
A crash course on evolution PDEs April 24, 2025

LECTURE 2 - TRANSPORT EQUATIONS

We first present some versions of the Gronwall lemma. The lecture next mainly
addresses another simple evolution equations which is the transport equation that
we solve by using the characteristics method. We finally present how the semi-
group/perturbation arguments for establishing the existence of solutions to much
more general equations.
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1. Topic 5. The Gronwall lemma

There are many variants of the Gronwall lemma which simplest formulation tells
us that any given function u : [0, T ) → R, T ∈ (0,∞], of class C1 satisfying the
differential inequality

(1.1) u′ ≤ au on (0, T ),

for a ∈ R, also satisfies the pointwise estimate

(1.2) u(t) ≤ eatu(0) on [0, T ).

We indeed establish (1.2) by a mere time integration of the differential inequality
(u e−at)′ ≤ 0 that we deduce from (1.1).

We give two generalized versions of the above result.

Lemma 1.1 (classical differential version of Gronwall lemma). We assume that
u ∈ C([0, T );R), T ∈ (0,∞), satisfies the differential inequality

(1.3) u′ ≤ a(t)u+ b(t) on (0, T ),

for some a, b ∈ L1(0, T ). Then, u satisfies pointwise the estimate

(1.4) u(t) ≤ eA(t)u(0) +

∫ t

0

b(s)eA(t)−A(s) ds on (0, T ),

where we have defined the primitive function

(1.5) A(t) :=

∫ t

0

a(s) ds.

Some examples and important special cases of the Gronwall lemma are

u′ ≤ a(t)u =⇒ u(t) ≤ u(0)eA(t),(1.6)

u′ ≤ au+ b =⇒ u(t) ≤ u(0)eat +
b

a
(eat − 1),(1.7)

u′ ≤ au+ b(t) =⇒ u(t) ≤ u(0)eat +

∫ t

0

ea(t−s) b(s) ds,(1.8)

u′ + b(t) ≤ a(t)u, a, b ≥ 0 =⇒ u(t) +

∫ t

0

b(s) ds ≤ u(0)eA(t).(1.9)

Proof of Lemma 1.1. We only present the proof under the stronger assumption
u ∈W 1,1(0, T ) ⊂ C([0, T ]). The differential inequality (1.3) means

(1.10) −⟨u, φ′⟩ ≤ ⟨au+ b, φ⟩
for any 0 ≤ φ ∈ D(0, T ). We set

v(t) := u(t) e−A(t) −
∫ t

0

b(s)e−A(s) ds,

and we observe that

v′ ≤ 0 in D′(0, T ), v ∈ C([0, T ]).

Because v ∈W 1,1, we immediately conclude to

v(t) = v(0) +

∫ t

0

v′(s) ds ≤ v(0) = u(0),
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from what (1.4) follows. □

Lemma 1.2 (integral version of Gronwall lemma). We assume u ∈ L∞(0, T ;R),
T ∈ (0,∞), satisfies pointwise the integral inequality

(1.11) u(t) ≤ u0 +

∫ t

0

a(s)u(s) ds+

∫ t

0

b(s) ds on (0, T ),

for some 0 ≤ a ∈ L1(0, T ) and b ∈ L1(0, T ). Then, u satisfies pointwise the estimate

(1.12) u(t) ≤ u0 e
A(t) +

∫ t

0

b(s)eA(t)−A(s) ds on (0, T ).

Proof of Lemma 1.2. Step 1. We first assume b ≡ 0. We set v(t) := u(t)− u0 e
A(t)

and we compute

v(t) ≤
∫ t

0

a(s)u(s) ds+ u0 (1− eA(t))

=

∫ t

0

a(s) (v(s) + u0 e
A(s)) ds+ u0 (1− eA(t))

=

∫ t

0

a(s) v(s) ds.

Because a is nonnegative, it yields

(1.13) v+(t) ≤
∫ t

0

a(s) v+(s) ds =: w(t).

The function w ∈W 1,1(0, T ) satisfies

w′(t) = a(t) v+(t) ≤ a(t)w(t) on (0, T ),

and we may use Lemma 1.1 in order to deduce w(t) ≤ w(0) = 0. We next get
v(t) ≤ v+(t) ≤ w(t) ≤ 0 and the conclusion.

Step 2. We do not assume b ≡ 0 anymore. We define

v(t) := u(t)− u0e
A(t) −

∫ t

0

b(s)eA(t)−A(s) ds.

We observe that we have again

v(t) ≤
∫ t

0

a(s) v(s) ds,

and we conclude as in the first step. □

Exercise 1.3. (1) Prove Lemma 1.1 under the additional assumptions a, u ≥ 0 as
a consequence of Lemma 1.2. (Hint. Pass to the limit φ→ 1[0,t] in (1.10)).
(2) Prove Lemma 1.1 in full generality. (Hint. Take φ as a primitive of ψ := −w+

(
∫ T

0
w) ϱ for arbirary 0 ≤ w ∈ C1

c (ε, T ) and ϱ ∈ Cc(0, ε) a probability measure).

Exercise 1.4. Let f ∈ C1((0, T )× R) and consider u, v ∈ C([0, T ];R) such that

(1.14) u′ ≤ f(t, u), v′ ≥ f(t, u), u(0) ≤ v(0),

(in a distributional sense). Prove that u ≤ v on [0, T ].

We finally present a discrete version of the Gronwall lemma.
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Lemma 1.5 (discrete version of Gronwall lemma). We consider a real numbers
sequence (un) such that

(1.15) un+1 ≤ an+1un + bn+1, ∀n ≥ 0,

where (an) and (bn) are two given real numbers sequences and (an) is furthermore
positive. Then

(1.16) un ≤ Anu0 +

n∑
k=1

Ak,nbk, ∀n ≥ 0,

where we have defined

An :=

n∏
k=1

ak, Ak,n = An/Ak =

n∏
i=k+1

ai.

Proof of Lemma 1.5. We define

vn := Anu0 +

n∑
k=1

Ak,nbk,

and we observe that

vn+1 = An+1u0 +

n+1∑
k=1

Ak,n+1bk

= an+1Anu0 +

n∑
k=1

an+1Ak,nbk + bn+1

= an+1vn + bn+1.

We then easily check by induction that un ≤ vn for any n ≥ 0. □

A particularly interesting special case is

un+1 + bn+1 ≤ aun, a ≥ 1, bn+1 ≥ 0 =⇒ un +

n∑
k=1

bk ≤ anu0.

2. Topic 6. The characteristics method for smooth data

In this section, we consider the transport equation

(2.1) ∂tf + b · ∇f = 0 in (0,∞)× Rd,

for a drift force field b = b(t, x) : R+ × Rd → Rd, that we complement with an
initial condition

f(0, x) = f0(x) in Rd.

We assume that b is C1 and satisfies the globally Lipschitz estimate

(2.2) |b(t, x)− b(t, y)| ≤ L |x− y|, ∀ t ≥ 0, x, y ∈ Rd,

for some constant L ∈ (0,∞).

Thanks to the Cauchy-Lipschitz theorem on ODE, we know that for any x ∈ Rd

and s ≥ 0, the equation

(2.3) ẋ(t) = b(t, x(t)), x(s) = x,

admits a unique solution t 7→ x(t) = Φt,s(x) ∈ C1(R+;Rd). We also know that, for
any s, t ≥ 0, the vectors valued function Φt,s : Rd → Rd is a C1-diffeomorphism
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which satisfies the semigroup properties Φt,t = Id, Φt3,t2 ◦ Φt2,t1 = Φt3,t1 for any
t3, t2, t1 ≥ 0. Moreover, the mapping [0, T ] × [0, T ] × B(0, R) → Rd, (s, t, x) 7→
Φs,t(x) is Lipschitz for any T,R > 0, and we denote by LT,R the associated Lipschitz
constant.

The characteristics method makes possible to build a solution to the transport
equation (2.1) thanks to the solutions (characteristics) of the above ODE.

Assuming first f0 ∈ C1(Rd;R), we define the function f ∈ C1(R+ × Rd;R) by

(2.4) ∀ t ≥ 0, ∀x ∈ Rd, f(t, x) := f0(Φ
−1
t (x)), Φt := Φt,0.

From the associated implicit equation f(t,Φt(x)) = f0(x), we deduce

0 =
d

dt
[f(t,Φt(x))] = (∂tf)(t,Φt(x)) + Φ̇t(x) · (∇xf)(t,Φt(x))

= (∂tf + b · ∇xf)(t,Φt(x)).

Because the above equation holds true for any t > 0 and x ∈ Rd and because
the function Φt is mapping Rd onto Rd, we deduce that f satisfies the transport
equation (2.1) pointwise, and thus f is a solution in the classical sense (of the
differential calculus). On the other way round, for any classical solution f , thanks
to the same computations, we observe that d

dt [f(t,Φt(x))] = 0, so that f satisfies
(2.4). In other words, a classical solution exists and is unique.

If furtheremore f0 ∈ C1
c (Rd), we have f(t) ∈ C1

c (Rd) for any t ≥ 0. Indeed,
let take R > 0 such that supp f0 ⊂ BR and denote by Rt a constant such that
Φt(B̄R) ⊂ BRt

, what is possible because Φt : Rd → Rd is continuous (alternatively,
one can observe that |Φt(x) − Φ0(x)| ≤ Lt,Rt for any x ∈ Rd ant t ≥ 0, so that

Rt := R+ tLt,R is suitable for any t ≥ 0). As a consequence, BR ∩ Φ−1
t (Bc

Rt
) = ∅,

which implies that f0(Φ
−1
t (x)) = 0 if x ∈ Bc

Rt
, and therefore suppf(t, ·) ⊂ BRt

. In
other words, transport occurs with finite speed: that makes a great difference with
the instantaneous positivity of solution (related of a “infinite speed” of propagation
of particles) known for the heat equation and more generally for parabolic equations.

Exercise 2.1. Make explicit the construction and formulas in the three following
cases:
(1) b(x) = b ∈ Rd is a constant vector. (Hint. One must find f(t, x) = f0(x− bt)).
(2) b(x) = x. (Hint. One must find f(t, x) = f0(e

−tx)).
(3) b(x, v) = v, f0 = f0(x, v) ∈ C1(Rd×Rd) and look for a solution f = f(t, x, v) ∈
C1((0,∞)× Rd × Rd). (Hint. One must find f(t, x, v) = f0(x− vt, v)).

(4) Assume that b = b(x) and prove that (St) is a group on C(Rd), where

(2.5) ∀ f0 ∈ C(Rd), ∀ t ∈ R, ∀x ∈ Rd (Stf0)(x) = f(t, x) := f0(Φ
−1
t (x)).

Exercise 2.2. (1) Show that

f(t, x, v) := f0(x− vt, v)e−t, t ≥ 0, x ∈ Rd, v ∈ Rd,

is a solution to the dampted free transport equation

∂tf + v · ∇xf = −f, f(0, ·) = f0.

(2) Show that

f(t, x) := f0(Φ0,t(x)) e
−

∫ t
0
c(τ,Φτ,t(x)) dτ +

∫ t

0

G(s,Φs,t(x)) e
−

∫ t
s
c(τ,Φτ,t(x)) dτ ds
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is a solution to the transport equation with source term

(2.6) ∂tf + b · ∇f + c f = G, f(0) = f0,

with b = b(t, x), c = c(t, x) and G = G(t, x) smooth functions. (Hint. Compute the

time derivative of f(t,Φt(x)) exp
∫ t

0
c(s,Φs(x)) ds).

Exercise 2.3. 1) Consider the transport equation with vanishing boundary condi-
tion

(2.7)

{
∂tf + ∂xf = 0
f(t, 0) = 0, f(0, x) = f0(x),

where f = f(t, x), t ≥ 0, x ≥ 0. Assume f0 ∈ C1
c (]0,∞[). Establish that f̄(t, x) :=

f0(x− t) provides a solution to equation (2.7).

2) Consider the transport equation with boundary condition

(2.8)

{
∂tf + ∂xf + af = 0
f(t, 0) = b(t), f(0, x) = f0(x),

where f = f(t, x), t ≥ 0, x ≥ 0. Assume a ∈ L∞(R+), f0 ∈ C1
c (]0,∞[) and

b ∈ C1
c (]0, T [). Show that the characteristics method provides a unique smooth

solution f given by f = f̄ , with

f̄(t, x) := eA(x−t)−A(x)f0(x− t)1x>t + e−A(x)b(t− x)1t>x, A(x) :=

∫ x

0

a(u) du.

(Hint. When f ∈ C1([0, T ]× R+), observe that both

d

dt
(eA(t+x)f(t, t+ x)) = 0,

d

dx
(eA(x)f(t+ x, x)) = 0, A(x) :=

∫ x

0

a(u) du,

and then f = f̄ . Also observe that f̄ ∈ C1([0, T ]×R+) in that case and conclude).

3. Topic 7. The characteristics method for non-smooth data

As a second step, we want to generalize the construction of solutions to a wider
class of initial data. For p ∈ [1,∞), we observe that, at least formally, the following
computation holds for a given (positive) solution f of the transport equation (2.1):

d

dt

∫
Rd

fp dx =

∫
Rd

∂tf
p dx =

∫
Rd

pfp−1 ∂tf dx

= −
∫
Rd

pfp−1 b · ∇xf dx = −
∫
Rd

b · ∇xf
p dx

=

∫
Rd

(divxb)f
p dx ≤ ∥divxb∥L∞

∫
Rd

fp dx.

With the help of the Gronwall lemma, we learn from that differential inequality
that the following (still formal) estimate holds

(3.1) ∥f(t)∥Lp ≤ eBt/p ∥f0∥Lp ∀ t ≥ 0,

with B := ∥divxb∥L∞
tx
.

We recall/accept the Liouville theorem which tells us that the Jacobian function
J := detDΦt(y) satisfies the ODE

d

dt
J = (divb(t,Φt(y)))J, J(0, y) = 1,
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so that

(3.2) detDΦt(y) = e
∫ t
0
(divb(s,Φs(y)))ds.

Proposition 3.1. Under the standard assumptions on the vector field b and the
usual definition on the associated flow Φt, for any f0 ∈ Lp(Rd), with p ∈ [1,∞),
the function

(3.3) f̄(t, x) := f0(Φ−t(x))

belongs to C([0, T );Lp(Rd)), satisfies (3.1) and is a solution to the transport equa-
tion

∂tf + b · ∇xf = 0, f(0) = f0,

in the distributional sense.

Proof of Proposition 3.1. Thanks to the dominated convergence theorem of Lebesgue,
we clearly have the continuity property. On the other hand, we compute∫

Rd

|f̄(t, x)|pdx =

∫
Rd

|f0(Φ−t(x))|pdx

=

∫
Rd

|f0(y)|pe
∫ t
0
(divb(s,Φs(y)))dsdy

≤ eBt

∫
Rd

|f0(y)|pdy,

where we have used the Liouville theorem (3.2) in the second line. The estimate
(3.1) follows. Finally, from the above definition and the group property of the flow,
for a.e. y ∈ Rd and for any t ∈ (0,∞), we observe that

(3.4) f̄(t+ s,Φs(y)) = f̄(t, y), ∀ s ≥ 0.

Let us then fix φ ∈ D((0, T )× Rd). We compute

0 =
d

ds

∫ T

0

∫
Rd

f̄(t, y)φ(t, y) dydt

=
d

ds

∫ T

0

∫
Rd

f̄(t+ s,Φs(y))φ(t, y) dydt

=
d

ds

∫ T

0

∫
Rd

f̄(t, x)φ(t− s,Φ−s(x))e
−

∫ s
0
(divb)(Φτ (x))dτ dxdt

=

∫ T

0

∫
Rd

f̄(t, x)
d

ds
[φ(t− s,Φ−s(x))e

−
∫ s
0
divb(Φτ (x))ds] dxdt

=

∫ T

0

∫
Rd

f̄(t, x)[−∂tφ− b · ∇φ− divbφ](t− s,Φ−s(x))e
−

∫ s
0
diva(Φτ (x))ds dxdt,

where we have used the relation (3.4) in the second line and the change of variables
x = Φs(y) together with the Liouville theorem (3.2) in the third line. Taking s = 0,
we get

0 =

∫ T

0

∫
Rd

f̄(t, x)[−∂tφ− a · ∇φ− (diva)φ](t, x) dxdt,

which exactly means that f̄ is a solution to equation (3.3) in the distributional
sense. □
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Exercise 3.2. Prove that (3.3) does not depend of the choice of the function f0 ∈
Lp(Rd) in the class {f0} ∈ Lp(Rd). (Hint. Take g0 ∈ {f0} and compute ∥f0 ◦Φ−t−
g0 ◦ Φ−t∥Lp).

Exercise 3.3. (1) For any matrix B ∈Md(R) and h ∈ R, prove that

det(I + hB) = 1 + h trB +O(h2).

(2) Consider A,B ∈ C1((0, T );Md(R)) which satisfy

d

dt
A(t) = B(t)A(t),

and prove that
d

dt
(detA(t)) = (trB(t))(detA(t)).

(3) Establish the Liouville theorem (3.2).

Exercise 3.4. Consider the dampted free transport equation with source term

(3.5)

{
∂tf + v · ∇x + f = G
f(0, ·) = f0,

where f = f(t, x, v), t ≥ 0, x, v ∈ Rd, f0 ∈ L1(R2d) and G ∈ L1((0, T )× R2d).

Establish that

(3.6) f(t, x, v) := f0(x− vt, v)e−t +

∫ t

0

G(s, x+ (s− t)v, v)es−tds

belongs to C([0, T ];L1(R2d)) and provides a weak solution.

Exercise 3.5. Consider the transport equation with boundary condition

(3.7)

{
∂tf + ∂xf + af = 0
f(t, 0) = b(t), f(0, x) = f0(x),

where f = f(t, x), t ≥ 0, x ≥ 0, a ∈ L∞(R+), f0 ∈ L1(R+) and b ∈ L1([0, T ]).
(a) Establish the a priori estimate

sup
[0,T ]

∥f(t, ·)∥L1 ≤ (∥b∥L1(0,T ) + ∥f0∥L1)et∥a∥L∞ , ∀ t ≥ 0.

(Hint. Use the Gronwall lemma).
(b) Establish the existence of a weak solution f ∈ C([0, T ];L1(R+)).

4. Topic 8. Duhamel formula and perturbation argument (bis)

In this section, we explain how the previous analysis and a perturbation argument
make possible to tackle some more general evolution equations. We consider the
relaxation equation

(4.1) ∂tf + v · ∇xf = ρfM − f in (0,∞)× Rd × Rd,

where we define

ρf :=

∫
fdv, M :=

1

(2π)d/2
e−|v|2/2.

We complement that equation with an initial datum f0 ∈ L1(Rd ×Rd). We denote
by (St) the semigroup defined by

(Stf0)(x, v) := f0(x− vt, v)e−t
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and associated to the evolution equation

∂tf + v · ∇xf = −f in (0,∞)× Rd × Rd.

Because of the variation of parameters formula (3.6), we may look for a function
f ∈ X := C([0, T ];L1(R2d)), T > 0, which satisfies the equation in the mild sense

ft = Stf0 +

∫ t

0

St−s[ρfsM ]ds

(that is the Duhamel formula again). This one will automatically satisfies (4.1) as
a consequence of Exercise 3.4. For a given function g ∈ X , we define

ht := Stf0 +

∫ t

0

St−s[ρgsM ]ds, ∀ t ∈ (0, T ),

and we denote g 7→ Ug := h this mapping. We aim to prove that U : X → X and
that there exists a unique fixed point f ∈ X such that f = Uf .
On the one hand, because ρgM ∈ L1((0, T )×R2d) and Exercise 3.4, we have h ∈ X .
Now, for g1, g2 ∈ X and denoting h1 := Ug1, h2 := Ug2, h := h2 − h1, g := g2 − g1,
we have

ht =

∫ t

0

St−s[ρgsM ]ds.

We compute

∥ht∥L1 ≤
∫ t

0

∥St−s[ρgsM ]∥L1ds

≤
∫ t

0

e−(t−s)∥ρgsM ∥L1ds

≤
∫ t

0

e−(t−s)∥gs∥L1∥M ∥L1ds

≤ (1− e−T ) sup
[0,T ]

∥gs∥L1 ,

so that
∥h∥X ≤ αT ∥g∥X , αT := 1− e−T .

For any T > 0, we have αT < 1, and the Banach fixed point theorem tells us that
there exists a unique fixed point f ∈ X to the mapping U .

Exercise 4.1. Consider the renewal equation

(4.2)

{
∂tf + ∂xf + af = 0
f(t, 0) = ρf(t), f(0, x) = f0(x),

where f = f(t, x), t ≥ 0, x ≥ 0, and

ρg :=

∫ ∞

0

g(y) a(y) dy.

Assume a ∈ L∞(R+) and f0 ∈ L1(R+). Establish that there exists a unique mild
solution f ∈ C([0, T ];L1(R+)) to equation (4.2).
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