

a(y, y′)q dy ≤
(

2
δ

)αq ∫
Yδ,R

∣∣∣∣p− mp′

m′

∣∣∣∣γq

m−γq dy

≤ C R−γq

∫ R

δ

∫
BR(−mp′/m′)

|p|γq dy

≤ C

∫
BR+R2/δ

|p|γq dp
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which is finite since γ q > −3 and does not depend on y′ ∈ Yδ,R. The property (1.9) then follows
from the inequality ∫

Yδ,R

a(y, y′)1a(y,y′)≥M dy ≤ 1
Mq−1

∫
Yδ,R

a(y, y′)q dy .

Finally, we have ∫
Yδ,R

a(y, y′) dy ≤
(

2
δ

)α ∫
Yδ,R

∣∣∣∣ pm − p′

m′

∣∣∣∣γ dy
for m′ ≥ R′ ≥ R and p′ ∈ R3. Now, if |p′|/m′ ≥ 2R/δ, we have∣∣∣∣ pm − p′

m′

∣∣∣∣ ≥ |p′|
m′ −

|p|
m
≥ |p′|

2m′

and ∫
Yδ,R

a(y, y′) dy ≤ C(δ,R)
∫

Yδ,R

∣∣∣∣ p′m′

∣∣∣∣γ dy ≤ C(δ,R)

since γ ≤ 0. On the other hand, if |p′|/m′ < 2R/δ, we have BR/m(−p′/m′) ⊂ B3R/δ and∫
Yδ,R

a(y, y′) dy ≤ C(δ,R)
∫ R

δ

∫
BR/m(−p′/m′)

m3 |p|γ dy ≤ C(δ,R)

since γ > −3. The assertion (1.10) then readily follows. �
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