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CHAPTER 3 - POSITIVE SEMIGROUP AND LONGTIME BEHAVIOUR

I write in brown color some complementary material.
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In this chapter we make a brief presentation of the semigroup theory. We then concentrate on a
particular family of positive semigroup for which an accurate analysis of the longtime asymptotic
behaviour can be performed.

1. Semigroup, linear evolution equation and generator

1.1. Semigroup. We state the definition of a continuous semigroup of linear and bounded oper-
ators.

Definition 1.1. We say that (St)t≥0 is a continuous semigroup of linear and bounded operators
on a Banach space X, or we just say that St is C0-semigroup (or a semigroup) on X, we also write
S(t) = St, if the following conditions are fulfilled:

(i) one parameter family of operators: ∀t ≥ 0, f 7→ Stf is linear and continuous on X;

(ii) continuity of trajectories: ∀f ∈ X, t 7→ St f ∈ C([0,∞), X);

(iii) semigroup property: S0 = I; ∀ s, t ≥ 0, St+s = St Ss;

(iv) growth estimate: ∃ b ∈ R, ∃M ≥ 1,

(1.1) ∥St∥B(X) ≤M ebt ∀ t ≥ 0.

We then define the growth bound ω(S) by

ω(S) := lim sup
t→∞

1

t
log ∥S(t)∥ = inf{b ∈ R; (1.1) holds}.

We say that (St) is a semigroup of contractions if (1.1) holds with b = 0 and M = 1.

Remark 1.2. The two continuity properties (i) and (ii) can be understood in the same sense of
(a) - the strong topology of X, and we will say that St is a strongly continuous semigroup;
(b) - the weak ∗ topology σ(X,Y ) with X = Y ′, Y a (separable) Banach space, and we will say
that St is a weakly ∗ continuous semigroup.
Classical examples are the heat semigroup and the translation semigroup

Stf = γt ∗ f, γt = (2πt)−1/2 e−
|x|2
2t , and (Stf)(x) = f(x− at),

in the Lebesgue space Lp(R), 1 ≤ p ≤ ∞, and in the space M1(R) := (C0(R))′ of bounded Radon
measures. For 1 ≤ p < ∞, the above semigroups are strongly continuous in Lp(R). They are only
weakly ∗ continuous in the spaces L∞(R) and M1(R).
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1.2. Linear evolution equation and semigroup. Given a linear operator Λ acting on a Banach
space X (or on a subspace of X) and a initial datum g0 belonging to X (or to a subspace of X),
we consider the (abstract) linear evolution equation

(1.2)
d

dt
g = Λg in (0,∞), g(0) = g0.

We may associate a C0-semigroup to the evolution equation as a mere consequence of the linearity
of the equation and of the existence and uniqueness result.

Definition 1.3. We say that the evolution equation (1.2) is well-posed if there exists a space
E∞ ⊂ C(R+;X) such that for any g0 ∈ X, there exists a unique function g ∈ E∞ which satisfies
(1.2) (possibly in a weak sense), and for any R0, T > 0 there exists RT := C(T,R0) > 0 such that

(1.3) ∥g0∥X ≤ R0 implies sup
[0,T ]

∥g(t)∥X ≤ RT .

Proposition 1.4. To an evolution equation (1.2) which is well-posed in the sense of Definition 1.3,
we may associate a continuous semigroup of linear and bounded operators (St) in the following way.
For any g0 ∈ X and any t ≥ 0, we set S(t)g0 := g(t), where g ∈ E∞ is the unique weak solution to
the evolution equation (1.2) with initial datum g0.

Corollary 1.5. To the time autonomous parabolic equation considered in the previous chapters,
we can associate a strongly continuous semigroup of linear and bounded operators.

1.3. Semigroup and generator. On the other way round, in this section, starting from a given
semigroup, we explain how we can associate a generator and then a solution to a differential linear
equation.

Definition 1.1. An unbounded operator Λ on X is a linear mapping defined on a linear submanifold
called the domain of Λ and denoted by D(Λ) or dom(Λ) ⊂ X; Λ : D(Λ) → X. The graph of Λ is

G(Λ) = graph(Λ) := {(f,Λ f); f ∈ D(Λ)} ⊂ X ×X.

We say that Λ is closed if the graph G(Λ) is a closed set in X × X: for any sequence (fk) such
that fk ∈ D(Λ), ∀ k ≥ 0, fk → f in X and Λ fk → g in X then f ∈ D(Λ) and g = Λ f . We denote
C (X) the set of unbounded operators with closed graph and CD(X) the set of unbounded operators
which domain is dense and graph is closed.

Definition 1.2. For a given semigroup (St) on X, we define

D(Λ) :=
{
f ∈ X; lim

t↘0

S(t) f − f

t
exists in X

}
,

Λ f := lim
t↘0

S(t) f − f

t
for any f ∈ D(Λ).

Clearly D(Λ) is a linear submanifold and Λ is linear: Λ is an unbounded operator on X. We
call Λ : D(Λ) → X the (infinitesimal) generator of the semigroup (St), and we sometimes write
St = SΛ(t). We denote G (X) the set of operators which are the generator of a semigroup.

We present some fundamental properties of a semigroup S and its generator Λ that one can obtain
by simple differential calculus arguments from the very definitions of S and Λ.

Proposition 1.3. (Differentiability property of a semigroup). Let f ∈ D(Λ).

(i) S(t)f ∈ D(Λ) and ΛS(t)f = S(t) Λf for any t ≥ 0, so that the mapping t 7→ S(t) f is
C([0,∞);D(Λ)).

(ii) The mapping t 7→ S(t)f is C1([0,∞);X),
d

dt
S(t)f = ΛS(t)f for any t > 0, and then

S(t)f − S(s)f =

∫ t

s

S(τ) Λf dτ =

∫ t

s

ΛS(τ)f dτ, ∀ t > s ≥ 0.
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Sketch of the proof of Proposition 1.3. Let f ∈ D(Λ).
Proof of (i). We fix t ≥ 0 and we compute

lim
s→0+

S(s)S(t)f − S(t)f

s
= lim
s→0+

S(t)
S(s)f − f

s
= S(t)Λf,

which implies S(t)f ∈ D(Λ) and ΛS(t)f = S(t)Λf .

Proof of (ii). We fix t > 0 and we compute (now) the left differential

lim
s→0−

{S(t+ s)f − S(t)f

s
− S(t)Λf

}
=

= lim
s→0−

{
S(t+ s)

(S(−s)f − f

−s
− Λf

)
+

(
S(t+ s)Λf − S(t)Λf

)}
= 0,

using that the two terms within parenthesis converge to 0 and that ∥S(t + s)∥ ≤ M eωt for any
s ≤ 0. Together with step 1, we deduce that t 7→ S(t)f is differentiable for any t > 0, with
derivative ΛS(t)f . We conclude to the C1 regularity by observing that t 7→ S(t)Λf is continuous.
Last, we have

S(t)f − S(s)f =

∫ t

s

d

dτ
[S(τ) f ] dτ =

∫ t

s

S(τ) Λf dτ =

∫ t

s

ΛS(τ)f dτ

and in particular

∥S(t)f − S(s)f∥ ≤ (t− s)M ebt ∥Λf∥,
for any t > s ≥ 0. □

Exercise 1.4. For h ∈ ET := C([0, T ];D(Λ)) ∩ C1([0, T ];X) prove that SΛh ∈ ET and

d

dt
[SΛ(t)h(t)] = SΛ(t)Λh(t) + SΛ(t)h

′(t).

(Hint. Write

SΛ(t+ s)h(t+ s)− SΛ(t)h(t)

s
=

SΛ(t+ s)− SΛ(t)

s
h(t) + SΛ(t+ s)h′(t)

+SΛ(t+ s)
(h(t+ s)− h(t)

s
− h′(t)

)
and pass to the limit s→ 0)

Definition 1.5. Consider a Banach space X and an (unbounded) operator Λ on X. We say
that g ∈ C([0,∞);X) is a “classical” (or Hille-Yosida) solution to the evolution equation (1.2) if
g ∈ C((0,∞);D(Λ)) ∩ C1((0,∞);X) so that (1.2) holds pointwise.

In it worth emphasizing that Proposition 1.3 provides a “classical” solution to the evolution equa-
tion (1.2) for any initial datum f0 ∈ D(Λ) by the mean of t 7→ SΛ(t)f0.

Lemma 1.6. For any f ∈ X and t ≥ 0, there hold

(i) lim
h→0

1

h

∫ t+h

t

S(s) f ds = S(t)f,

and

(ii)

∫ t

0

S(s)f ds ∈ D(Λ), (iii) Λ

(∫ t

0

S(s)f ds

)
= S(t)f − f.

Sketch of the proof of Lemma 1.6. The first point is just a consequence of the fact that s 7→ S(s)f
is a continuous function. We then deduce

1

h

{
S(h)

∫ t

0

S(s)f ds−
∫ t

0

S(s)f ds
)
=

1

h

{∫ t+h

h

S(s) f ds−
∫ t

0

S(s)f ds
}

=
1

h

{∫ t+h

t

S(s) f ds−
∫ h

0

S(s)f ds
}
−→
h→0

S(t)f − f,

which implies the two last points. □

In the next result we prove that G (X) ⊂ CD(X).
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Definition 1.7. We say that C ⊂ X is a core for the generator Λ of a semigroup S if

C ⊂ D(Λ), C is dense in X and S(t) C ⊂ C, ∀ t ≥ 0.

Proposition 1.8. (Properties of the generator) Let Λ ∈ G (X).

(i) The domain D(Λ) is dense in X. In particular, D(Λ) is a core.

(ii) Λ is a closed operator.

(iii) The mapping which associates to a semigroup its generator is injective. More precisely, if S1

and S2 are two semigroups with generators Λ1 and Λ2 and there exists a core C ⊂ D(Λ1) ∩D(Λ2)
such that Λ1|C = Λ2|C, then S1 = S2. In other words, S1 ̸= S2 implies Λ1 ̸= Λ2.

Sketch of the proof of Proposition 1.8. For any f ∈ X and t > 0, we define f t := t−1
∫ t
0
S(s)f ds.

Thanks to Lemma 1.6-(i) & (ii), we see that f t ∈ D(Λ) and f t → f as t → 0. In other words,
D(Λ) is dense in X.

We prove (ii). Consider a sequence (fk) of D(Λ) such that fk → f and Λfk → g in X. For t > 0,
we write

S(t)fk − fk =

∫ t

0

S(s)Λfk ds,

and passing to the limit k → ∞, we get

t−1(S(t)f − f) = t−1

∫ t

0

S(s)g ds.

We may now pass to the limit t→ 0 in the RHS term, and we obtain

lim
t→0

(S(t)f − f)/t = g.

That proves f ∈ D(Λ) and Λf = g.

We prove (iii). We observe that the mapping t 7→ Si(t)f , i = 1, 2, are C1 for any f ∈ C, thanks to
Proposition 1.3, and

d

ds
S1(s)S2(t− s)f =

dS1(s)

ds
S2(t− s) f + S1(s)

dS2(t− s)

ds
f

= S1(s) Λ1 S2(t− s) f − S1(s) Λ2 S2(t− s) f = 0.

That implies S2(t)f = S1(0)S2(t − 0)f = S1(t)S2(t − t)f = S1(t) f for any f ∈ C, and then
S2 ≡ S1. □

1.4. The Hille-Yosida-Lumer-Phillips’ existence theory. In a Hilbert space X = H, we say
that a unbounded linear operator Λ : D(Λ) ⊂ H → H is dissipative if

∀ f ∈ D(Λ), (Λf, f)H ≤ 0.

Lemma 1.9. Consider a semigroup SΛ on a Hilbert space H. There is equivalence between
(i) SΛ is a semigroup of contractions;
(ii) Λ is dissipative.

Proof of Lemma 1.9. We take f0 ∈ D(Λ), we define E(t) := ∥SΛ(t)f0∥2H which is a C1 function
and we compute

d

dt
E(t) = 2(ΛSΛ(t)f0, SΛ(t)f0)H .

The statement just says that E is decreasing if and only if E ′ is nonpositive. □

We say that an (unbounded) operator Λ is maximal if there exists x0 > 0 such that

(1.1) R(x0 − Λ) = X.

We say that Λ is m-dissipative if Λ is dissipative and maximal.

We present now the Lumer-Phillips’ version of the Hille-Yosida Theorem which establishes the link
between semigroup of contractions and dissipative operator.
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Theorem 1.10 (Hille-Yosida, Lumer-Phillips). Consider Λ ∈ CD(X). The two following asser-
tions are equivalent:
(a) Λ is the generator of a semigroup of contractions;
(b) Λ is dissipative and maximal.

Elements of proof of Theorem 1.10. We just give the proof of the easy part (a) implies (b), but
not of the hard part (b) implies (a). We assume (a). From the above discussion, we only have to
prove that Λ is maximal. From Lemma 1.6-(iii) applied to S := SΛ(t)e

−x0t, x0 > 0, we have

(x0 − Λ)

(∫ t

0

SΛ(s)e
−x0sf ds

)
= f − SΛ(t)e

−x0t,

for any f ∈ X and t > 0. Because ∥SΛ(s)e
−x0τf∥ ≤ e−x0τ∥f∥, we may pass to the limit t→ ∞ in

both sides of the equation, and we get

(x0 − Λ)g = f, g :=

∫ ∞

0

SΛ(s)e
−x0sf ds ∈ D(Λ),

what is nothing but the maximality property for Λ. Notice that the property g ∈ D(Λ) comes from
the hypothesis that Λ is closed. □

2. Duhamel formula and mild solution

Consider the evolution equation

(2.1)
d

dt
g = Λg +G on (0, T ), g(0) = g0,

for an unbounded operator Λ on X, an initial datum g0 ∈ X and a source term G : (0, T ) → X,
T ∈ (0,∞). For G ∈ C((0, T );X), a classical solution g is a function

(2.2) g ∈ XT := C([0, T );X) ∩ C1((0, T );X) ∩ C((0, T );D(Λ))

which satisfies (2.1) pointwise. For U ∈ L1(0, T ;B(X1,X2)) and V ∈ L1(0, T ;B(X2,X3)), we
define the time convolution V ∗ U ∈ L1(0, T ;B(X1,X3)) by setting

(V ∗ U)(t) :=

∫ t

0

V (t− s)U(s) ds =

∫ t

0

V (s)U(t− s) ds, for a.e. t ∈ (0, T ).

Lemma 2.1 (Variation of parameters formula). Consider the generator Λ of a semigroup SΛ on
X. For G ∈ C((0, T );X)∩L1(0, T ;X), ∀T > 0, there exists at most one classical solution g ∈ XT

to (2.1) and this one is given by

(2.3) g = SΛg0 + SΛ ∗G.

Proof of Lemma 2.1. Assume that g ∈ XT satisfies (2.1). For any fixed t ∈ (0, T ), we define
s 7→ u(s) := SΛ(t− s)g(s) ∈ C1((0, t);X) ∩ C([0, t];X). On the one hand, we compute

u′(s) = −ΛSΛ(t− s)g(s) + SΛ(t− s)g′(s) = SΛ(t− s)G(s),

for any s ∈ (0, t), so that u′ ∈ L1(0, T ;X). On the other hand, we have

g(t)− SΛ(t)g0 = u(t)− u(0) =

∫ t

0

u′(s) ds.

We conclude by putting together the two identities. □

When G ∈ C((0, T );X) ∩ L1(0, T ;D(Λ)) and g0 ∈ D(Λ), we observe that ḡ := SΛg0 + SΛ ∗ G
belongs to XT and

d

dt
ḡ(t) = ΛSΛ(t)g0 + Λ(SΛ ∗G)(t) + SΛ(0)G(t) = Λḡ(t) +G(t),

so that ḡ is a classical solution to the evolution equation (2.1).

When G ∈ L1(0, T ;X) and g0 ∈ X, we observe that ḡ ∈ C([0, T ];X), ḡ(0) = g0 and it is the limit
of classical solutions by a density argument. We say that ḡ is a mild solution to the evolution
equation (2.1).
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Lemma 2.2 (Duhamel formula). Consider two semigroups SΛ and SB on the same Banach space
X, assume that D(Λ) = D(B) and define A := Λ − B. If ASB, SBA ∈ L1(0, T ;B(X)) for any
T ∈ (0,∞), then

SΛ = SB + SΛ ∗ ASB = SB + SBA ∗ SΛ in B(X).

Proof of Lemma 2.1. Take f ∈ D(Λ) = D(B), t > 0, and define s 7→ u(s) := SΛ(s)SB(t − s)f ∈
C1([0, t];X) ∩ C([0, t];D(Λ)). We observe that

u′(s) = SΛ(s)ΛSB(t− s)f − SΛ(s)BSB(t− s)f

= SΛ(t− s)ASB(s)f,

for any s ∈ (0, t), from which we deduce

SΛ(t)f − SB(t)f =

∫ t

0

u′(s) ds =

∫ t

0

SΛ(t− s)ASB(s)f ds.

By density and continuity, we deduce that the same holds for any f ∈ X, and that establishes the
first version of the Duhamel formula. The second version follows by reversing the role of SΛ and
SB. □

Assume as in Lemma 2.2 that Λ splits as Λ = A+ B. From the above second version of Duhamel
formula, we observe that for any g0 ∈ D(Λ), the function ḡ(t) := SΛ(t)g0 ∈ XT is a classical
solution to the evolution equation (1.2) and satisfies the following functional equation

(2.4) g = SBg0 + SBA ∗ g.
On the other way round, we observe that if g ∈ XT is a solution to the functional equation (2.4),
then

g′(t) = BSB(t)g0 + B(SBA ∗ g)(t) + SB(0)Ag(t)
= Bg(t) +Ag(t) = Λg(t),

so that g is a classical solution to the evolution equation (1.2). [Here we need SBA ∗ g ∈ D(Λ) or
define the object by duality, see below]. More generally, when SBA ∈ L1(0, T ;B(X)), we say that
g ∈ C([0, T ];X) is a mild solution to the evolution equation (1.2) if g is a solution to the functional
equation (2.4).

3. Dual semigroup and weak solution

Consider a Banach space X and an operator A ∈ CD(X), with X endowed with the topology norm,
and we denote Y = X ′ in that case, or with X = Y ′ endowed with the weak ∗ topology σ(X,Y )
for a separable Banach space Y . We define the subspace

D(A∗) :=
{
φ ∈ Y ; ∃C ≥ 0, ∀ f ∈ D(A), |⟨φ,Af⟩| ≤ C ∥f∥X

}
and next the adjoint operator A∗ on Y by

⟨A∗φ, f⟩ = ⟨φ,Af⟩, ∀φ ∈ D(A∗), f ∈ D(A).

Because D(A) ⊂ X is dense, the operator A∗ is well and uniquely defined and it is obviously linear.
Because A has a closed graph, the operator A∗ has also a closed graph. When A is a bounded
operator, then A∗ is also a bounded operator. When X is reflexive, then the domain D(A∗) is
always dense into X ′, so that A∗ ∈ CD(X ′). For a general Banach space X and a general operator
A, then D(A∗) is dense into X ′ for the weak ∗σ(X ′, X) topology, but it happens that D(A∗) is not
dense into X ′ for the strong topology.

Consider now a semigroup S with generator Λ and f0 ∈ D(Λ). Multiplying by φ ∈ C1
c ([0, T );D(Λ∗))

the equation (1.2) satisfied by g(t) := S(t)f0 and integrating in time, we get

⟨f0, φ(0)⟩X,X′ +

∫ T

0

⟨S(t)f0, φ′(t) + Λ∗φ(t)⟩X,X′ dt = 0.

Because the mapping f0 7→ S(t)f0 is continuous in X and the inclusion D(Λ) ⊂ X is dense from
Proposition 1.8, we see that the above formula is also true for any f0 ∈ X. In other words, the
semigroup S(t) provides a weak solution (in the above sense) to the evolution equation (1.2) for
any f0 ∈ X.
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We aim to show now that the semigroup theory provides an answer to the well-posedness issue
of weak solutions to that equation for any generator Λ. More precisely, given a semigroup, we
introduce its dual semigroup and we then establish that the initial semigroup provides the unique
weak solution to the associated homogeneous and inhomogeneous evolution equations.

Proposition 3.1. Consider a strongly continuous semigroup S = SΛ on a Banach space X with
generator Λ and the dual semigroup S∗ as the one-parameter family S∗(t) := S(t)∗ for any t ≥ 0.
Then the following hold:
(1) S∗ is a weakly ∗ continuous semigroup on X ′ with same growth bound as S.
(2) The generator of S∗ is Λ∗. In other words, (SΛ)

∗ = SΛ∗ .
(3) The mapping t 7→ S∗(t)φ is C([0,∞);X ′) (for the strong topology) for any φ ∈ D(Λ∗). Simi-
larly, t 7→ S∗(t)φ is C1([0,∞);X ′) ∩ C([0,∞);D(Λ∗)) for any φ ∈ D(Λ∗2).

Proof of Proposition 3.1. (1) We just write

⟨S∗(t)φ, f⟩ = ⟨φ, S(t)f⟩ =: Tf (t, φ) ∀ t ≥ 0, f ∈ X, φ ∈ X ′,

and we see that (t, φ) 7→ Tf (t, φ) is continuous for any f ∈ X.
(2) Denoting by D(L) and L the domain and generator of S∗ as defined as in section 1.3, for any
φ ∈ D(L) and f ∈ D(Λ) we have

⟨Lφ, f⟩ := lim
t→0

〈1
t
(S(t)∗φ− φ), f

〉
= lim

t→0

〈
φ,

1

t
(S(t)f − f)

〉
= ⟨φ,Λf⟩,

from which we immediately deduce that D(L) ⊂ D(Λ∗) and L = Λ∗|D(L). To conclude, we use
that L is closed. More precisely, for a given φ ∈ D(Λ∗), we associate the sequence (φε) defined
through

φε :=
1

ε

∫ ε

0

S(t)∗φdt.

We have φε ⇀ φ in the weak ∗σ(X ′, X) sense, φε ∈ D(L) and, for any f ∈ D(Λ),

⟨Lφε, f⟩ = ⟨Λ∗φε, f⟩ = ⟨φε,Λf⟩

= ⟨φ, 1
ε

∫ ε

0

S(t)Λf dt⟩ → ⟨φ,Λf⟩,

so that Lφε ⇀ Λ∗φ in the weak ∗σ(X ′, X) sense. The graph G(L) of L being closed, we have
(φ,Λ∗φ) ∈ G(L), which in turns implies φ ∈ D(L) and finally L = Λ∗.
(3) From Proposition 1.3, we have

∥S∗(t)φ− S∗(s)φ∥X′ =
∥∥∥∫ t

s

S∗(τ)Λ∗φdτ
∥∥∥
X′

≤Mebt(t− s)∥Λ∗φ∥X′

for any t > s ≥ 0 and φ ∈ D(Λ∗), so that t 7→ S∗(t)φ is Lipschitz continuous from [0,∞) into X ′

endowed with the strong topology. □

Proposition 3.2. Consider a weakly ∗ continuous semigroup T = SL on a Banach space X = Y ′

with generator L, and the dual semigroup T ∗ as the one-parameter family T ∗(t) := T (t)∗ of bounded
operator on Y for any t ≥ 0. Then the following hold:
(1) S = T ∗ is a strongly continuous semigroup on Y with same growth bound as T .
(2) The generator Λ of S satisfies L = Λ∗.

Proof of Proposition 3.2. Just as in the proof of Proposition 3.1, we have (t, f) 7→ ⟨φ, S(t)f⟩ is
continuous for any φ ∈ X ′. That means that S(t) is a weakly σ(X,X ′) continuous semigroup in X
and therefore a strongly continuous semigroup in X thanks to Theorem ??. The rest of the proof
is unchanged with respect to the proof of Proposition 3.1. □

For any g0 ∈ X and G ∈ L1(0, T ;X), we say that g ∈ C([0, T ];X) is a weak solution to the
inhomogeneous initial value problem (2.1) if

(3.1) ⟨φ(T ), g(T )⟩ − ⟨φ(0), g0⟩ =
∫ T

0

{
⟨φ′ + Λ∗φ, g⟩+ ⟨φ,G⟩

}
dt,

for any φ ∈ C1([0, T ];X ′) ∩ C([0, T ];D(Λ∗)).
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Proposition 3.3. Assume that Λ generates a semigroup S on X. For any g0 ∈ X and G ∈
L1(0, T ;X), there exists a unique weak solution to equation (2.1), which is nothing but the mild
solution

(3.2) ḡ = SΛg0 + SΛ ∗G.

Proof of Proposition 3.3. We define

ḡ(t) = ḡt := S(t)g0 +

∫ t

0

S(t− s)G(s) ds ∈ C([0, T ];X).

For any φ = φt ∈ C1([0, T ];X ′) ∩ C([0, T ];D(Λ∗)), we have

⟨φt, ḡt⟩ = ⟨S∗
t φt, g0⟩+

∫ t

0

⟨S∗
t−sφt, Gs⟩ ds ∈ C1([0, T ])

and then

d

dt
⟨φt, ḡt⟩ = ⟨S∗

t (Λ
∗φt + φ′

t), g0⟩+
∫ t

0

⟨S∗
t−s(Λ

∗φt + φ′
t), Gs⟩ ds+ ⟨Gt, φt⟩

= ⟨Λ∗φt + φ′
t, ḡt⟩+ ⟨φt, Gt⟩,

from which we deduce that ḡ is a weak solution to the inhomogeneous initial value problem (2.1) in
the weak sense of equation (3.1). Now, if g is another weak solution, the function f := g− ḡ is then
a weak solution to the homogeneous initial value problem with vanishing initial datum, namely

⟨φ(T ), f(T )⟩ =
∫ T

0

⟨φ′ + Λ∗φ, f⟩ dt, ∀φ ∈ C1([0, T ];X ′) ∩ C([0, T ];D(Λ∗)).

A first way to conclude is to define

φ(s) :=

∫ T

s

S∗(τ − s)ψ(τ) dτ,

for any given ψ ∈ C1
c ((0, T );D(Λ∗)), and to observe that φ ∈ C1([0, T ];X ′) ∩C([0, T ];D(Λ∗)) is a

(backward) solution to the dual problem

−φ′ = Λ∗φ+ ψ on (0, T ), φ(T ) = 0.

For that choice of test function, we get

0 =

∫ T

0

⟨ψ, f⟩ dt, ∀ψ ∈ C1
c ((0, T );D(Λ∗)),

and thus g = ḡ.
An alternative way to get the uniqueness result is to define φ(t) := S∗(T−t)ψ for a given ψ ∈ D(Λ∗).
Observing that φ is a (backward) solution to the dual problem

(3.3) −φ′ = Λ∗φ, φ(T ) = ψ,

that choice of test function leads to

⟨ψ, f(T )⟩ = 0 ∀ψ ∈ D(Λ∗), ∀T > 0,

and thus again g = ḡ. □

Exercise 3.4. Consider a Banach space X and an unbounded operator Λ on X. We assume
that X = Y ′ for a Banach space Y and that the dual operator Λ∗ generates a strongly continuous
semigroup T on Y . Prove that S := T ∗ is a (at least) weakly ∗σ(X,Y ) continuous semigroup on X
with generator Λ and that it provides the unique weak solution to the associated evolution equation.

Lemma 3.5. Consider a semigroup S = SL on a Banach space X. Consider a Banach space
Y ⊂ X ′ which is dense and assume that there exists a linear and bounded mapping Λ : Y → X ′

such that

⟨S(t)f0, ψ⟩ = ⟨f0, ψ⟩+
∫ t

0

⟨S(τ)f0,Λψ⟩ dτ,

for any t ≥ 0, f ∈ X and ψ ∈ Y . Then Y ⊂ D(L∗) and L = Λ̄∗.
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Proof of Lemma 3.5. For f0 ∈ X and ψ ∈ Y , we write〈S(t)f0 − f0
t

, ψ
〉
=

〈
1

t

∫ t

0

S(τ)f0dτ,Λψ

〉
.

When furthermore f0 ∈ D(L), we may pass to the limit t→ 0, en we deduce〈
Lf0, ψ

〉
= ⟨f0,Λψ⟩ .

From the very definitions of D(L∗) and L∗, we deduce that Y ⊂ D(L∗) and Λ = L∗
|Y . □

4. A perturbation trick

We give a very efficient result for proving the existence of a semigroup associated to a generator
which is a mild perturbation of the generator of a semigroup.

Theorem 4.1. Consider SB a semigroup satisfying the growth estimate ∥SB(t)∥B(X) ≤M ebt and
A a bounded operator. Then, Λ := A+B is the generator of a semigroup which satisfies the growth
estimate ∥SΛ(t)∥B(X) ≤M eb

′t, with b′ = b+M∥A∥.

Proof of Theorem 4.1. Step 1. Existence. Take g0 ∈ X. We fix T > 0 and for T ∗ ∈ (0, T ), we
define

E := C([0, T ∗];X), ∥g∥E := sup
t∈[0,T∗]

∥g(s)∥X ,

as well as for any g ∈ E , the function

f(t) := SB(t)g0 + (SBA ∗ g)(t).

We clearly have f ∈ E , so that we have defined a mapping Φ : E → E , g 7→ Φ(g) := f . For two
given functions g1, g2 ∈ E , the associated images f1, f2 satisfy

∥f2(t)− f1(t)∥X =
∥∥∥∫ t

0

SB(s)A(g2(t− s)− g1(t− s)) ds
∥∥∥

≤
∫ t

0

Mebs∥A∥∥g2 − g1∥E ds,

for any t ∈ [0, T ∗], so that

∥f2 − f1∥E ≤ T ∗MebT ∥A∥ ∥∥g2 − g1∥E .

Choosing T ∗ ∈ (0, T ) small enough, in such a way that T ∗MebT ∥A∥ < 1, we see that Φ is then a
contraction on E . From the Banach fixed point theorem, there exists a unique fixed point to the
mapping Φ. In other words, there exists g ∈ E such that

(4.1) g(t) = SB(t)g0 + (SBA ∗ g)(t), ∀ t ∈ [0, T ∗].

Furthermore, from (4.1), the continuous function ut := e−bt sups∈[0,t] ∥gs∥X satisfies

ut ≤M∥g0∥X +M∥A∥
∫ t

0

us ds,

and the Gronwall lemma implies ut ≤M ∥g0∥X eM ∥A∥ t, so that

(4.2) ∥gt∥X ≤M ∥g0∥Xeb
′t, ∀ t ∈ [0, T ∗].

Step 2. Weak solution. We fix φ = φt ∈ C1(R+;X) ∩ C(R+;D(B∗)). Denoting gt := g(t),
S∗
t := SB∗(t), we define

λ(t) = ⟨φt, gt⟩ = ⟨S∗
t φt, g0⟩+

∫ t

0

⟨S∗
t−sφt,Ags⟩ ds.
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We clearly have λ ∈ C1([0, T ∗]) and

λ′(t) = ⟨S∗
t B∗φt + S∗

t φ
′
t, g0⟩+ ⟨φt,Agt⟩+

∫ t

0

⟨S∗
t−sB∗φt + S∗

t−sφ
′
t,Ags⟩ ds.

=
〈
B∗φt + φ′

t,
(
SB(t) +

∫ t

0

St−sAUs
)
g0

〉
+ ⟨A∗φt, gt⟩

=
〈
Λ∗φt + φ′

t, gt

〉
.

By writing

⟨φt, gt⟩ − ⟨φ0, g0⟩ =
∫ t

0

λ′(s) ds,

we conclude with

⟨φt, gt⟩X′,X − ⟨φ0, g0⟩X′,X =

∫ t

0

⟨φ′
s + Λ∗φs, gs⟩X′,X ds, ∀ t ∈ (0, T ∗].

Because Λ−B =: A ∈ B(X), we see that D(Λ) = D(B) and thus D(Λ∗) = D(B∗), and this precisely
means that g ∈ E is a weak solution to the evolution equation (1.2) on the interval of time [0, T ∗]
and associated to the initial datum g0. Repeating the construction on any [kT ∗, (k + 1)T ∗], we
get a solution on [0, T ], and next on R+, since T > 0 is arbitrary. In other words, we have been
able to prove the existence of a global weak solution g ∈ C(R+;X) to the evolution equation (1.2)
associated to the initial datum g0.

Step 3. Regularity. We now consider g0 ∈ D(Λ) and T > 0. For T ∗ ∈ (0, T ), we define

F := C1([0, T ∗];X), ∥g∥F := ∥g∥E + ∥g′∥E

as well as for any g ∈ F , the function

ft := SB(t)g0 + (SBA ∗ g)(t).
We observe that

1

h
(ft+h − ft) =

1

h
[SB(t+ h)g0 − SB(t)g0] +

1

h

∫ t+h

t

SB(s)Agt+h−sds

+
1

h

∫ t

0

SB(s)A[gt+h−s − gt−s] ds

→ SB(t)Bg0 + SB(t)Ag0 +
∫ t

0

SB(s)Ag′t−s ds = f ′t ,

as h → 0, where the limit term belongs to E , so that f ∈ F . From the computations made in
Step 1 and the one made just above, for two given functions g1, g2 ∈ F , the associated images
f1, f2 satisfy

∥f2 − f1∥F = sup
[0,T∗]

∥∥∥∫ t

0

SB(t− s)A[g2(s)− g1(s) + g′2(s)− g′1(s)] ds
∥∥∥

≤ ∥A∥MT∗e
bT ∥g2 − g1∥F .

Arguing as in Step 1, and from the Banach fixed point theorem again, there exists g ∈ F which
satisfies the functional equation (4.1). From (4.1), we observe that

1

h
(SB(h)gt − gt) =

1

h
(gt+h − gt)−

1

h

∫ t+h

t

SB(t+ h− s)Ags ds

→ g′t −Agt,
in X as h→ 0, so that g ∈ C([0, T ∗];D(B)) and g is a classical solution to the evolution equation
(1.2) on the interval of time [0, T ∗] and associated to the initial datum g0. Repeating the argument,
we build in that way a global classical solution g ∈ C1(R+, X) ∩ C(R+, D(Λ)).

Step 4. The backward dual problem and the conclusion. Exactly in the same way, for any ψ0 ∈
D(Λ∗), we may build a global classical solution ψ ∈ C1(R+, X

′)∩C(R+, D(Λ)) to the dual equation

d

dt
ψ = Λ∗ψ, ψ(0) = ψ0.
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Then, for a given T > 0 and a given φT ∈ D(Λ∗), taking ψ0 := φT , next defining φ as above and
finally setting φ(t) := ψ(T − t), we build a function φ ∈ C1([0, T ], X ′) ∩ C([0, T ], D(Λ∗)) which is
a classical solution to the backward dual problem

(4.3)
d

dt
φ = −Λ∗φ, φ(T ) = φT .

In order to conclude, we proceed exactly as in the proof of Proposition 3.3. We consider two global
weak solutions g1, g2 ∈ C(R+;X) to the evolution equation (1.2) associated to the same initial
datum g0. The difference g := g2 − g0, then satisfies

⟨φT , gT ⟩X′,X =

∫ T

0

⟨φ′
s + Λ∗φs, gs⟩X′,X ds,

for any φ ∈ C([0, T ];D(Λ∗)) ∩ C1([0, T ];X ′). For any φT ∈ D(B∗), choosing the function φ
satisfying (4.3), we have

⟨φT , gT ⟩X′,X = 0,

and thus gT = 0. That establishes the uniqueness of the weak solution to the evolution equation
(1.2). As a consequence of Proposition 1.3, we immediately deduce that Λ generates a semigroup
and this one satisfies the announced growth estimate thanks to (4.2). □

5. Doblin-Harris Theorem in a Banach lattice

We formulate a general abstract constructive Doblin-Harris theorem.

We consider a Banach lattice X, which means that X is a Banach space endowed with a closed
positive cone X+ (we write f ≥ 0 if f ∈ X+ and we recall that f = f+ − f− with f± ∈ X+ for
any f ∈ X. We also denote |f | := f+ + f−). We assume that X is in duality with another Banach
lattice Y , with closed positive cone Y+, so that the bracket ⟨ϕ, f⟩ is well defined for any f ∈ X,
ϕ ∈ Y , and that f ∈ X+ (resp. ϕ ≥ 0) iff ⟨ψ, f⟩ ≥ 0 for any ψ ∈ Y+ (resp. iff ⟨ϕ, g⟩ ≥ 0 for any
g ∈ X+), typically X = Y ′ or Y = X ′. We write ψ ∈ Y++ if ψ ∈ Y satisfies ⟨ψ, f⟩ > 0 for any
f ∈ X+\{0}.

Example 5.2. The typical case (and unique example) we have in mind is X := Lpω, for p ∈ [1,∞]
and a weight function ω : Rd → R, where

Lpω := {f ∈ L1
loc(Rd); ∥f∥Lp

ω
:= ∥fω∥Lp <∞},

and Y := Lp
′

ω−1 .

We consider a positive and conservative (or stochastic) semigroup S = (St) = (S(t)) on X, that
means that (St) is a semigroup on X such that

• St : X+ → X+ for any t ≥ 0,
• there exist ϕ1 ∈ Y++, ∥ϕ1∥ = 1, and a dual semigroup S∗ = S∗

t = S∗(t) on Y such that
S∗
t ϕ1 = ϕ1 for any t ≥ 0. More precisely, we assume that S∗

t is a bounded linear mapping
on Y such that ⟨Stf, ϕ⟩ = ⟨f, S∗

t ϕ⟩, for any f ∈ X, ϕ ∈ Y and t ≥ 0, and thus in particular
S∗
t : Y+ → Y+ for any t ≥ 0.

Example 5.3. For the linear McKean equation associated to the operator Lf := ∆f + div(af)
defined on (a subspace of) X := Lpω ⊂ L1, the function ϕ1 := 1 ∈ L∞ ⊂ Y fulfills the second
condition (conservative property).

We denote by L the generator of S with domain D(L). For ψ ∈ Y+, we define the seminorm

[f ]ψ := ⟨|f |, ψ⟩, ∀ f ∈ X.

Proposition 5.4. A positive and conservative semigroup S on a Banach lattice X is a semigroup
of contraction for the seminorm associated to the conservation ϕ1, in other words

(5.4) [S(t)f ]ϕ1
≤ [f ]ϕ1

, ∀ t ≥ 0, ∀ f ∈ X.
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Proof of Proposition 5.4. For f ∈ X, we may write f = f+ − f−, f± ∈ X+, and then compute

|Stf | ≤ |Stf+|+ |Stf−|
= Stf+ + Stf− = St|f |,

where we have used the positivity property of St in the second line. We deduce

[Stf ]ϕ1
≤ ⟨St|f |, ϕ1⟩ = ⟨|f |, S∗

t ϕ1⟩
and thus (5.4), because of the stationarity property of ϕ1. □

In order to obtain a very accurate and constructive description of the longtime asymptotic be-
haviour of the semigroup S, we introduce additional assumptions.

• We first make the strong dissipativity assumption

∥S(t)f∥ ≤ C0e
λt∥f∥+ C1

∫ t

0

eλ(t−s)[S(s)f ]ϕ1ds,(5.5)

for any f ∈ X and t ≥ 0, where λ < 0 and Ci ∈ (0,∞).

• Next, we make the Doblin-Harris positivity assumption

ST f ≥ ηε,T gε[f ]ψε , ∀ f ∈ X+,(5.6)

for any T ≥ T1 > 0 and ε > 0, where ηε,T > 0, gε ∈ X+\{0} and (ψε) is a bounded and decreasing
family of Y+\{0}.
• We finally assume the following compatibility condition of family of interpolation inequalities

[f ]ϕ1 ≤ ξε∥f∥+ Ξε[f ]ψε , ∀ f ∈ X, ε ∈ (0, 1],(5.7)

for two positive real numbers families (ξε) and (Ξε) such that ξε ↘ 0 as ε↘ 0.

Example 5.5. When X := Lpω ⊂ L1 (what is equivalent to ω−1 ∈ Lp
′
) with ω → ∞ as |x| → ∞

and ϕ1 = 1 ∈ L∞ ⊂ Y , such an interpolation family holds with ψε := 1BR
, R := ε−1. We indeed

have ∫
Rd

|f | =
∫
Bc

R

|f |+
∫
BR

|f | ≤ ∥ω1Bc
R
∥Lp′∥f∥Lp

ω
+ [f ]ψε ,

with ξε := ∥ω1Bc
R
∥Lp′ → 0 as ε→ 0.

Theorem 5.6. Consider a semigroup S on a Banach lattice X which satisfies the above conditions.
Then, there exists a unique normalized positive stationary state f1 ∈ D(L), that is

Lf1 = 0, f1 ≥ 0, ⟨ϕ1, f1⟩ = 1.

Furthermore, there exist some constructive constants C ≥ 1 and λ2 < 0 such that

(5.8) ∥S(t)f − ⟨f, ϕ1⟩f1∥ ≤ Ceλ2t∥f − ⟨f, ϕ1⟩f1∥
for any f ∈ X and t ≥ 0.

Sketch of the proof of Theorem 5.6.

Step 1. The Lyapunov condition. From (5.5) and (5.4), we have

∥Stf∥ ≤ C0e
λt∥f∥+ C1

∫ t

0

eλ(t−s)[f ]ϕ1ds,

and we may thus choose T ≥ T1 large enough in such a way that

(5.9) ∥ST f∥ ≤ γL∥f∥+K[f ]ϕ1
,

with
γL := C0e

λT ∈ (0, 1), K := C1/λ.

Step 2. The conditional Doblin-Harris estimate. Take f ≥ 0 such that ∥f∥ ≤ A[f ]ϕ1 with A >
K/(1− γL). We have thus

∥f∥ ≤ A(ξε∥f∥+ Ξε[f ]ψε),

for any ε > 0, thanks to the interpolation inequality (5.7). Choosing ε > 0 small enough, we
immediately obtain

∥f∥ ≤ 2Ξε[f ]ψε .
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Together with [f ]ϕ1 ≤ ∥f∥ and the Doblin-Harris positivity condition (5.6), we conclude to the
conditional Doblin-Harris positivity estimate

ST f ≥ cgε[f ]ϕ1

for all T ≥ T1, with c
−1 = c−1

A := 2AΞεη
−1
ε,T .

Step 3. The conditional coupling property. We may now improve the non-expensive estimate (5.4)
on the set N := {f ∈ X; ⟨ϕ1, f⟩ = 0}. Take indeed f ∈ N such that ∥f∥ ≤ A[f ]ϕ1

. Observing that
[f±]ϕ1

= [f ]ϕ1
/2 and thus

∥f±∥ ≤ ∥f∥ ≤ 2A[f±]ϕ1
,

the previous estimate tells us that

ST f± ≥ ϱgε ϱ := c2A[f ]ϕ1 .

Slightly modifying the arguments of Proposition 5.4, we compute now

|ST f | ≤ |ST f+ − ϱgε|+ |ST f− − ϱgε|
= ST |f | − 2ϱgε.

We deduce
[ST f ]ϕ1

≤ ⟨|f |, ϕ1⟩ − 2ϱ ⟨ϕ1, gε⟩,
and thus conclude to the conditional coupling estimate

(5.10) [ST f ]ϕ1 ≤ γH [f ]ϕ1 ,

with γH := 1− 2c2A⟨ϕ1, gε⟩ ∈ (0, 1).

Step 4. We introduce a new equivalent norm ||| · ||| on X defined by

(5.11) |||f ||| := [f ]ϕ1
+ β∥f∥.

Using the three properties (5.4), (5.9) and (5.10), we may prove that there exist β > 0 small enough
and γ ∈ (0, 1) such that

(5.12) |||ST f0||| ≤ γ|||f0|||, for any f0 ∈ N .

We observe that we have the alternative

A [f0]ϕ1
≥ ∥f0∥ or A [f0]ϕ1

< ∥f0∥.
In the first case of the alternative, using the Lyapunov estimate (5.9) and the coupling estimate
(5.10), we have

|||ST f0||| = [ST f0]ϕ1
+ β∥ST f0∥

≤ (γH + βK)[f0]ϕ1
+ βγL∥f0∥

≤ γ1|||f0|||,
with γ1 := max(γH + βK, γL) < 1, by fixing from now on β > 0 small enough. In the second case
of the alternative, using the Lyapunov estimate (5.9) and the non expansion estimate (5.4), we
have

|||ST f0||| = [ST f0]ϕ1
+ β∥ST f0∥

≤ (1 + βK − βδ)[f0]ϕ1
+ β(γL + δ/A)∥f0∥

≤ γ2|||f0|||,
with γ2 := max(1 + βK − βδ, γL + δ/A) for any 0 < βδ < 1 + βK. We take δ := K + ϑ, ϑ > 0, so
that we get

γ2 = max(1− βϑ, (γL +K/A) + ϑ/A) < 1,

by choosing ϑ > 0 small enough and by recalling from the very definition of A that γL+K/A < 1.
In any cases, we have thus established (5.12) with γ := max(γ1, γ2) < 1.

Step 5. In order to prove the existence and uniqueness of the stationary state f1 ∈ X1, we fix
g0 ∈ M := {g ∈ X1, g ≥ 0, ⟨g, ϕ1⟩ = 1}, and we define recursively gk := ST gk−1 for any k ≥ 1.
Thanks to (5.12), we get

∞∑
k=1

|||gk − gk−1||| ≤
∞∑
k=0

γk|||g1 − g0||| <∞,
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so that (gk) is a Cauchy sequence in M. We set f1 := lim gk ∈ M which is a stationary state for the
mapping ST , as seen by passing to the limit in the recursive equations defining (gk). From (5.12)
again, this is the unique stationary state for this mapping in M. From the semigroup property, we
have Stf1 = StST f1 = ST (Stf1) for any t > 0, so that Stf1 is also a stationary state in M, and
thus Stf1 = f1 for any t > 0, by uniqueness.

Step 6. For f ∈ X, we see that h := f − ⟨f, ϕ1⟩ϕ1 ∈ N , and using recursively (5.12), we deduce

|||SnTh||| ≤ γn|||h|||, ∀n ≥ 0.

The estimate (5.8) then follows by using the equivalence of the norms ∥ · ∥ and ||| · |||, the semigroup
property and the growth estimate (1.1) for dealing with intermediate times t ∈ (nT, (n+1)T ). For
t ≥ 0 and t = nT + τ , n ≥ 0, τ ∈ [0, T ), we may indeed write

∥S(t)h∥ ≤ β−1|||S(T )nS(τ)h|||
≤ β−1γn|||S(τ)h|||
≤ β−1en log γ(1 + β)∥S(τ)h∥
≤ e(t/T−τ/T ) log γ(1 + β−1)MebT ∥h∥,

where in the last line we have used (1.1) with b ≥ 0 (what we may always assume and it is
also imposed in our case by the conservation hypothesis), from what we conclude to (5.8) with
λ2 := T−1 log γ < 0 and C := γ−1(1 + β−1)MebT . □
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