
A crash course on evolution (linear) PDEs April 24, 2025

LECTURE 3 - PARABOLIC EQUATIONS

We present (the existence part of) the theory of variational solutions for uniformly
elliptic parabolic equations. We next discuss the several approaches for dealing
with the well-posedness issue of linear evolution equations.
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• Topic 9. Introduction to the parabolic equations framework

Content: Parabolic equations, a priori estimates, weak solutions and main result

• Topic 10. Existence of solutions - an implicit Euler scheme approach

Content: The implicit Euler scheme and its convergence

• Topic 11. Existence of solutions - the variational approach of J.-L. Lions

Content: A variant of the Lax-Milgram theorem, an alternative proof in the time
independent case, a time dependent variant

• Topic 12. Generalities about evolution equations and semigroups

Content: Evolution equation and semigroup, explicit semigroup, the spectral analy-
sis approach, perturbation of semigroup, the variational approach, the Hille-Yosida
approach

1. Topic 9. Introduction to the parabolic equations framework

In this lecture we will mainly focus on the parabolic equation

(1.1) ∂tf = L f on (0,∞)× Ω,

on the function f = f(t, x), t ≥ 0, x ∈ Ω ⊂ Rd, where L is the elliptic operator

(1.2) Lf := div(A∇f) + div(af) + b · ∇f + cf

that we complement with an initial condition

(1.3) f(0, x) = f0(x) in Ω.

In order to develop the variational approach for the equation (1.1)-(1.2), we assume
that

f0 ∈ L2(Ω) =: H, which is an Hilbert space,
1
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and we typically assume that the coefficients satisfy

(1.4) A, a, b, c ∈ L∞(Ω), A ≥ νI, ν > 0.

We observe that for any nice function f = f(x), any α ∈ (0, ν) and any β > 0, we
have

⟨Lf, f⟩ :=

∫
Rd

(div(A∇f) + div(af) + b · ∇f + c f)f

= −
∫
Rd

A∇f · ∇f +

∫
Rd

f(b− a) · ∇f +

∫
Rd

c f2

≤ −(ν − β)

∫
Rd

|∇f |2 +
∫
Rd

(c+
|b− a|2

4β
) f2

≤ −α∥f∥2H1 + κ∥f∥2L2 ,

with

κ := ess sup
(
α+

1

4(ν − α)
|b− a|2 + c

)
,

where we have used the Green-Ostrogradski divergence formula for the two first
terms in the second line, the Young inequality uv ≤ βu2/2 + v2/(2β), ∀u, v ≥ 0,
in the third line and we have particularized β := ν − α is the last line. Now, for
a (nice) solution f = f(t, x) to the parabolic equation (1.1)-(1.2)-(1.3)-(1.4), we
compute

1

2

d

dt
∥f(t)∥2L2 =

∫
Rd

(∂tf)f = ⟨Lf, f⟩ ≤ −α∥f(t)∥2H1 + κ ∥f(t)∥2L2 ,

and, thanks to the Gronwall lemma, we deduce

(1.5) ∥f(T )∥2L2 + 2α

∫ T

0

∥f(s)∥2H1 ds ≤ e2κT ∥f0∥2L2 , ∀T.

In other words, we have established

(1.6) f ∈ L∞(0, T ;L2) ∩ L2(0, T ;H1).

It is worth emphasizing at this point that for two (nice) functions f = f(x) and
g = g(x), we have

⟨Lf, g⟩ :=
∫
Rd

(div(A∇f) + div(af) + b · ∇f + c f)g

so that we may compute

(1.7) ⟨Lf, g⟩ = −
∫
Rd

A∇f · ∇g −
∫
Rd

f(a · ∇g) +
∫
Rd

(b · ∇f)g +
∫
Rd

c f g,

thanks to the Green-Ostrogradski divergence formula. Coming back to a nice solu-
tion f = f(t, x) to the parabolic equation (1.1)-(1.2)-(1.3), we may multiply (1.1)
by a test function φ ∈ C1

c ([0, T )× Rd), and integrating by part, we have

−
∫
Rd

f0φ(0)−
∫

U

f∂tφ =

∫
U

φ∂tf =

∫
U

φLf

= −
∫

U

(A∇f + fa) · ∇φ+

∫
U

(b · ∇f + c f)φ.
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That formulation gives a first meaningful (distributional) sense to a solution to the
equation under the sole assumption f ∈ L2(0, T ;H1). Equivalently (by a density
C1

c (Rd) ⊂ H1(Rd) argument), we may write

(1.8) −(f0, φ(0))−
∫ T

0

(f, φ′)dt =

∫ T

0

⟨Lf, φ⟩dt,

for any φ ∈ C1
c ([0, T );H

1).

Definition 1.1. For any given f0 ∈ L2, T > 0, we say that

f = f(t) ∈ L2(0, T ;H1)

is a weak solution to the Cauchy problem associated to the parabolic equation
(1.1)-(1.2)-(1.3) on the time interval [0, T ) if it satisfies the weak formulation (1.8)
for any φ ∈ C1

c ([0, T );H
1). We say that f is a global weak solution if it is a weak

solution on [0, T ) for any T > 0.

Theorem 1.2. With the above definition and assumptions, for any f0 ∈ L2, there
exists at least one global weak solution to the Cauchy problem (1.1)-(1.2)-(1.3)-(1.4).

2. Topic 10. First proof - an implicit Euler scheme approach

In this section, we use the shorthands

(L2, ∥ · ∥L2) = (H, | · |), (H1, ∥ · ∥H1) = (V, ∥ · |∥).

We do emphasize that in formulation (1.7) the RHS makes sense for f, g ∈ V and
more precisely

|⟨Lf, g⟩| ≤M∥f∥V ∥g∥V ,
for a constant M > 0, thanks to the Cauchy-Schwarz inequality in L2(Rd) and
because of the hypothesis (1.4) on the coefficients. A possible choice is M :=
∥A∥L∞ + ∥a∥L∞ + ∥b∥L∞ + ∥c∥L∞ . In other words, taking (1.7) as a definition of
L, we have

L : V → V ′, V ′ := H−1(Rd),

is a linear and bounded operator with

(2.1) ∀ f ∈ V, ∥Lf∥V ′ = sup
g∈BV

⟨Lf, g⟩ ≤M∥f∥V .

Introducing an approximation scheme and next using a weak compactness argument
in the Hilbert space L2(0, T ;V ), we will establish that there exists a function f ∈
L2(0, T ;V ) satisfying the weak formulation (1.8).

Step 1. For a given f0 ∈ H and ε > 0, we seek f1 ∈ V such that

(2.2) f1 − εLf1 = f0.

We introduce the bilinear form a : V × V → R defined by

a(u, v) := (u, v)− ε ⟨Lu, v⟩.
Thanks to the assumptions made on L, we have

|a(u, v)| ≤ |u| |v|+ εM ∥u∥ ∥v∥,
and

(2.3) a(u, u) ≥ |u|2 + ε α ∥u∥2 − ε κ |u|2 ≥ ε α ∥u∥2,
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whenever ε κ < 1, what we assume from now on. On the other hand, the mapping
v ∈ V 7→ (f0, v) is a linear and continuous form. We may thus apply the Lax-
Milgram theorem which implies

∃! f1 ∈ V, (f1, v)− ε⟨Lf1, v⟩ = (f0, v), ∀ v ∈ V.

Step 2. We fix ε > 0 such that εκ < 1/2 and we build by induction the sequence
(fk) in V ⊂ H defined by the family of equations (implicit Euler scheme)

(2.4)
fk+1 − fk

ε
= L fk+1, ∀ k ≥ 0.

From the identity

(fk+1, fk+1)− ε ⟨Lfk+1, fk+1⟩ = (fk, fk+1),

and (2.3) again, we deduce

|fk+1|2 + ε α ∥fk+1∥2 − ε κ |fk+1|2 ≤ |fk| |fk+1| ≤
1

2
|fk|2 +

1

2
|fk+1|2,

and then
|fk+1|2 + 2εα ∥fk+1∥2 ≤ (1− 2εκ)−1 |fk|2, ∀ k ≥ 0.

Thanks to the discrete version of the Gronwall lemma, we get

|fn|2 + 2α

n∑
k=1

ε∥fk∥2 ≤ (1− 2εκ)−n|f0| ≤ e2κεn |f0|, ∀n ≥ 1.

We now fix T > 0, n ∈ N∗, and we define

ε := T/n, tk = k ε, fε(t) := fk+1 on [tk, tk+1).

The last estimate writes then

(2.5) 2α

∫ T

0

∥fε∥2 dt ≤ e2κT |f0|2.

Step 3. Consider a test function φ ∈ C1
c ([0, T );V ) and define φk := φ(tk), so that

φn = φ(T ) = 0. Multiplying the equation (2.4) by φk and summing up from k = 0
to k = n− 1, we get

−(φ0, f0)−
n−1∑
k=0

(φk+1 − φk, fk+1) =

n−1∑
k=0

ε ⟨Lfk+1, φk⟩.

Introducing the two functions φε, φε : [0, T ) → V defined by

φε(t) := φk and φε(t) :=
tk+1 − t

ε
φk +

t− tk
ε

φk+1 for t ∈ [tk, tk+1),

in such a way that

φ′
ε(t) =

φk+1 − φk

ε
for t ∈ (tk, tk+1),

the above equation also writes

(2.6) −(φ(0), f0)−
∫ T

0

(φ′
ε, f

ε) dt =

∫ T

0

⟨Lfε, φε⟩ dt.

On the one hand, from (2.5) and the fact that L2(0, T ;V ) is a Hilbert space, we
know that up to the extraction of a subsequence, there exists f ∈ L2(0, T ;V ) such
that fε ⇀ f weakly in L2(0, T ;V ) and thus Lfε ⇀ Lf weakly in L2(0, T ;V ′). On
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the other hand, from the above construction, we have φ′
ε → φ′ and φε → φ both

uniformly in L∞(0, T ;V ) (using that φ and φ′ belong to C([0, T ];V ) and thus are
uniformly continuous). We may then pass to the limit as ε→ 0 in (2.6) and we get
(1.8). More concretely, we are just saying that

fε ⇀ f, ∇fε ⇀ ∇f weakly in L2(U ),

φ′
ε → φ′, φε → φ ∇φε ⇀ ∇φ strongly in L2(U ),

and we may pass to the limit ε→ 0 in both integrals∫ T

0

(φ′
ε, f

ε) dt =

∫
U

φ′
εf

ε

and ∫ T

0

⟨Lfε, φε⟩ dt = −
∫

U

∇fε · ∇φε +

∫
U

(b · ∇fε + cfε)φε.

Exercise 2.1. Establish the same existence result under the assumptions

a, b ∈ Ld(Ω), c ∈ L1
loc(Ω), c+ ∈ Ld/2(Ω).

3. Topic 11. Second proof of the existence part - a variational
approach

3.1. A variant of the Lax-Milgram theorem. We consider a Hilbert space H
endowed with a scalar product (·, ·) and the associated norm | · |. We consider next
a subspace Φ ⊂ H endowed with a pre-Hilbertian scalar product ((·, ·)) and the
associated norm ∥ · ∥ such that

(3.1) |φ| ≤ C∥φ∥, ∀φ ∈ Φ.

We finally consider a bilinear form E : H × Φ → R such that

∀φ ∈ Φ, ∃Cφ ≥ 0, |E(f, φ)| ≤ Cφ|f |, ∀ f ∈ H ,(3.2)

∃α > 0, E(φ,φ) ≥ α∥φ∥2, ∀φ ∈ Φ.(3.3)

Theorem 3.1. For any linear and continuous form ℓ : Φ → R, meaning that

(3.4) |ℓ(φ)| ≤ C∥φ∥, ∀φ ∈ Φ,

there exists at least one f ∈ H such that

(3.5) E(f, φ) = ℓ(φ), ∀φ ∈ Φ.

Proof of Theorem 3.1. For a fixed φ ∈ Φ, the mapping f 7→ E(f, φ) is a linear and
continuous form on H , so that, from the Riesz-Fréchet representation theorem in
H , there exists Aφ ∈ H such that

(3.6) E(f, φ) = (f,Aφ), ∀ f ∈ H , φ ∈ Φ,

and A : Φ → H is a linear mapping. Because of (3.3), A is one-to-one (injection).
On the linear subspace G := AΦ ⊂ H , we may then define the inverse linear
mapping B := A−1 : G → Φ. Using (3.6), (3.3) and (3.1), for any g ∈ G , we have

α∥Bg∥2 ≤ E(Bg,Bg) = (Bg, g) ≤ |Bg||g| ≤ C∥Bg∥|g|,
from what we immediately deduce that B is bounded with norm ∥B∥ ≤ C/α.

Defining G the closure of G in H (for the norm | · |) and Φ̂ the completion of Φ

for the norm ∥ · ∥, we may uniquely extend B as B̄ : Ḡ → Φ̂, B̄|G = B. We may
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also uniquely extend ℓ as a linear and continuous form ℓ̄ on Φ̂. The equation (3.5)
becomes

(f,Aφ) = ℓ̄(φ), ∀φ ∈ Φ,

or equivalently

(3.7) (f, ψ) = ℓ̄(B̄ψ), ∀ψ ∈ Ḡ .

From the Riesz-Fréchet representation theorem in Ḡ and because ℓ̄ ◦ B̄ is a linear
and continuous mapping on Ḡ , there exists a unique f ∈ Ḡ solution to (3.7), and
this one provides a solution to (3.5). When Ḡ ̸= H , the problem (3.5) has a family
of solutions given by {f}+ Ḡ ⊥. □

3.2. An alternative proof of Theorem 1.2. We consider the parabolic equation
(1.1)-(1.2)-(1.3)-(1.4) with same notations, with A := I and a := 0 for simplicity
and we additionally assume

(3.8) sup c+
1

2
|b|2 ≤ −1

2
.

This additional assumption will be removed in the next section. We define the
Hilbert space H := L2(0, T ;H1(Rd)) endowed with its usual norm and the pre-
Hilbert space Φ := C1

c ([0, T )× Rd) endowed with the norm ∥ · ∥ defined by

∥φ∥2 :=

∫ T

0

∥φ(t, ·)∥2H1(Rd)dt+ ∥φ(0, ·)∥2L2(Rd).

We also define the bilinear form

E(f, φ) :=
∫

U

(∇f · ∇φ− (b · ∇f + cf)φ− f∂tφ) dxdt,

with always U := (0, T )× Rd, and the linear form

ℓ(φ) :=

∫
Rd

φ(0, ·)f0 dx.

We observe that

E(φ,φ) =

∫
U

(|∇φ|2 −∇φ · b φ− cφ2)dxdt+
1

2

∫
Rd

φ(0, x)2dx ≥ 1

2
∥φ∥2,

where we have used the Young inequality and the condition (3.8) in order to get
the last inequality, that E also satisfies (3.2) and that ℓ satisfies (3.4). From Theo-
rem 3.1, we know that there exists f ∈ H satisfying (3.5), or in other words∫

U

(∇f · ∇φ− (b · ∇f + cf)φ− f∂tφ) dxdt =

∫
Rd

φ(0, ·)f0 dx,

for any φ ∈ C1
c ([0, T ) × Rd). Because C1

c ([0, T ) × Rd) ⊂ C1
c ([0, T );H

1(Rd)) with
dense embedding, we deduce that f is in fact a weak-solution in the sense of Defi-
nition 1.1.
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3.3. A time dependent variant of Theorem 1.2. We consider the parabolic
equation

(3.9) ∂tf = Lf := div(A∇f) + div(af) + b · ∇f + cf + F,

where Aij , ai, bi and c are possible time dependent coefficients and where Aij is
uniformly elliptic in the sense that

(3.10) ∀ t ∈ (0, T ), ∀x ∈ Rd, ∀ ξ ∈ Rd Aij(t, x) ξiξj ≥ ν |ξ|2, ν > 0.

Theorem 3.2 (J.-L. Lions). Assume that

(3.11) A, a, b, c ∈ L∞((0, T )× Rd)

and that A satisfies the uniformly elliptic condition (3.10). For any f0 ∈ L2(Rd) and
F := F0 +divF , Fi ∈ L2(U ), there exists at least a weak solution f ∈ L2(0, T ;H1)
to the Cauchy problem associated to (3.9) in the sense that∫

Rd

f(t)φ(t) dx =

∫
Rd

f0φ(0) dx+

∫ t

0

∫
Rd

(Fφ+ f∂tφ) dxds(3.12)

+

∫ t

0

∫
Rd

{(b · ∇f + cf)φ− (A∇f + af) · ∇φ} dxds,

for anyφ ∈ C1
c ([0

Proof of Theorem 3.2. Step 1. We proceed similarly as in the alternative proof of
Theorem 1.2 in Section 3.2 and in particular we define H and Φ in the same way.
We now define the bilinear form on H × Φ by

E(f, φ) :=
∫

U

((A∇f + af) · ∇φ− (b · ∇f + cf)φ− f∂tφ) dxdt

and the linear form on Φ by

ℓ(φ) :=

∫
U

(F0φ− F · ∇φ) dxdt+
∫
Rd

φ(0, ·)f0 dx.

We additionally first assume that

(3.13) sup c ≤ −min(
1

2
,
ν

2
)− 1

2ν
∥a− b∥2L∞ .

In that case, we may observe that

E(φ,φ) =

∫
U

(A∇φ · ∇φ+∇φ · (a− b)φ− cφ2)dxdt+
1

2

∫
Rd

φ(0, x)2dx

≥ min(
1

2
,
ν

2
)∥φ∥2,

that E also satisfies (3.2) and that ℓ satisfies (3.4). Exactly as in Section 3.2, we
deduce the existence of a weak solution f ∈ H to the parabolic equation (3.9) with
the help of Theorem 3.1.

Step 2. We do not assume anymore (3.13). We define cλ := c− λ, with λ > 0 large
enough in such a way that cλ satisfies the additional condition (3.13), and we set
Fλ := e−λtF. We may apply the first step with the choice of functions A, a, b, cλ,
f0, Fλ, and we thus obtain the existence of a variational solution g ∈ H to the
modified equation

(3.14) ∂tg + λg = div(A∇g) + div(ag) + b · ∇g + cg + e−λtF in U ,
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with initial condition g(0, ·) = f0. For any φ ∈ C1
c ([0, T );H

1(Rd)), choosing ϕ :=
eλtφ ∈ C1

c ([0, T );H
1(Rd)) as a test function in the variational formulation of (3.14),

we immediately deduce that f := eλtg ∈ H satisfies (3.12). □

Exercise 3.3. Consider the transport equation

∂tf = div(af) + b · ∇f + cf, f(0) = f0,

with
a, b, c ∈ L∞((0, T )× Rd), f0 ∈ L2(Rd),

and prove the existence of a weak solution f ∈ L2((0, T )×Rd) thanks to the varia-
tional method.

4. Topic 12. Generalities about evolution PDEs

• From well-posed evolution equation to semigroup.
We consider an evolution equation

(4.1) ∂tf = Lf, f(0) = f0.

For two Banach spaces X and X ⊂ C(R+;X), we assume that for any f0 ∈ X,
there exists a unique function f ∈ X which is a solution to the evolution equation
(possibly in a weak sense) and that for any T,R > 0 there exists CT,R such that

sup
[0,T

∥f(t)∥X ≤ CT,R if ∥f0∥ ≤ R.

Then, there exists a semigroup S on X such that the above solution is given by
f = Stf0. We recall the definition of a semigroup:

We say that S = (St)t≥0 is a continuous semigroup of linear and bounded operators
on a Banach space X, or we just say that St is C0-semigroup (or a semigroup) on
X, if the following conditions are fulfilled:

(i) one parameter family of operators: ∀t ≥ 0, f 7→ Stf is linear and continuous
on X;

(ii) continuity of trajectories: ∀f ∈ X, t 7→ St f ∈ C([0,∞), X);

(iii) semigroup property: S0 = I; ∀ s, t ≥ 0, St+s = St Ss;

(iv) growth estimate: ∃κ ∈ R, ∃M ≥ 1,

(4.2) ∥St∥B(X) ≤M eκt ∀ t ≥ 0.

We say that S is a semigroup of contractions if (4.2) holds with M = 1 and κ = 0.

• From semigroup to evolution equation. On the other way round, for a given
semigroup S, we may associate its generator in the following way. We define the
domain

D(L) :=
{
f ∈ X; lim

t↘0

St f − f

t
exists in X

}
,

and next the generator

L f := lim
t↘0

St f − f

t
for any f ∈ D(L).

It turns out that for any f0 ∈ D(L) (resp. f0 ∈ X) the flow f := Stf0 provides
a strong (resp. weak) solution to the evolution equation (4.1) associated to its
generator L.
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• Explicit semigroup. They are some (few) evolution PDEs for which we may
build explicitly the solutions through a representation formula (among them are
the heat equation and the transport equation). That provides in the same time the
solution and the associated semigroup.

• Spectral analysis and evolution equation. They are some evolution PDEs
associated to an integro-differential operator L acting in some Hilbert space H for
which we may establish the existence of spectral basis. That means that there
exists a sequence (ϕk, λk) of H×R such that the space generated by (ϕk) is dense
in H and

(ϕk, ϕℓ) = δkℓ, Lϕk = λϕk, ∀ k, ℓ ≥ 1.

For any f0 ∈ H, the evolution equation (4.1) is equivalent to

f ′k = λkfk, fk(0) = (f0, ϕk)H.

We thus obtain that the function

f(t) :=

∞∑
k=1

eλkt(f0, ϕk)Hϕk

is a solution to (4.1).

• Perturbation / Duhamel formula. Consider a semigroup SB with generator
B and an operator A which is bounded by B (in a sense to specify). We may
then build a (mild) solution to the evolution equation associated to the operator
L := B +A through one of the two Duhamel formulas

SL = SB + SBA ∗ SL = SB + SL ∗ ASB,

that we establish to be true using the Banach-Picard point Theorem exactly as
we have done for perturbing the heat equation (in the first lecture) and the free
transport equation (in the second lecture).

• The variational approach. In a Hilbert space framework, the variational
approach of J.-L. Lions provides an efficient tools for proving the existence of solu-
tions for a large class of evolution PDE, including parabolic equations and transport
equations.

• The Hille-Yosida theory. Any semigroup is a semigroup of contractions in
a convenient equivalent Banach space. Thanks to the Hille-Yosida-Lumer-Phillips
theorem, we may characterize the class of operators which are the generator of
semigroups of contractions: they are the operator with dense domain, closed graph
and which are maximal dissipative. In a Hilbert space, we say that an operator L
is maximal dissipative if

∃x0 ∈ R, ∀x ≥ x0, R(x− L) = H and ∀ f ∈ D(L), (Lf, f)H ≤ 0

and it has closed graph if {(f,Lf); f ∈ H} is closed in H×H. We may then build
a solution to the evolution equation associated to L by just using the Euler implicit
scheme (2.4).
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