A crash course on evolution (linear) PDEs April 24, 2025

LECTURE 3 - PARABOLIC EQUATIONS

We present (the existence part of) the theory of variational solutions for uniformly
elliptic parabolic equations. We next discuss the several approaches for dealing
with the well-posedness issue of linear evolution equations.
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1. Toric 9. INTRODUCTION TO THE PARABOLIC EQUATIONS FRAMEWORK

In this lecture we will mainly focus on the parabolic equation

(1.1) Ohf=Lf on (0,00)xQ,

on the function f = f(t,x), t >0, 2 € Q C R?, where L is the elliptic operator
(1.2) Lf:=div(AVf) +div(af) +b-Vf+cf

that we complement with an initial condition

(1.3) f0,2) = fo(x) in Q.

In order to develop the variational approach for the equation (1.1)-(1.2), we assume
that
fo € L?(Q) =: H, which is an Hilbert space,
1
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and we typically assume that the coefficients satisfy

(1.4) A a,b,ce L*®(Q), A>vI, v>0.

We observe that for any nice function f = f(z), any a € (0,v) and any 8 > 0, we
have

(Lf, [ = /Rd(div(AVf)+div(af)+b~Vf+cf)f
J— . —_— . 2
/RdAVf Ver/Rdf(b a) Ver/Rdcf

(v — 2 b—al* .,
=) [ v+ [ e+ B g
—alfF + sl 71
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with

K = esssup(a + b—al*+¢),

1
4(v — )
where we have used the Green-Ostrogradski divergence formula for the two first
terms in the second line, the Young inequality uv < pu?/2 + v%/(28), Yu,v > 0,
in the third line and we have particularized 8 := v — « is the last line. Now, for
a (nice) solution f = f(t,x) to the parabolic equation (1.1)-(1.2)-(1.3)-(1.4), we
compute

3l f O = [ @NF = (L) < =allFOlp +r 101,

and, thanks to the Gronwall lemma, we deduce

T
(15) AT+ 20 1@l ds < T ol VT,
In other words, we have established
(1.6) feL>®0,T; LN L*0,T; HY).

It is worth emphasizing at this point that for two (nice) functions f = f(x) and
g = g(x), we have

(Lf.g) = /Rd(div(AVf)+div(af)+b-Vf+cf)g
so that we may compute
a0 who == [ Avr-Ve- [ fa-o+ [ 0-vhe+ [ efo
thanks to the Green-Ostrogradski divergence formula. Coming back to a nice solu-

tion f = f(t, ) to the parabolic equation (1.1)-(1.2)-(1.3), we may multiply (1.1)
by a test function ¢ € C}([0,T) x R?), and integrating by part, we have

/ fop(0 / foup = /%soatf= A/soﬁf

= /(AVf+fa) V<p+/(b Vi+ecfe.
u
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That formulation gives a first meaningful (distributional) sense to a solution to the
equation under the sole assumption f € L?(0,T; H'). Equivalently (by a density
CHR?) c H'(R?) argument), we may write
T T

(1) ~onpO) = [ (1ot = [ (er. o
for any ¢ € CL([0,T); H).
Definition 1.1. For any given fo € L?, T > 0, we say that

f=ft)eL*0.T;H")
is o weak solution to the Cauchy problem associated to the parabolic equation
(1.1)-(1.2)-(1.3) on the time interval [0,T) if it satisfies the weak formulation (1.8)

for any ¢ € CL([0,T); H'). We say that f is a global weak solution if it is a weak
solution on [0,T) for any T > 0.

Theorem 1.2. With the above definition and assumptions, for any fo € L?, there
exists at least one global weak solution to the Cauchy problem (1.1)-(1.2)-(1.3)-(1.4).

2. Topric 10. FIRST PROOF - AN IMPLICIT EULER SCHEME APPROACH

In this section, we use the shorthands
(L2 Ne2) = (H | -D, Y ) = (V- D

We do emphasize that in formulation (1.7) the RHS makes sense for f,g € V and
more precisely

(Lf, 9l < M| fllvliglv,
for a constant M > 0, thanks to the Cauchy-Schwarz inequality in L%*(R%) and
because of the hypothesis (1.4) on the coeflicients. A possible choice is M :=
|Al|Lse + [|allLee + ||b]| + ||¢|lLe. In other words, taking (1.7) as a definition of
L, we have
L:V =V, V' .=HYRY,
is a linear and bounded operator with

(2.1) VieV, |Lfllv = sup (Lf,9) < M| f]lv.

Introducing an approximation scheme and next using a weak compactness argument
in the Hilbert space L?(0,7T; V), we will establish that there exists a function f €
L?(0,T; V) satisfying the weak formulation (1.8).

Step 1. For a given fy € H and € > 0, we seek f; € V such that
(22) fi —eLfr = fo.
We introduce the bilinear form a: V x V — R defined by
a(u,v) = (u,v) — € (Lu,v).
Thanks to the assumptions made on £, we have
o, )| < Jul o] + M Jul] [,
and

(2.3) a(u,u) > |uf’ +ealul® —erlu® > eaul?,
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whenever € k < 1, what we assume from now on. On the other hand, the mapping
v € V = (fo,v) is a linear and continuous form. We may thus apply the Lax-
Milgram theorem which implies

A f eV, (f1,v) —e(Lf1,v) = (fo,v), VveW

Step 2. We fix € > 0 such that ek < 1/2 and we build by induction the sequence
(fr) in V C H defined by the family of equations (implicit Euler scheme)

frt1 — S

(2.4) -

=L fis1, Vk>0.

From the identity
(fk+1,fk+1) —¢€ <£fk+1,fk+1> = (fkafk+1)»

and (2.3) again, we deduce

1 1
|froral? +eall foall? = e m | frral® < |l lfrsa| < §|fk|2 + §|fk+1|2,

and then
[free1l? + 26 || fro|? < (1 —2er) 71 i, VR >0
Thanks to the discrete version of the Gronwall lemma, we get

Ifn\2+2OéZ€||ka2 (1= 2er) 7" fol <" |fol, Vn>1.

We now fix T'> 0, n € N*, and we define
e:=T/n, ty=ke, [(t):= frs1 on [tg,trr1)-
The last estimate writes then

T
(2.5) m/|wwms¥“mﬁ
0

Step 3. Consider a test function ¢ € CL([0,T); V) and define ¢y := ¢(tx), so that
©n = @(T) = 0. Multiplying the equation (2.4) by ¢ and summing up from k& = 0
tok=n—1, we get

n—1 —
—(0, fo) = Y (prt1 — ks fryr) = Z (L fr+1, 0n)-
k=0 k=0
Introducing the two functions =, ¢, : [0,7) — V defined by
t —1 t—1t
©°(t) ;== and (1) := k+i_ Y + . k Ph+1 for t € [tg,tkr1),
in such a way that
pe(t) = @ for 1€ (tr,trt1),
the above equation also writes
T T
(26) ~el0). 1)~ [ syt = [ (er g
0 0

On the one hand, from (2.5) and the fact that L2(0,T;V) is a Hilbert space, we
know that up to the extraction of a subsequence, there exists f € L?(0,7;V) such
that f¢ — f weakly in L2(0,7;V) and thus £f¢ — Lf weakly in L?(0,T;V’). On
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the other hand, from the above construction, we have ¢. — ¢’ and ¢. — ¢ both
uniformly in L*°(0,T; V') (using that ¢ and ¢’ belong to C([0,T]; V) and thus are
uniformly continuous). We may then pass to the limit as ¢ — 0 in (2.6) and we get
(1.8). More concretely, we are just saying that

fe—=f, Vf—=Vf weaklyin L*(%),
oL =@, =9 V¢ —=Vy stronglyin L*(%),

and we may pass to the limit ¢ — 0 in both integrals
T
| ra=[ o
0 4

/0T<»Cf57(p6>dt:—/@/ Vf‘f-Wﬁ/%(beercf‘f)%.

Exercise 2.1. FEstablish the same existence result under the assumptions

abe LYQ), ce Ll .(Q), € LY2(Q).

and

3. TopriCc 11. SECOND PROOF OF THE EXISTENCE PART - A VARIATIONAL
APPROACH

3.1. A variant of the Lax-Milgram theorem. We consider a Hilbert space 7
endowed with a scalar product (-, -) and the associated norm |-|. We consider next
a subspace ® C J# endowed with a pre-Hilbertian scalar product ((,-)) and the
associated norm || - || such that

(3.1) lpl < Cllell, Vo€

We finally consider a bilinear form & : 5 x & — R such that

(32) VWGCI’, 30@201 |g(f7<p)|§0<ﬁ|f|7 erjiﬂ,

(3.3) Ja >0, E(p,p) 2 alle|?, Vo€ o.

Theorem 3.1. For any linear and continuous form £ : ® — R, meaning that
(3.4) 1) < Cllell, Ve e,

there exists at least one f € F such that

(3.5) E(f o) =Llp), Voeo.

Proof of Theorem 3.1. For a fixed ¢ € ®, the mapping f — E(f, ) is a linear and
continuous form on 77, so that, from the Riesz-Fréchet representation theorem in
A, there exists Ap € J¢ such that

(3.6) E(f.p)=(f,Ap), VfeH, v,

and A : ® — 7 is a linear mapping. Because of (3.3), A is one-to-one (injection).

On the linear subspace ¥ := AP C S, we may then define the inverse linear

mapping B := A7!: 4 — ®. Using (3.6), (3.3) and (3.1), for any g € ¥, we have
a||Bg|* < £(Bg, Bg) = (Byg. g) < [Byllgl < C|1Bylllgl,

from what we immediately deduce that B is bounded with norm ||B| < C/a.
Defining ¢ the closure of ¢ in J# (for the norm |- |) and @ the completion of ®
for the norm || - ||, we may uniquely extend B as B : 4 — b, B‘g = B. We may
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also uniquely extend ¢ as a linear and continuous form £ on ®. The equation (3.5)
becomes

(f, Ap) = l(p), Vo€ @,

or equivalently

(3.7) (f, ) =UBY), Vyed.

From the Riesz-Fréchet representation theorem in ¢ and because £ o B is a linear
and continuous mapping on ¢, there exists a unique f € ¢ solution to (3.7), and
this one provides a solution to (3.5). When & # J#, the problem (3.5) has a family
of solutions given by {f} +%*. O

3.2. An alternative proof of Theorem 1.2. We consider the parabolic equation
(1.1)-(1.2)-(1.3)-(1.4) with same notations, with A := I and a := 0 for simplicity
and we additionally assume

1 1
3.8 I g——
(33) swpe+ 3 Ibf < —

This additional assumption will be removed in the next section. We define the
Hilbert space . := L*(0,T; H*(R%)) endowed with its usual norm and the pre-
Hilbert space ® := C1([0,T) x RY) endowed with the norm || - || defined by

T
loll? = / ot )20 gyt + 1900, )22 ey
We also define the bilinear form
E(frp) = /y (Vf Vo (b-Vi+cf)p— forp)dudr,

with always % := (0,T) x R%, and the linear form

Up) = /Rd ©(0,-) fodz.
We observe that
1 1
Eop) = [ (96l = Vg bp—cp)dadt+ 5 [ p0.0fde 2 Gl
% 2 Rd 2

where we have used the Young inequality and the condition (3.8) in order to get
the last inequality, that £ also satisfies (3.2) and that ¢ satisfies (3.4). From Theo-
rem 3.1, we know that there exists f € J# satisfying (3.5), or in other words

| (V590 0 Vs 4 efo - o) dadt = [ 40, )fod

U R

for any ¢ € CL([0,T) x R%). Because C1([0,T) x RY) c C([0,T); H*(R?)) with
dense embedding, we deduce that f is in fact a weak-solution in the sense of Defi-
nition 1.1.
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3.3. A time dependent variant of Theorem 1.2. We consider the parabolic
equation

(3.9) Of =Lf :=div(AVSf)+div(af)+b-Vf+cf+ 75,

where A;;, a;, b; and c are possible time dependent coefficients and where A;; is
uniformly elliptic in the sense that

(3.10) vVt e (0,T), Ve e RY VECRY Ay(t,x) &6 >v|E)?, v>0.
Theorem 3.2 (J.-L. Lions). Assume that
(3.11) A, a, b, ce L=((0,T) x RY)

and that A satisfies the uniformly elliptic condition (3.10). For any fo € L*(RY) and
S = Fy+divF, F; € L*(%), there exists at least a weak solution f € L*(0,T; H')
to the Cauchy problem associated to (3.9) in the sense that

(312) [ tewar= [ pe@des [ [ Got o) dois

t
+/ {(b-Vf+cf)o—(AVf +af) Ve}dads,
0 JRd

for anyp € CL([0

Proof of Theorem 3.2. Step 1. We proceed similarly as in the alternative proof of
Theorem 1.2 in Section 3.2 and in particular we define 57 and ® in the same way.
We now define the bilinear form on 2 x ® by

E(fop) = /% (AVS +af) - Vo — (b-VF+cf)p— [orp) dudt

and the linear form on ® by
() ==/ (Fop — F - V) dﬂ?dt+/d¢(07')f0 da.
4 R
We additionally first assume that
1

1 v
(3.13) supc < _mln(§a§)_5”a_b”%m-
In that case, we may observe that
1
Elp,p) = / (AVp - Vo + Vo - (a—b) ¢ — cp®)dwdt + 5 / (0, x)*dx
wu R

Y

1 v 9
mln(272)|‘()0|| ?

that & also satisfies (3.2) and that ¢ satisfies (3.4). Exactly as in Section 3.2, we
deduce the existence of a weak solution f € ¢ to the parabolic equation (3.9) with
the help of Theorem 3.1.

Step 2. We do not assume anymore (3.13). We define ¢y := ¢ — A, with A > 0 large
enough in such a way that c) satisfies the additional condition (3.13), and we set
T := e MF. We may apply the first step with the choice of functions A, a, b, cy,
fo, §x, and we thus obtain the existence of a variational solution g € 57 to the
modified equation

(3.14) dig + Mg = div(AVg) + div(ag) +b-Vg+cg+ e MF in %,
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with initial condition g(0,-) = fo. For any ¢ € C([0,T); H*(R%)), choosing ¢ :=
Mo e CH[0,T); H'(R?)) as a test function in the variational formulation of (3.14),
we immediately deduce that f := e*g € J# satisfies (3.12). O

Exercise 3.3. Consider the transport equation

Of =div(af)+b-Vf+cf, f(0)=fo,
with

a,b,c € L=((0,T) x RY), fo € L*(RY),
and prove the existence of a weak solution f € L2((0,T) x RY) thanks to the varia-
tional method.

4. Toric 12. GENERALITIES ABOUT EVOLUTION PDESs

e From well-posed evolution equation to semigroup.
We consider an evolution equation

(4.1) of=Lf, [f(0)=fo
For two Banach spaces X and 2" C C(R4;X), we assume that for any fo € X,

there exists a unique function f € 2 which is a solution to the evolution equation
(possibly in a weak sense) and that for any T', R > 0 there exists Cp r such that

?UP IfOlx <Crr if |fol <R
0,7

Then, there exists a semigroup S on X such that the above solution is given by
f = St fo. We recall the definition of a semigroup:

We say that S = (S¢)i>0 is a continuous semigroup of linear and bounded operators
on a Banach space X, or we just say that Sy is Co-semigroup (or a semigroup) on
X, if the following conditions are fulfilled:

(i) one parameter family of operators: ¥t > 0, f +— Sif is linear and continuous
on X;

(i) continuity of trajectories: Vf € X, t — S; f € C(]0,00), X);

(#ii) semigroup property: So =1; Vs,t>0, Siys =S¢ Ss;

(iv) growth estimate: 3k € R, IM > 1,

(4.2) 1Sl zx)y < Me Vit >0.

We say that S is a semigroup of contractions if (4.2) holds with M =1 and k = 0.

e From semigroup to evolution equation. On the other way round, for a given
semigroup S, we may associate its generator in the following way. We define the
domain

Sef—f

L et t o
D(L):= {feX; }gr(l) ; exists in X },

and next the generator
Lf =1
f Hm
It turns out that for any fo € D(L) (resp. fo € X) the flow f := Sifo provides

a strong (resp. weak) solution to the evolution equation (4.1) associated to its
generator L.

@ for any f € D(L).
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¢ Explicit semigroup. They are some (few) evolution PDEs for which we may
build explicitly the solutions through a representation formula (among them are
the heat equation and the transport equation). That provides in the same time the
solution and the associated semigroup.

e Spectral analysis and evolution equation. They are some evolution PDEs
associated to an integro-differential operator £ acting in some Hilbert space H for
which we may establish the existence of spectral basis. That means that there
exists a sequence (¢, A\x) of H x R such that the space generated by (¢y) is dense
in H and

(k, be) = Ok, Lo = A, Vk,£>1.

For any fy € H, the evolution equation (4.1) is equivalent to

Ji=Xefrs  fe(0) = (fo, dr)n-
We thus obtain that the function

F(8) = M (fo, pr)mdn

k=1
is a solution to (4.1).

e Perturbation / Duhamel formula. Consider a semigroup S with generator
B and an operator A which is bounded by B (in a sense to specify). We may
then build a (mild) solution to the evolution equation associated to the operator
L := B + A through one of the two Duhamel formulas

Se =S8+ SgAx*x S, =S+ Sc * ASp,

that we establish to be true using the Banach-Picard point Theorem exactly as
we have done for perturbing the heat equation (in the first lecture) and the free
transport equation (in the second lecture).

e The variational approach. In a Hilbert space framework, the variational
approach of J.-L. Lions provides an efficient tools for proving the existence of solu-
tions for a large class of evolution PDE, including parabolic equations and transport
equations.

e The Hille-Yosida theory. Any semigroup is a semigroup of contractions in
a convenient equivalent Banach space. Thanks to the Hille-Yosida-Lumer-Phillips
theorem, we may characterize the class of operators which are the generator of
semigroups of contractions: they are the operator with dense domain, closed graph
and which are maximal dissipative. In a Hilbert space, we say that an operator £
is maximal dissipative if

JzpeR, Ve > a9, Rle—L)=H and VfeDL), (Lf,/)n <0
and it has closed graph if {(f, Lf); f € H} is closed in H x H. We may then build

a solution to the evolution equation associated to £ by just using the Euler implicit
scheme (2.4).
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