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1. Introduction

In this chapter we are mainly concerned with the parabolic equation

(1.1)
∂f

∂t
= div(A∇f) in (0,∞)× Rd, f(0, ·) = f0 in Rd,

on the function f = f(t, x), t ≥ 0, x ∈ Rd, d ≥ 3, with a measurable, bounded
and strictly elliptic matrix A, namely A satisfies (in the sense of quadratic forms)
νI ≤ A(x) ≤ ν−1I for any x ∈ Rd and for some ν > 0. The heat equation
corresponds to the case A = νI > 0 to which we dedicate this introduction.

1.1. Representation formula. In the case A = 1
2I, that is

(1.2)
∂f

∂t
=

1

2
∆f in (0,∞)× Rd, f(0, ·) = f0 in Rd,

we know that

(1.3) γt(x) :=
1

(2πt)d/2
exp(−|x|2

2t
)

is the associated fundamental solution, that means that it is the unique solution f
to equation (1.2) such that f(t, ·) ⇀ δ0 as t → 0. The coefficient 1/2 in (1.2) is
just put in order to get this usual gaussian kernel γt (instead of a rescaled version
of it). As a consequence, for any f0 ∈ Lq(Rd), 1 ≤ q ≤ ∞, the solution f to (1.2)
satisfies f ∈ C∞((0,∞)×Rd) and more precisely the solution is given through the
representation formula

(1.4) f(t, .) = γt ∗ f0,

where ∗ = ∗x stands for the convolution operator in the position variable. Let us
observe that, for any r ∈ [1,∞],

∥γt∥Lr =
C(r, d)

t
d
2 (1−

1
r )
, C(r, d) :=

1

r
d
2r (2π)

d
2 (1−

1
r )
,

1
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so that from the Young inequality for convolution products, we get the ultracon-
tractivity estimate

(1.5) ∥f(t, .)∥Lp ≤ Cp,q

t
d
2 (

1
q−

1
p )

∥f0∥Lq ,

for any t > 0 and p, q ∈ [1,∞], p ≥ q, where Cp,q := C(r, d) and r ∈ [1,∞] is defined
by the relation 1/p = 1/q+ 1/r− 1. When f0 ∈ Lq, q ∈ [1,∞), the above estimate
reveals both a instantaneous kind of smoothing effect (gain of local integrability)
and a dispersion mechanism f(t, .) → 0 as t→ ∞.

The main aim of this chapter is to recover part of these results using some techniques
which are valid for a general matrix A. However, for the sake of simplicity, we will
mainly consider the case A = νI, with ν = 1 or 1/2. The sequel of the introduction
is dedicated to the presentation of other techniques which are specific to the heat
equation or to a general diffusion equation with smooth coefficients.

1.2. The Fourier transform. Consider now the heat equation with source term

(1.6)
∂f

∂t
= ∆f + g in R× Rd,

with f, g ∈ L2(Rd+1). We define the Fourier transform

ĥ(τ, ξ) :=

ˆ
Rd+1

h(t, x)e−i(τt+x·ξ)dtdx.

On the Fourier side, the above heat equation is

iτ f̂ + |ξ|2f̂ = ĝ,

from what we immediately computeˆ
Rd+1

(1 + τ2 + |ξ|4)|f̂ |2 =

ˆ
Rd+1

|f̂ |2 +
ˆ
Rd+1

τ2 + |ξ|4

|iτ + |ξ|2|2
|ĝ|2 =

ˆ
Rd+1

|f̂ |2 + |ĝ|2.

We deduce
∥f∥2Lp ≲ ∥f∥2H1 ≲ ∥f∥2L2 + ∥g∥2L2 ,

with p := 2(d+1)/(d− 1) > 2, from the Sobolev embedding, the Fourier definition
of the Sobolev space in Rd+1 and the Plancherel identity. This estimate also reveals
some gain of integrability of the solution to the heat equation and can be seen as a
variant of (1.5).

1.3. Energy method. By differentiating the heat equation

(1.7)
∂f

∂t
= ∆f in (0,∞)× Rd, f(0, ·) = f0 in Rd,

we can easily establish some estimates on its smoothing effect. On the one hand,
any solution f satisfies first the energy identity

(1.8)
1

2

d

dt
∥f∥2L2 =

ˆ
Rd

(∂tf)f =

ˆ
Rd

(∆f)f = −∥∇f∥2L2 .

On the other hand, because ∇ and the elliptic operator ∆ commute, we have

∂t∇f = ∆∇f,
and any solution also satisfies

d

dt
∥∇f∥2L2 = −2∥∆f∥2L2 = −2∥D2f∥2L2 .
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Both together, we have

d

dt

{1
2
∥f∥2L2 + t∥∇f∥2L2

}
= −2t∥D2f∥2L2 ≤ 0, ∀ t > 0,

and integrating in time this differential inequality, we readily obtain

(1.9) ∥∇f(t)∥2L2 ≤ 1

2t
∥f0∥2L2 , ∀ t > 0.

It is worth emphasizing that a similar result as this last estimate (1.9) is available for
solutions to the general parabolic equation (1.1) when A is a smooth function, but
certainly not in the case when A is only measurable. Using the Sobolev embedding
in Rd, we deduce then

∥f(t)∥L2∗ ≲
1

t1/2
∥f0∥L2 , ∀ t > 0,

with 1/2∗ := 1/2− 1/d, recovering thus (1.5) with p := 2∗ and q := 2.

1.4. Additional estimates. In the chapter 1, we have already seen two more ele-
mentary qualitative properties of parabolic equations. On the one hand, integrating
equation (1.7), we have

d

dt

ˆ
Rd

f =

ˆ
Rd

∆f = 0,

so that the “mass” is conserved

⟨f(t, ·)⟩ :=
ˆ
Rd

fdx =

ˆ
Rd

f0dx =: ⟨f0⟩, ∀ t ≥ 0.

Similarly as for the energy estimate (1.8), we have

1

2

d

dt

ˆ
Rd

f2− =

ˆ
Rd

∂tf(−f−) =
ˆ
Rd

∆f(−f−)

=

ˆ
Rd

∇f∇f− = −
ˆ
Rd

|∇f−|2 ≤ 0,

so that f(t) ≥ 0 if f0 ≥ 0. That means that the flow associated to the heat equation
preserves the positivity, or in other words, the equation (or the associated operator)
satisfies a weak maximum principle.

More generally, for any smooth function β : R → R, we have

∂tβ(f) = β′(f)∂tf = β′(f)∆f = ∆β(f)− β′′(f)|∇f |2.

When furthermore β is convex, the function β(f) is a subsolution, namely it satisfies

(1.10) ∂tβ(f) ≤ ∆β(f).

Integrating on Rd, we have

d

dt

ˆ
Rd

β(f) ≤
ˆ
Rd

∆β(f) = 0,

and we have thus exhibited a large family of Lyapunov functional t 7→ ∥β(f(t, ·))∥L1 ,
for any nonnegative convex function β. In particular, for any p ∈ [1,∞], the Lp-
norm falls in this family, and thus

(1.11) ∥f(t, ·)∥Lp ≤ ∥f0∥Lp , ∀ t ≥ 0.
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Finally, for a positive solution, the dispersion/diffusion effect of the heat equation
can also be brought out through the increasing of moments: we have indeed for
instance

d

dt

ˆ
Rd

f(t, x)|x|2 dx =

ˆ
Rd

f∆|x|2 dx = 2d

ˆ
Rd

f0, ∀ t ≥ 0,

and when 0 ≤ f0 ∈ L1(Rd), we see that the second moment grows linearly.

1.5. Organisation of the next sections. In the next sections, we will recover
part of the properties established for the solutions to the heat equation in this intro-
ductive section. We will first focus on some robust proofs of the ultracontractivity
property (1.5). We will next address the two local properties of strict positivity
(Harnack inequality and strong maximum principle) and regularity (Holder con-
tinuity). We will finally explain how to establish the existence and uniqueness of
fundamental solutions which behaves very similarly to the heat kernel.

2. Ultracontractivity

The aim of this section is to establish the ultracontractivity estimate (1.5) for a
solution f to the parabolic equation

(2.1)
∂f

∂t
= div(A∇f) + b · ∇f in (0,∞)× Rd, f(0, ·) = f0 in Rd,

for a bounded strictly elliptic matrix A and a bounded vector field b. For the sake
of simplicity, we will rather establish the result on the solution to the heat equation

(2.2)
∂f

∂t
= ∆f in (0,∞)× Rd, f(0, ·) = f0 in Rd,

with several proofs which are not based on the representation formula (1.4). These
proofs are clearly longer and more complicated to those presented in Section 1, but
they are also more robust in the sense that they apply to the more general parabolic
equation (2.1) and to bounded domain variants. The arguments will be presented
as a priori estimates and we will no bother with a rigorous justification of the
computations when starting from the very definition of what is a (classical or weak)
solution. These generalizations and rigorous justifications are left as exercices.

2.1. The Nash approach. We start establishing (1.5) for p = 2 and q = 1. For
that purpose, we first establish the following fundamental functional estimate.

Nash inequality. There exists a constant Cd such that for any f ∈ L1(Rd) ∩
H1(Rd), there holds

(2.3) ∥f∥1+2/d
L2 ≤ Cd ∥f∥2/dL1 ∥∇f∥L2 .

Proof of Nash inequality. We write, for any R > 0,

∥f∥2L2 = ∥f̂∥2L2 =

ˆ
|ξ|≤R

|f̂ |2 +
ˆ
|ξ|≥R

|f̂ |2

≤ cdR
d ∥f̂∥2L∞ +

1

R2

ˆ
|ξ|≥R

|ξ|2 |f̂ |2

≤ cdR
d ∥f∥2L1 +

1

R2
∥∇f∥2L2 ,
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where we have used the Plancherel identity in the first line and usual properties of
the Fourier transform on the last line. We take the optimal choice for R by setting

R := (∥∇f∥2L2/cd∥f∥2L1)
1

d+2 so that the two terms at the RHS of the last line are
equal and that gives (2.3). □

Alternative proofs of the Nash inequality (2.3) based on the Sobolev embedding or
on the Poincaré-Wirtinger inequality are left as exercices.

The cornerstone L1 − L2 estimate. We consider now a solution f to the heat
equation (2.2) and we recall that

(2.4)
d

dt

ˆ
Rd

f(t, x)2 dx = −2

ˆ
Rd

|∇f(t, x)|2 dx, ∀ t ≥ 0,

from (1.8), and

(2.5) ∥f(t, ·)∥L1 ≤ ∥f0∥L1 , ∀ t ≥ 0,

from (1.11) with p = 1. Putting together that two last equations and the Nash
inequality, we obtain the following ordinary differential inequality

d

dt

ˆ
Rd

f2t dx ≤ −Cd∥f0∥
− 2

α

L1

(ˆ
Rd

f2t dx
)1+ 1

α

, α := d/2.

Recalling that ū := (α−1Kt)−α is a supersolution to the ordinary differential in-
equality

u′ ≤ −K u1+α, α = 2/d > 0,

we deduce from a maximum principle (Gronwall lemma) that u ≤ ū and thus in
our case

(2.6)

ˆ
Rd

f2t dx ≤
( α

Cd
∥f0∥

2
α

L2

)α 1

tα
=

( d

2Cd

) d
2 ∥f0∥2L1

td/2
, ∀ t > 0.

That is nothing but the announced estimate (1.5) for p = 2 and q = 1.

Extension to Lq − Lp estimates. In order to prove the estimate for the full
range of exponents, we use some duality, semigroup and interpolation elementary
arguments as follow.

• We first use a duality argument. For given T > 0 and ϕT , we consider the solution
ϕ to the backward heat equation

−∂tϕ = ∆ϕ, ϕ(T ) = ϕT ,

and we observe that if f still denotes the solution to the forward heat equation
(2.2), we have by performing two integrations by parts in the last line

d

dt

ˆ
fϕ =

ˆ
(∂tf)ϕ+

ˆ
f∂tϕ

=

ˆ
(∆f)ϕ+

ˆ
f(−∆ϕ)

= −
ˆ

∇f · ∇ϕ+

ˆ
∇f · ∇ϕ = 0,

so that

(2.7)

ˆ
f(T )ϕT =

ˆ
f0ϕ(0).
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We also observe that ψ(t) := ϕ(T − t) is a solution to the forward heat equation
(2.2) with initial datum ψ(0) = ϕT , so that we may use the already proved estimate
(1.5) and we get

∥ϕ(0)∥L2 = ∥ψ(T )∥L2 ≤ C

T d/4
∥ψ(0)∥L1 =

C

T d/4
∥ϕT ∥L1 .

Combining the Riesz representation theorem, the duality identity (2.7), the Cauchy-
Schwarz inequality and that last estimate on the dual problem, we have

∥f(T )∥L∞ = sup
∥ϕT ∥L1≤1

ˆ
f(T )ϕT = sup

∥ϕT ∥L1≤1

ˆ
f0ϕ(0)

≤ sup
∥ϕT ∥L1≤1

∥f0∥L2∥ϕ(0)∥L2 ≤ C

T d/4
∥f0∥L2 ,

which is nothing but estimate (1.5) for p = ∞ and q = 2.

• We next use a semigroup like argument. Gathering estimates (1.5) for (p, q) =
(2, 1) and (p, q) = (∞, 2), we have

∥f(t)∥L∞ ≤ C2∞

(t/2)d/4
∥f(t/2)∥L2 ≤ C2∞

(t/2)d/4
C12

(t/2)d/4
∥f0∥L1 ,

which is nothing but the estimate (1.5) for p = ∞ and q = 1.

• We finally use some elementary interpolation arguments and more precisely re-
peatedly the Holder inequality. For p ∈ (1,∞), using the L1 estimate (2.5) and the
already probed Nash estimate for (p, q) = (∞, 1), we have

∥f(t)∥Lp ≤ ∥f(t)∥1−
1
p

L∞ ∥f(t)∥
1
p

L1 ≤ (C1∞t
−d/2∥f0∥L1)1−

1
p ∥f0∥

1
p

L1

which is nothing but the estimate (1.5) for p and q = 1. For q ∈ (1,∞), using that
last estimate with p := q′ on the dual backward problem and repeating the duality
argument, we have

∥f(T )∥L∞ ≤ sup
∥ϕT ∥L1≤1

∥f0∥Lq∥ϕ(0)∥Lq′ ≤ C1q′T
− d

2 (1−
1
q′ )∥f0∥Lq ,

what is nothing but the estimate (1.5) for p = ∞ and q. Finally, for 1 < q < p <∞,
we use the already proved estimates and the Holder inequality in order to get

∥f(t)∥Lp ≤ ∥f(t)∥1−
q
p

L∞ ∥f(t)∥
q
p

Lq ≤ (Cq∞t
− d

2
1
q )1−

q
p ∥f0∥Lq ,

what is nothing but the estimate (1.5).

2.2. An alternative Nash proof. Anticipating with the most classical De Giorgi-
Moser approach that we will develop in the next sections, we present here an al-
ternative proof which mixes some arguments coming from Nash argument (the non
expansion estimate in any Lr spaces) and one coming from the De Giorgi-Moser
approach (the use of the Sobolev inequality). For simplicity, we assume here d ≥ 3
(in order to be able to use the simplest version of the Sobolev inequality).

Multiplying the equation (2.4) by φ2, with 0 ≤ φ ∈ C1([0, T ]), φ(0) = φ(T ) = 0,
and integration in time, we find

2

ˆ T

0

φ2

ˆ
|∇f |2 =

ˆ T

0

(φ2)′
ˆ
f2.
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Using the Sobolev inequality

(2.8) ∥f∥L2∗ ≤ CS∥∇f∥L2 ,
1

2∗
=

1

2
− 1

d
,

we deduce

(2.9) ∥φf∥2L2(0,T ;L2∗ ) ≲
ˆ T

0

φ(φ′)
+
∥f∥2L2dt.

We observe thatˆ T

0

∥f∥2L2φφ′
+
dt ≤

ˆ T

0

∥f∥2(1−θ)L1 φ′
+
φ1−2θ∥f∥2θL2∗φ

2θdt

≤
(ˆ T

0

∥f∥2L1(φ′
+
φ1−2θ)

1
1−θ dt

)1−θ(ˆ T

0

∥f∥2L2∗φ
2dt

)θ
,

where we have used the interpolation inequality with 1/2 = 1− θ+ θ/2∗ in the first
line and the Holder inequality in the second line. Using (2.9) in order to bound the
last term and simplifying both sides of the inequality, we obtain

ˆ T

0

∥f∥2L2φφ′
+
dt ≲

ˆ T

0

∥f∥2L1(φ′
+
φ1−2θ)

1
1−θ dt.

By using the decay of the Lp norms (1.11) with p = 2 and p = 1, we have

∥fT ∥L2 ≤ ∥ft∥L2 , ∥ft∥L1 ≤ ∥f0∥L1 , ∀ t ∈ [0, T ],

and together with the last estimate, we obtain

Aφ(T )∥fT ∥2L2 ≤ Bφ(T )∥f0∥2L1 ,

where

Aφ(T ) :=

ˆ T

0

φφ′
+
dt, Bφ(T ) :=

ˆ T

0

(φ′
+
φ1−2θ)

1
1−θ dt.

Choosing φ(t) := φ0(t/T ) and performing the change of variable s := t/T , we easily
compute

Aφ(T ) =

ˆ 1

0

φ0φ
′
0+ds.

Using that θ = d/(d+ 2), we also have

Bφ(T ) =

ˆ T

0

(φ′
+
)

d+2
2 φ

2−d
d dt.

= T−d/2
ˆ 1

0

(φ′
0)

d+2
2

+
φ

2−d
d

0 dt.

The last term is finite when φ0(s) = sa(1 − s)a, with s(a−1) d+2
2 +a 2−d

d ∈ L1(0, 1)
what is the case when a > (2/d)/(d/2 + 2/d). All together, we have established

∥fT ∥2L2 ≲ T−d/2∥f0∥2L1 .

That is again the decay estimate (1.5) with p = 2 and q = 1. Taking advantage
of that last estimate, we are able to obtain (1.5) for the full range of exponents
1 ≤ q < p ≤ ∞ by proceeding exactly as in Section ??.
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2.3. Energy estimate and Moser iterative argument. Let us consider again
a solution f to the heat equation (2.2). We integrate in time equation (1.8) in order
to get

1

2

ˆ
f2t +

ˆ t

s

ˆ
|∇f |2 =

1

2

ˆ
f2s ,

for any 0 < s < t. We fix 0 < t0 < t1 < t < T and we integrate in s ∈ (t0, t1) the
above equation. We obtain

(t1 − t0)

ˆ
f2t + 2(t1 − t0)

ˆ t

t1

ˆ
|∇f |2 ≤

ˆ T

t0

ˆ
f2.

Taking the supremum in t ∈ (t1, T ) of both terms at the RHS, we deduce

(2.10) sup
[t1,T ]

ˆ
f2t + 2

ˆ T

t1

ˆ
|∇f |2 ≤ 2

t1 − t0

ˆ T

t0

ˆ
f2,

for any 0 ≤ t0 < t1 ≤ T . Using the Sobolev inequality (2.8), we have proved

∥f∥2L∞(I1;L2) ≤
1

t1 − t0
∥f∥2L2(I0;L2),

∥f∥2L2(I1;L2∗ ) ≤
C2
S

2

1

t1 − t0
∥f∥2L2(I0;L2),

where Ii := [ti, T ]. We now recall the interpolation inequality

(2.11) ∥g∥LqθLrθ ≤ ∥g∥θLq0Lr0 ∥g∥1−θLq1Lr1 ,

where
1

qθ
=

θ

q0
+

1− θ

q1
,

1

rθ
=

θ

r0
+

1− θ

r1
, θ ∈ [0, 1],

which proof is left as an exercise. Using this interpolation inequality with θ such
that

1

p
:=

1− θ

2
=
θ

2
+

1− θ

2∗
,

we deduce

(2.12) ∥f∥2Lp(I1;Lp) ≤
C

t1 − t0
∥f∥2L2(I0;L2), p := 2(1 + 2/d).

In fact, for a subsolution g ≥ 0, we may repeat the above argument, and we get in
the same manner

(2.13) ∥g∥2Lp(Uk+1)
≤ C

1

tk+1 − tk
∥g∥2L2(Uk)

,

with Uk := Ik × Rd, Ik := (tk, T ] and 0 ≤ tk < tk+1 < T .

We consider now a solution f ≥ 0 to the heat equation and we define

tk :=
T

2
− T

2k
, k ≥ 1, pk+1 := (1 + 2/d)pk, k ≥ 1, p1 := 2.

Because pk/2 ≥ 1, and thus s 7→ |s|pk/2 is convex, and because of (1.10), the
function g := fpk/2 is a subsolution. Applying (2.13) to this function g, we obtain

∥f∥Lpk+1 (Uk+1) = ∥fpk/2∥2/pkLp(Uk+1)

≤
(
C
2k

T
∥fpk/2∥2L2(Uk)

)1/pk =
(
C
2k

T

)1/pk∥f∥Lpk (Uk).
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Observing that
∞∑
k=1

1

pk
=

1

2

∞∑
j=0

1

(1 + 2/d)j
=

1

2
+
d

4
,

we deduce that
∞∏
k=1

(
C
2k

T

)1/pk ≲ T−1/2−d/4.

As a consequence, we have

∥f∥L∞(U∞) ≤ lim inf
k→∞

∥f∥Lpk (Uk)

≤ lim inf
k→∞

k∏
j=1

(
C
2j

T

)1/pj∥f∥Lp1 (U1)

and thus

(2.14) ∥f∥L∞(U∞) ≲ T−1/2−d/4∥f∥L2(U1).

Finally, together with the decay of the L2 norm (1.8) which implies

∥f∥L2(U1) ≤ T 1/2∥f0∥L2 ,

we have thus established

(2.15) ∥fT ∥L∞ ≲
1

T d/4
∥f0∥L2 .

Estimate (2.15) is the dual estimate of (2.6). We may thus end the proof of the
full range estimate (1.5) by arguing by duality and interpolation exactly as in
Section ??.

2.4. Other methods. Wemay prove the same kind of estimates by considering the
evolution of β(f) with other choices of the convex (or concave) function β : R → R.
More precisely, the following choices are possible :

• De Giorgi method: β(s) := (s− c)2+, ∀ c ≥ 0;

• Moser alternative method : β(s) := |s|p, ∀ p ̸= 0, 1;

• Boccardo-Gallouet method : β such that β(0) = 0 and β′′(s) := 1M<|s|<M+1,
∀M ≥ 0.

The proofs are based in a fundamental way on the choice of the nonlinear function
β, on some suitable interpolation arguments and on the differnentiation or not of
the integrability norm in both time and position variables.

3. The Harnack inequality and the Holder estimate

The aim of this section is to present two important properties of general parabolic
equations: the Harnack inequality which is somehow a quantitative version of the
strong maximum principle and a regularity result which is written in terms of
an Holder estimate. We begin by establishing some local versions of the gain of
uniform boundedness, in the spirit of the ultracontractivity estimate which is a
global version of the same property, and by establishing several other technical but
fundamental local properties of subsolutions and supersolutions.
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3.1. The first De Giorgi Lemma. In this section and the next one, we are
concerned with nonnegative subsolutions f to the parabolic equation

(3.1) ∂tf = div(A∇f) + b · ∇f
in a cylinder Q ⊂ Rd+1, for which we will be able to establish a priori upper bounds
in a smaller cylinder q ⊂ Q. More precisely, we will consider a nonnegative function
f satisfying

(3.2) ∂tf ≤ div(A∇f) + b · ∇f
in a cylinder Q ⊂ Rd+1, we will not bother with the regularity of f for justifying
the computations and for simplicity we will only consider the case b = 0 and from
time to time the case A = I. The generalization to a general parabolic equation
starting from the variational formulation is not difficult and it is left as an exercice.
When necessary, we introduce the notation Q := Cr(z0), where for r > 0 and
z0 := (t0, x0) ∈ R× Rd, we define

(3.3) Cr(z0) := z0 + Cr, Cr = Cr(0) := (−r2, 0)× Br.
We recall again that if f is a solution to (3.1) and β is a convex function then β(f)
is a subsolution. Similarly, if f is a solution to (3.1) and β is an increasing convex
function then β(f) is a subsolution.

We start adapting the energy estimate (2.10) in a localized framework. Consider
a nonnegative subsolution f to the heat equation (3.1) (with A = I and b = 0).
Multiplying the equation (3.1) by fϕ2 for 0 ≤ ϕ ∈ C1

c (Q), Q := (T0, T )× BR, and
integrating in the space and time variables, we obtain

1

2
∥fϕ(t)∥2L2 −

1

2
∥fϕ(s)∥2L2

≤ −
ˆ t

s

ˆ
∇f · ∇(fϕ2) dxdτ

= −
ˆ t

s

∥ϕ∇f∥2L2 dτ +

ˆ t

s

ˆ
fϕ∇f · ∇ϕdxdτ,

for any T0 ≤ s < t ≤ T . Choosing now 0 < r < R, ϕ(x) = ϕ0(|x|), ϕ0(0) = 1 and
ϕ′0 = −(R− r)−11[r,R] on R+, we deduceˆ

Br

f(t)2dx+

ˆ t

s

ˆ
Br

|∇f |2 dxdτ

≤
ˆ
BR

f(s)2dx+
1

(R− r)2

ˆ t

s

ˆ
BR

f2 dxdτ.

Taking the mean value in s ∈ (t0, t1) with t0 < t1 < t, we have the first estimate

(t1 − t0)

ˆ
Br

f(t)2dx+ (t1 − t0)

ˆ t

t1

ˆ
Br

|∇f |2 dxds

≤
(
1 +

t− t0
(R− r)2

)ˆ t

t0

ˆ
BR

f2 dxds.

Using the Sobolev inequality and the interpolation inequality (2.11), we also get

(3.4) ∥f∥2Lp((t1,T )×Br)
≤ C

( 1

t1 − t0
+

1

(R− r)2

)
∥f∥2L2((t0,T )×BR),

with p := 2(1 + 2/d).
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We express the two above estimates into the following more formalized form. For
two cylinders Qi := (ai, bi) × Bi, we write Q0 ≺ Q1 if a1 < a0, b1 ≥ b0 and
B0 ⊂⊂ B1.

Lemma 3.1 (Energy estimate). Let f be a nonnegative subsolution to the parabolic
equation (3.1) on a cylinder Q and let q be another cylinder q ≺ Q. There hold

∥∇xf∥2L2(q) ≤ C(q,Q)∥f∥2L2(Q),(3.5)

∥f∥2Lp(q) ≤ C(q,Q)∥f∥2L2(Q), p := 2(1 + 2/d),(3.6)

with C(q,Q) := C((t1−t0)−1+(R−r)−2) when Q := (t0, T )×BR, q := (t1, T )×Br,
0 < r < R and t0 < t1 < T .

We establish now the local gain of uniform boundedness for nonnegative subsolution
f to the parabolic equation (1.1) set in a cylinder.

Lemma 3.2 (first De Giorgi lemma). Let f be a nonnegative subsolution to the
parabolic equation (3.1) in C2. There holds

∥f∥L∞(C1) ≤ 1/2 if ∥f∥L2(C2) ≤ δDG,

for some constant δDG > 0 which only depends on the dimension d ≥ 3.

Remark 3.3. An alternative and equivalent formulation is that any nonnegative
subsolution f to the parabolic equation (3.1) satisfies

(3.7) ∥f∥L∞(C1) ≤ CDG∥f∥L2(C2),

for the constant CDG := 2/δDG.

Proof of Lemma 3.2. We repeat the Moser iterative argument presented in Sec-
tion 2.3 and we rather prove (3.7) in the cylinders C1 and C1/2. More precisely,
we defined the sequence of (increasing) times, (decreasing) radius and (decreasing)
cylinders

Tk := − 1
2 (1 + 2−k), rk := 1

2 (1 + 2−k), Uk := (Tk, 0)× Brk ,

so that, using (3.4), the local version counterpart of (2.13) is that any nonnegative
subsolution g to the heat equation satisfies

∥g∥2Lp(Uk+1)
≤ C22k∥g∥2L2(Uk)

, ∀ k ≥ 1.

We then conclude the proof in the same manner as for proving (2.14). □

We improve the first De Giorgi lemma by lowering the integrability power at the
RHS of estimate (3.7).

Lemma 3.4 (Upper bound). Let f be a nonnegative subsolution to the parabolic
equation (3.1) in CR, R ≤ 1. For any r ∈ (0, R) and q > 0, there holds

(3.8) ∥f∥L∞(Cr) ≲ ∥f∥Lq(CR).

Proof of Lemma 3.4. Choosing (t0, T )×Br := Cr and (t1, T )×Br := CR in (3.4),
we find

(3.9) ∥f∥2Lp(Cr)
≲ (R− r)−2∥f∥2L2(CR),
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Repeating the proof of Lemma 3.2 with a suitable choice of (rk) and tracking the
dependence in R − r similarly as we have tracked the dependence in T during the
proof of (2.14), we find

∥f∥L∞(Cr) ≲ (R− r)−D∥f∥L2(CR),

with D = d/2 + 1. That ends the proof estimate (3.4) for q ≥ 2. For (3.4) when
q ∈ (0, 2), we define

A(r) := ∥f∥L∞(Cr)

and thanks to the Young inequality the above estimate writes

A(r) ≤ C(R− r)−D∥f∥L2(CR)

≤ 1

2
A(R) + C(R− r)−D/q∥f∥Lq(CR).

Defining r0 := r and next rn := rn−1 + εn−2 with ε := (R − r)(
∑
n−2)−1, so that

rn ↗ R. Applying the previous estimate with r = rn and R = rn+1, we get

A(rn) ≤ 1

2
A(rn+1) + Cn2D/q(R− r)−D/q∥f∥Lq(CR),

and summing up

A(r) ≤ 1

2n
A(R) +

n∑
k=1

C
k2D/q

2k
(R− r)−D/q∥f∥Lq(CR).

Passing to the limit, we deduce

∥f∥L∞(Cr) ≤
( ∞∑
k=1

C
k2D/q

2k

)
(R− r)−D/q∥f∥Lq(CR),

what is the announced estimate. □

3.2. Some intermediate estimates. In the two first results, we establish some
estimates for a (nonnegative) subsolution g on a cylinder Q. The first step one is
a variante of the Poincaré-Wirtinger inequality.

Lemma 3.5 (Parabolic Poincaré-Wirtinger inequality). Consider a subsolution g
to the parabolic equation (3.1) on a cylinder Q. For any cylinders Qi := Ii×Bi ⊂ Q
with sup I0 ≤ inf I1, any function 0 ≤ φ ∈ C1

c (B0) such that ∥φ∥L1(Q0) = 1, we
have

(3.10) ∥(g − ⟨gφ⟩Q0
)+∥L1(Q1) ≲ ∥∇xg∥L1(Q),

where we use the notation ⟨u⟩Q :=
´
Q
udxdt.

Proof of Lemma 3.5. We compute

∥(g − ⟨⟨gφ⟩⟩Q0
)+∥L1(Q1) ≤

ˆ
Q1

(ˆ
Q0

(g(t, x)− g(t, y))φ(y)dsdy
)
+
dtdx

+

ˆ
Q1

(ˆ
Q0

(g(t, y)− g(s, y))φ(y)dsdy
)
+
dtdx =: T1 + T2,

and we estimate each term separately. For the first term, we write

T1 ≤ |I0| ∥φ∥∞
ˆ
Q1

ˆ
B0

|g(t, x)− g(t, y)|dydtdx

≤ |I0| ∥φ∥∞
ˆ
Q1

ˆ
B0

ˆ 1

0

|∇xg(t, τx+ (1− τ)y)||x− y|dτdydtdx.
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We observe that, for any t ∈ I1,ˆ
B1

ˆ
B0

ˆ 1/2

0

|∇xg(t, τx+ (1− τ)y)|dτdydx

≤
ˆ
B

ˆ
B

ˆ 1/2

0

|∇xg(t, τx+ (1− τ)y)|dτdydx

≤
ˆ
B

ˆ
B

ˆ 1/2

0

|∇xg(t, z)|
dz

(1− τ)d
dτdx

≤ 2d−1|B|
ˆ
B

|∇xg(t, z)|dz,

where we have used the change of variables y 7→ z := τx + (1 − τ)y. Denoting
B = BR and performing the same kind of estimate for the integral on τ ∈ [1/2, 1],
but with the change of variables x 7→ z := τx+ (1− τ)y, and summing up the two
contributions, we conclude with

T1 ≤ |I0|2d+1|B|R
ˆ
Q1

|∇xg(t, x)|dxdt.

For the second term, we compute

T2 =

ˆ
I1

ˆ
B1

(ˆ
Q0

ˆ t

s

(∂τg)(τ, y)φ(y)dτdsdy
)
+
dxdt

≤ |B1|
ˆ
I1

(ˆ
Q0

ˆ t

s

∇g(τ, y) · ∇φ(y)dτdsdy
)
+
dt,

by using precisely the fact that s ≤ t for any s ∈ I0, t ∈ I1 and the fact that g is a
subsolution on (s, t). We then have

T2 ≤ |B1|
ˆ
I1

(ˆ
Q0

ˆ t

s

∇g(τ, y) · ∇φ(y)dτdsdy
)
+
dt,

≤ |B1||I0||I1|∥∇φ∥∞
ˆ
I0∪I1

ˆ
B0

|∇g|(τ, y)dτdy.

We conclude by gathering the three above estimates. □

In a second step, we establish a variant of the De Giorgi isoperimetric inequality,
also named as intermediate value inequality.

Lemma 3.6 (Intermediate value inequality). Consider a subsolution f to the par-
abolic equation (3.1) on Q := I × B such that f ≤ 1 on Q and some cylinders
(Qi)i=0,1,2, with Qi := Ii ×Bi ⊂ Q2 ≺ Q for i = 0, 1 and sup I0 ≤ inf I1. For any
δ > 0, δ1 > 0 and C0 > 0, there exist ϑ ∈ (0, 1) and η > 0 such that

∥∇f+∥L2(Q2) ≤ C0, |{f ≥ 1− ϑ} ∩Q1| ≥ δ1|Q1|, |{f ≤ 0} ∩Q0| ≥ δ|Q0|
imply

|{0 < f < 1− ϑ} ∩Q2| ≥ η.

Proof of Lemma 3.5. We have B0 = Br0 for some r0 > 0. For any ε > 0, we choose
ψ ∈ C1

c (Rd) such that 1B(1−ε)r0
≤ ψ ≤ 1B0

and we set φ := ψ/⟨ψ⟩Q0
. We observe

that

⟨f+φ⟩Q0
:=

1

⟨ψ⟩Q0

ˆ
Q0

f+ψ ≤ 1

(1− ε)d
1

|Q0|

ˆ
Q0

f+,
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with

1

|Q0|

ˆ
Q0

f+ ≤ |{f > 0} ∩Q0|
|Q0|

= 1− |{f ≤ 0} ∩Q0|
|Q0|

≤ 1− δ.

Choosing ε > 0 small enough, we get

⟨f+φ⟩Q0
≤ 1− δ/2,

from what we deduce that 
Q1

(f+ − ⟨f+φ⟩Q0
)+ ≥ 1

|Q1|

ˆ
Q1

1f≥1−ϑ(f − (1− δ

2
))

≥ (
δ

2
− ϑ)

1

|Q1|
|{f ≥ 1− ϑ} ∩Q1| ≥ (

δ

2
− ϑ)δ1,

for any ϑ ∈ (0, δ/2). Applied to the subsolution g := f+, the parabolic Poincaré-
Wirtinger inequality (3.10) implies 

Q1

(f+ − ⟨f+φ⟩Q0
)+ ≤ C1

ˆ
Q2

|∇f+|.

On the one hand, we have

C1

ˆ
Q2

|∇f+|10<f<1−ϑ ≤ C1∥∇f+∥L2(Q2)|{0 < f < 1− ϑ} ∩Q2|1/2,

by using the Cauchy-Schwarz inequality. On the other hand, we have

C1

ˆ
Q2

|∇f+|1f>1−ϑ ≤ C1∥∇(f − (1− ϑ))+∥L1(Q2)

≤ C1|Q2|1/2∥∇(f − (1− ϑ))+∥L2(Q2)

≤ C2∥(f − (1− ϑ))+∥L2(Q)

≤ C2|Q|ϑ,

where we have used the Cauchy-Schwarz inequality in the second line, the energy
estimate (3.5) on the subsolution (f − (1 − ϑ))+ in the third line and the upper
bound condition on f in the last one.
Altogether, we have

C1∥∇f+∥L2 |{0 < f < 1− ϑ} ∩Q2|1/2 ≥ (
δ

2
− ϑ)δ1 − C2|Q|ϑ ≥ δδ1

8
,

by choosing ϑ > 0 such that ϑ ≤ δ/4 and ϑ ≤ δδ1/(4C2|Q|). We conclude by
setting η := δδ1/(8C0C1). □

In our last intermediate result, gathering the first De Giorgi Lemma 3.2 and the
intermediate value Lemma 3.6, we establish a lowering of the maximum lemma, also
named as measure-to-pointwise estimate or second De Giorgi Lemma. It is worth
emphasizing here that it is fundamental that this estimate is uniform with respect
to the size of the cylinders and that it is true because the estimates are invariant
by scaling. For a cylinder Cr(z0) as defined in (3.3), we set

C−
r (z0) := z0 + (−2r2,−r2)× Br, C+

r (z0) := z0 + (0, r2)× Br,

and we use the shorthand C±
r := C±

r (0).
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Lemma 3.7 (Measure-to-pointwise estimate). For any δ ∈ (0, 1), there exists a
constant λ ∈ (0, 1) such that for any r > 0 and any subsolution g to the parabolic
equation (3.1) in C4r satisfying g ≤ 1 on C4r, we have

(3.11) |{g ≤ 0} ∩ C−
r | ≥ δ|C−

r | implies g < 1− λ on Cr.

Proof of Lemma 3.7. Step 1. We assume r = 1. We set C0 := C(C2,C4)|C4|,
with C(C2,C4) defined in the Energy estimate lemma 3.1, δ1 := δ2DG/|C2|, with δDG
defined in the first De Giorgi lemma 3.2, and we denote by ϑ, η ∈ (0, 1) the constant
defined in the intermediate value inequality as stated in lemma 3.6 associated to
δ, δ1 and C0. We define the sequence

gk := ϑ−k[g − (1− ϑk)] = ϑgk−1 + (1− ϑ),

so that

(3.12) gk+1 ≤ 1 and {gk+1 ≥ 0} = {gk ≥ 1− ϑ}.

In particular, from the first above estimate and Lemma 3.1, we know that

∥∇gk∥L2(C2) ≤ C(C2,C4)∥gk∥L2(C4) ≤ C(C2,C4)|C4|1/2 =: C0.

From the very definition of (gk) and the hypothesis, we have

|{gk ≤ 0} ∩ C−
1 | ≥ |{g ≤ 0} ∩ C−

1 | ≥ δ|C−
1 |.

We next assume that for some k0 ≥ 0 and any k ∈ {0, · · · , k0}, we have

(3.13)

ˆ
C2

(gk+1)
2
+dxdt > δ2DG.

Under this condition, for any k ∈ {0, · · · , k0}, we have thus

|{gk ≥ 1− ϑ} ∩ C2| = |{gk+1 ≥ 0} ∩ C2| ≥
ˆ
C2

(gk+1)
2
+dxdt > δ2DG,

where we have used (3.12) and the upper bound hypothesis. Applying Lemma 3.6,
we know that independently of k

|{0 < gk < 1− λ} ∩ C2| ≥ η.

Using (3.12) again and repeatedly the above lower bound, we have

|C2| ≥ |{gk+1 ≤ 0} ∩ C2|
≥ |{gk ≤ 0} ∩ C2|+ |{0 < gk < 1− ϑ} ∩ C2|
≥ kη,

which provides a finite bound on k0 ≤ |C2|η−1. For the first k = k0 − 1 such that
(3.13) fails, we have ∥(gk0)+∥L2(C2) ≤ δDG, and thus gk0 ≤ 1/2 in C1 from the first

De Giorgi Lemma 3.2. Rescaling back to g gives the result with λ := ϑk0/3.

Step 2. We now consider the general case r > 0, which proof comes from a mere
scaling argument. Defining gr(t, x) := g(r2t, rx) and Ar(x) := A(rx) for (t, x) ∈ C4,
we observe that Ar satisfies the same ellipticity and boundedness conditions as A
and that gr is a (weak) subsolution to the parabolic equation (3.1) associated to Ar
on the cylinder C4. The condition in (3.11) translates into |{gr ≤ 0} ∩ C−

1 | ≥ δ|C−
1 |

and the first step implies gr ≤ 1− λ on C1, or equivalently, g ≤ 1− λ on Cr. □
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3.3. The Harnack inequality. We start recalling the classical Vitali Lemma and
a variant of the classical Lebesgue Theorem.

Lemma 3.8 (Vitali). Consider a family F of cylinders of size bounded by a same
constant. There exists an at most countable family D ⊂ F of disjoints cylinders
such that ⋃

q̃∈F

q̃ ⊂
⋃
q̃∈D

q̃5,

where here, for q̃ := z0 + (− 1
2r

2, 12r
2) × Br, z0 ∈ Rd+1, r > 0 and for a > 0, we

define q̃a := z0 + (− 1
2 (ar)

2, 12 (ar)
2)× Bar.

Proof of Lemma 3.8. We denote by R > 0 a common upper bound of the size of
the cylinders. For any n ≥ 0, let us denote by Fn the subfamily of cylinders of size
r ∈ ]2−n−1R, 2−nR]. We define recursively a maximal and finite subfamily Dn ⊂ Fn
such that the cylinders in Dn are disjoints and they are disjoints of those of D0, . . . ,
Dn−1. In such a way, any cylinder q′ ∈ Fn intersect at least one cylinder q ∈ Dn,
which implies [t0 − r2, t0]∩ [t′0 − (r′)2, t′0] ̸= ∅, Br(x0)∩Br′(x′0) ̸= ∅ and thus using
r′ ≤ 2r and the triangular inequality, we get q′ ⊂ q5. The family D := ∪Dn is
suitable. □

Theorem 3.9 (Lebesgue). For any locally integrable function f on an open set
U ⊂ Rd+1, there exists N ⊂ U mesurable and negligible such that

∀ z ∈ U\N , f(z) = lim
r→0

 
Cr(z)

f(t, y)dtdy.

We are now in position to state the Harnack inequality between the supremum and
the infimum of a solution to a parabolic equation.

Theorem 3.10 (Harnack inequalities). There exists q > 0 such that any nonneg-
ative supersolution f to the parabolic equation in C8 satisfies the weak Harnack
inequality

(3.14) ∥f∥Lq(C−
1 ) ≲ inf

C1

f

and any nonnegative solution f to the parabolic equation in C16r(z0), r > 0, satisfies
the Harnack inequality

(3.15) sup
C−

r (z0)

f ≤ C inf
Cr(z0)

f,

for a constant C ≥ 1 independent of r > 0 and z0 ∈ Rd+1.

Proof of Theorem 3.10. Step 1. We first establish the weak Harnack inequality
(3.14). We fix δ := 10−D−1, D := d + 2, we denote by λ > 0 the associated
constant given by Lemma 3.7 and we set c := 1/λ. For any C+

r (z) ⊂ C1 ∪ C−
1 ⊂ C2,

we may apply Lemma 3.7 to the subsolution g := 1− f/c and we get that

(3.16) |{f ≥ c} ∩ Cr(z)| > δ|Cr(z)| implies f > 1 on C+
r (z),

what is the fundamental information we will use. In particular, that tells us

(3.17) inf
C1

f ≤ 1 implies |{f > c} ∩ C−
1 | ≤ δ|C−

1 |.

We now prove recursively that for any k ≥ 1, there holds

(3.18) inf
C1

f ≤ 1 implies |{f > ck} ∩ C−
1 | ≤ δk|C−

1 |,
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with δk := 10−D−k. The case k = 1 is nothing but (3.17). We assume that (3.18)
holds up to order k ≥ 1 and we wish to prove that it holds at order k+1. For that
purpose, we define

Ak := {f > ck} ∩ C−
1

and we define F as the family of cylinders q = Cr(z) such that

(3.19) z ∈ Ak+1, |Ak+1 ∩ q̃10| ≤ δ|q̃10|, |Ak+1 ∩ q̃| > δ|q̃|,

where we use the notation q̃ = q̃1 and q̃a := C̃ar(z) as defined in Lemma 3.8. From
now on in Steps 2, 3 and 4, we assume

(3.20) inf
C1

f ≤ 1.

Step 2. A covering argument. We claim that (q̃2)q∈F is covering Ak+1. More
precisely, recalling that from Theorem 3.9 there exists exists a negligible setN ⊂ C−

1

such that

∀ z ∈ C−
1 \N , 1Ak+1

(z) = lim
r→0

|Ak+1 ∩ C̃r(z)|
|C̃r(z)|

,

we claim that

(3.21) Ak+1\N ⊂
⋃
q∈F

(q̃2 ∩Ak+1).

We fix z ∈ Ak+1\N . We denote R := 101/D−1−k/D and we consider the property

(3.22) ∀ r ∈ [R10−j , R101−j), |Ak+1 ∩ q̃10| ≤ δ|q̃10|.

For any r ≥ R, we have

|Ak+1 ∩ q̃10| ≤ |Ak ∩ C−
1 | ≤ δk|C−

1 | = δk(10r)
−D|q̃10| ≤ δ|q̃10|,

where we have successively used the inclusions Ak+1 ∩ q̃10 ⊂ Ak+1 ⊂ Ak ∩ C−
1 ,

the induction property (3.18) and the scaling property q̃a = aD|C−|, so that the
property (3.22) is true for j = 0. We claim that the property (3.22) cannot be true
for any j ≥ 1. Otherwise, there would exist a sequence rj → 0 as j → ∞ such that

1Ak+1
(z) = lim

j→∞

|Ak+1 ∩ C̃10rj (z)|
|C̃10rj (z)|

≤ δ < 1,

so that 1Ak+1
(z) = 0 and z /∈ Ak+1, what is a contradiction. Choosing j ≥ 1 the

first integer such that (3.22) is not true, we may pick up r ∈ [R101−j , R102−j) such
that (3.19) holds. We have established (3.21).

Step 3. Proof of (3.18) at order k + 1. Because of Step 2 and of Vitali covering
lemma, we have

Ak+1\N ⊂
⋃
q̃∈D

(q̃10 ∩Ak+1)

with D ⊂ F countable and (q̃2)q∈D disjoint sets. By definition q̃+ ⊂ q̃2, so
that (q̃+)q∈D is also a family of disjoint sets. Because of (3.16) applied to the
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nonnegative supersolution f/ck, we have q̃+ ⊂ Ak if q ∈ F . We compute

|Ak+1| ≤
∣∣ ⋃
q∈D

(q̃10 ∩Ak+1)
∣∣ ≤ ∑

q∈D

∣∣q̃10 ∩Ak+1

∣∣
≤

∑
q∈D

δ
∣∣q̃10

∣∣ = ∑
q∈D

10Dδ
∣∣q̃+

∣∣
= 10−1

∣∣ ⋃
q∈D

q̃+
∣∣ ≤ 10−1

∣∣Ak∣∣
≤ 10−1δk|C−

1 |,
what is nothing but the property (3.18) at order k+1. By induction, the property
(3.18) is thus true for any k ≥ 1.

Step 4. Conclusion of (3.14). We writeˆ
C−

1

fq =

ˆ
C−

1

fq1{f≤c} +
∑
k≥1

ˆ
C−

1

fq1{ck<f≤ck+1}

≤ cq|C−
1 |+

∑
k≥1

c(k+1)q|{f > ck} ∩ C−
1 |

≤ cq|C−
1 |+

∑
k≥1

cq10−D(cq10−1)k|C−
1 | <∞,

provided that cq10−1 < 1, what is possible by choosing q > 0 small enough. In
other words, we have ∥f∥Lq(C1) ≤ C, for a constant C > 0 depending on f only by
the condition (3.20). Applying this estimate to f/ε with ε := inf f if inf f > 0 and
with ε > 0 arbitrary small if inf f = 0, we finish the proof of (3.14).

Step 5. Proof of (3.15). For a nonnegative solution f to the parabolic equation,
we have

∥f∥L∞(C−
1/2

) ≲ ∥f∥Lq(C−
1 ) ≲ inf

C1

f ≲ inf
C1/2

f,

where we have combining the upper bound for nonnegative subsolution provided by
Lemma 3.4 and the weak Harnack inequality (3.14) for nonnegative supersolution.
We generalize to any r > 0 thanks to the scaling invariance of the estimate. □

3.4. The Holder continuity. We now establish a Holder continuity result and
thus drastically improve the L∞ estimate provided by the first De Giorgi Lemma.

Theorem 3.11. Let f ∈ XT be be a variational solution to the parabolic equation
(1.1). There exists α ∈ (0, 1) such that for any t0 ∈ (0, T ) there holds

(3.23) f ∈ Cα((t0, T )× Rd).

Proof of Theorem 3.11. Step 1. For h : O → R, we define

oscOh := supOh− infOh.

Assume first f defined in C1. We write

g :=
2

oscC1
f

(
f − 1

2
(supC1

f + infC1
f)
)

so that −1 ≤ g ≤ 1 on C1. We have either

|{g ≤ 0} ∩ C−
1/4| ≥ |C−

1/4|/2 or |{g ≥ 0} ∩ C−
1/4| ≥ |C−

1/4|/2.
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In the first case, we apply Lemma 3.7 to g and we deduce g ≤ 1 − λ on C1/4. In
the second case, we apply Lemma 3.7 to −g and we deduce g ≥ −1+λ on C1/4. In
both cases, we conclude with oscC1/4

g ≤ 2− λ. Hence, we have

oscC1/4
f ≤ ϑoscC1f, ϑ := 1− λ/2.

Step 2. We come to the general case and we assume f defined in U . Take y0 ∈ U
and d0 := min(d(y0,Uc), 1). We define

f̃(y) := f(y0 +
d0
4
y) on C1

and recursively

f̃1 = f̃ , f̃k(y) = f̃k−1(y/4), k ≥ 2.

Applying the first Step to f̃k gives

oscC1/4
f̃k ≤ ϑ oscC1 f̃k,

with ϑ := 1− λ/2 ∈ (0, 1), and thus

oscC
1/4k

f̃ ≤ ϑk oscC2
f̃ ≤ 2ϑk∥f∥L∞(U).

sup
|y0−y|≤4−n

|f(y)− f(y0)| ≤ 2ϑk∥f∥L∞(U).

In other words, for any y such that 4−k−1 ≤ |y| ≤ 4−k, we have

|f̃(y)− f̃(0)| ≤ oscC
1/4k

f̃ ≤ ϑk+1[2ϑ∥f∥L∞(U)] ≤ |y|α[2ϑ∥f∥L∞(U)],

by choosing α := − log θ/ log 4.
we have

sup
4−k−1≤|y|≤4−k

|f̃(y)− f̃(0)| ≤ (4αϑ)k|y − z|α∥f∥L∞(U)

sup
4−k−1≤|y−z|≤4−k

|f̃(y)− f̃(z)| ≤ (4αϑ)k|y − z|α∥f∥L∞(U)

We have established that f̃ is α-Holder near 0, and thus also f on U . □

4. The fundamental solution

In this section, we are interest in the fundamental solution to the parabolic equation
(1.1), namely to the solution Γ = Γ(t, x;x0) to

(4.1)
∂Γ

∂t
= div(A∇Γ) in (0,∞)× Rd, Γ(0, ·) = δx0 in Rd.

We will successively exhibit pointwise upper and lower bounds and next the exis-
tence, regularity and uniqueness of such a solution.
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4.1. The upper bound.

Theorem 4.1. There exists C, k > 0 such that the fundamental solution Γ satisfies

(4.2) Γ(t, ·) ≤ Cγkt,

where γ stands for the kernel of the heat equation.

Proof of Theorem 4.1. We assume x0 = 0. We give a proof for the heat equation
which follows Nash argument and which can be adapted to a general parabolic
equation with smooth and bounded coefficients. Without regularity assumption on
the coefficients, the L1 norm is not so easy to estimate and one may should rather
follow Moser proof in a similar way as here.

We consider a smooth, positive and fast decaying solution f to the heat equation
with initial datum f0, and for a given α ∈ Rd, we define g := f eψ, ψ(x) := α · x.
The equation satisfied by g is

∂tg =
1

2
eψ∆(g e−ψ) =

1

2
∆g −∇ψ · ∇g + 1

2
|∇ψ|2g

=
1

2
∆g − α · ∇g + 1

2
|α|2g.

For the L1 norm, we have

d

dt
∥g∥L1 =

1

2
|α|2 ∥g∥L1 ,

and then ∥g(t, .)∥L1 = e|α|
2t/2 ∥g0∥L1 for any t ≥ 0. For the L2 norm and thanks to

the Nash inequality (2.3), we have

d

dt
∥g∥2L2 = −∥∇g∥2L2 + |α|2 ∥g∥2L2

≤ −K0 e
−2|α|2t/d ∥g∥2(1+2/d)

L2 + |α|2 ∥g∥2L2 ,

with K0 := CN ∥g0∥−4/d
L1 . We see that the function u(t) := e−|α|2t ∥g(t)∥2L2 satisfies

the differential inequality

u′ ≤ −K0 u
1+2/d,

from what, exactly as in the Section 2.1, we deduce

∥g(t)∥2L2 e−|α|2t ≤
∥g0∥2L1

(2/dCN t)d/2
, ∀ t > 0.

Denoting by T (t) the semigroup associated to the parabolic equation satisfies by g,
the above estimate writes

∥T (t)g0∥L2 ≤ C e|α|
2t/2

td/4
∥g0∥L1 , ∀ t > 0.

Because the equation associated to the dual operator is

∂th =
1

2
∆h+ α · ∇h+

1

2
|α|2h, h(0) = h0,

the same estimate holds on T ∗(t)h0 = h(t), and we thus deduce

∥T (t)g0∥L∞ ≤ C e|α|
2t/2

td/4
∥g0∥L2 , ∀ t > 0.
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Using the trick T (t) = T (t/2)T (t/2), both estimates together give an accurate time
depend estimate on the mapping T (t) : L1 → L∞ for any t > 0. More precisely
and in other words, we have proved that the heat semigroup S satisfies

(4.3) ∥(S(t)f0) eψ∥L∞ ≤ C

td/2
e|α|

2t/2 ∥f0 eψ∥L1 , ∀ t > 0.

Denoting Γ(t, y;x) := (S(t)δx)(y) the fundamental solution associated to the heat
equation when starting from the Dirac function in x ∈ Rd, the above estimate
rewrites as

Γ(t, y;x) ≤ C

td/2
eα·(x−y)−|α|2t/2, ∀ t > 0,∀x, y, α ∈ Rd.

Choosing α := (x− y)/t, we end with

Γ(t, y;x) ≤ C

td/2
e−

|x−y|2
2t , ∀ t > 0,∀x, y ∈ Rd,

what is the announced estimate with k = 1. □

4.2. The lower bound. We first establish with a simple lower bound the first
moment ∥Γ∥L̇1 , where we define

∥f∥L̇1
1
:= ∥xf∥L1 .

We start with a classical interpolation estimate.

Lemma 4.2. We have

∥f∥L1 ≲ ∥f∥
2

d+2

L2 ∥f∥
d

d+2

L̇1
1

.

Proof of Lemma 4.2. We write

∥f∥L1 =

ˆ
BR

|f |+
ˆ
Bc

R

|f |

≤ |BR|1/2∥f∥L2 +
1

R
∥f∥L̇1

= cdR
d/2∥f∥L2 +

1

R
∥f∥L̇1 ,

and we conclude by choosing R := (∥f∥L̇1
1
/∥f∥L2)

2
d+2 . □

Together with the ultracontractivity property, we immediately obtain a rough lower
bound.

Lemma 4.3. Any solution f to the parabolic equation (1.1) satisfies

∥f(t, ·)∥L̇1
1
≳ t1/2, ∀ t ≥ 0.

Proof of Lemma 4.3. Gathering the ultracontractivity estimate ∥f∥L2 ≲ t−d/4∥f∥L1

and the just above interpolation inequality, we get

t
d
4

2
d+2 ≲ ∥f∥

d
d+2

L̇1
1

from what we immediately conclude. □
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[The few last pages are still a draft and have to be checked again]

Theorem 4.4. Assume f0 ∈ L1
1 with ∥f0∥L1 = 1, ∥f0∥L1

1
≤ M . There exist

c,K > 0 only depending of M such that

(4.4) f(t, ·) ≥ cγKt, ∀ t ≥ 1.

For the fundamental solution, we have

(4.5) Γ(t, ·) ≥ cγKt, ∀ t > 0.

Proof of Theorem 4.4. Step 1. We claim that there exists C, c > 0 such that for
any t > 0 and x, y ∈ Rd, |x− y|2/t > 4, there holds

f(2t, y) ≥ Ce−c|x−y|
2/tf(t, x).

We define

k := ⌊|x− y|2/t⌋+ 1, r := t/|x− y|
and the chain

zi := (ti, xi) = (t+ t
i

k
, x+ (y − x)

i

k
), ∀ i ∈ {1, . . . , k}.

We observe that Cr(zi) ∩ Cr(zi+1) ∋ {(ti+1 − r2, xi+1 − r(y − x))} ̸= ∅, due to the
fact that t/r2 = |y − x|/r = |y − x|2/t < k, and we deduce

inf
Cr(zi+1)

f ≥ γ sup
Cr(zi+1)

f ≥ γ inf
Cr(zi)

f,

for a constant γ ∈ (0, 1) independent of f and i given by the Harnack inequality
provided that C2r(z0) ⊂ R+ ×Rd, or equivalently, |x− y|2/t > 4. Iterating, we get

f(2t, y) ≥ inf
Cr(zk)

f ≥ γk inf
Cr(z1)

f ≥ γk+1 sup
Cr(z0)

f ≥ γk+1f(t, x),

and the result is thus proved for the constants c := − ln γ and C := γ2.

Step 2. We claim that there exists c = c(d,M) ≥ 4 such thatˆ
B(0,R)

f(t, x)dx ≥ 1

2
, R :=

√
ct,

when f0 = δ0. We may indeed writeˆ
B(0,R)

ft(x)dx =

ˆ
Rd

f(x)dx−
ˆ
B(0,R)c

ft(x)dx

≥ 1− 1

R

ˆ
Rd

ft(x)|x|dx

≥ 1− Cd(2π)d/2
t

R2
≥ 1/2,

for c > 0 large enough. As a consequence, for any t > 0, there exists xt ∈ B(0,
√
tc)

such that

f(t, xt)C2t
d/2 = ∥f(t, ·)∥L∞(B(0,

√
tc)C2t

d/2 ≥ ∥f(t, ·)∥L1(B(0,
√
tc) ≥

1

2
.

Step 3. For any y ∈ Bc(0, 2
√
ct), we have |y − xt| ≥

√
ct, so that

|y − xt|2

t
≥ c ≥ 4,
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and
|y − xt|2

t
≤ 2

|y|2

t
+ 2

|xt|2

t
≤ 2

|y|2

t
+ 2c.

Thanks to steps 1 and 2, we deduce

f(2t, y) ≥ Ce−
c
t |y−xt|2f(t, xt) ≥ Ce−

2c
t |y|2−2c2(2C2t

d/2)−1,

so that (4.5) is proved on Bc(0, 2
√
ct).

Step 4. For any x ∈ B(0, 2
√
ct), we take y ∈ B(0, 4

√
ct)\B(0, 3

√
ct), so that

|y − x|2

t
≥ c ≥ 4

and
|y − x|2

t
≤ 2

|x|2

t
+ 2

|y|2

t
≤ 40c.

Thanks to steps 1 and 3, we deduce

f(2t, x) ≥ Ce−
c
t |x−y|

2

f(t, y) ≥ Ce−40c2Kt−d/2e−C132c
2

,

so that (4.5) is also proved on B(0, 2
√
ct). □

4.3. Existence, regularity and uniqueness. In this section, we use the short-
hand ∥f∥L̇1

1
:= ∥|x|f∥L1(Rd) and (τx0f)(x) := f(x− x0).

Theorem 4.5. We assume A ∈ L∞, A ≥ νI, ν > 0. For any x0 ∈ Rd, there exists
a unique fundamental solution Γ = Γ(t, x;x0) to the parabolic equation (4.1), that
is a function Γ on (0,∞)× Rd such that

Γ ≥ 0, ∥Γ(t, ·)∥L1 = 1, ∥τx0Γ(t, ·)∥L̇1 ≲
√
t, ∀ t > 0;(4.6)

Γ(t0 + ·, ·) ∈ XT ∀T, t0 > 0;(4.7)

which is a weak solution to (4.1) in the following sense

(4.8)

ˆ
Rd

(φΓ)(t0, x)dx+

ˆ T

0

ˆ
Rd

{Γ∂tφ−∇φ ·A∇Γ} = 0,

for any φ(t0 + ·, ·) ∈ XT , t0, T > 0, and

(4.9)

ˆ
Rd

Γ(t0, x)φ(x)dx→ φ(x0), as t0 → 0,

for any φ ∈ D(Rd). The fundamental solution Γ also satisfies the upper bound
(4.2), the lower bound (4.4) and the Holder continuity (3.23).

Remark 4.6. In fact, we may also establish that

∥∇xΓ∥Lq((0,T )×BR) <∞, ∀T,R > 0,(4.10)

for some q > 1, and that Γ satisfies the weak formulation

(4.11)

ˆ T

0

ˆ
Rd

{f∂tφ−∇φ ·A∇f} = φ(0, x0),

for any φ ∈ D([0,∞)× Rd).
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Proof of Theorem 4.5. Step 1. Existence. For simplicity, we only consider the case
when x0 = 0. Let (ρε) be a mollifier, and more precisely ρε ≥ 0, ∥ρε∥L1 = 1,
supp ρε ⊂ B(0, ε), and thus ρε ⇀ δ0. We consider (fε) the variational solution
to the parabolic equation (1.1) associated to the initial datum fε(0, ·) = ρε which
exists and is nonnegative because of the analysis made in the first chapter. Because
of the previous section, we have

(4.12) ∥fε(t, ·)∥L1 = 1, ∥fε(t, ·)∥Lp ≤ C

td/2(1−1/p)
,

for any p ∈ (1,∞]. Using the second estimate with p = 2 and the energy estimate
starting from t0 > 0, se also have

∥∇xfε∥L2((t0,T )×Rd) ≤ Ct
−d/4
0 ,

for any T > t0. From (4.3), we have

fε(t, x)e
α·x ≤ C

td/2
e|α|

2t/2∥ρεe|α|ε∥L1 ,

or equivalently

fε ≤
C

td/2
e|α|

2t/2+|α|ε−α·x,

for any t, ε > 0, x, α ∈ Rd. Choosing again α := x/t, we obtain

fε ≤
C

td/2
e−

1
2t (|x|

2−2ε|x|) ≤ C

td/2
e−

1
4t |x|

2

1|x|≥4ε

Together with (4.12), we thus deduceˆ
|x||fε|dx =

ˆ
Bc

4ε

|x||fε|dx+

ˆ
B4ε

|x||fε|dx

≲
ˆ
Bc

4ε

|x|e−
1
4t |x|

2 dx

td/2
+ 4ε

ˆ
B4ε

|fε|dx

≲
√
t

ˆ
Rd

|y|e−
1
4 |y|

2

dy + ε,

or in other words

∥fε(t, ·)∥L̇1
1
≤ C

√
t+ ε, ∀ t > 0, ε ∈ (0, 1).

With these pieces of information, there exists a function Γ satisfying the estimates
(4.6)-(4.7) and a subsequence (fε′) such that fε′ ⇀ Γ weakly in D′(U). We may
then pass to the limit in the weak formulation of the equations satisfied by fε′

and we obtain that Γ satisfies (4.8). The convergence (4.9) is a straightforward
consequence of (4.6).

Step 2. Uniqueness. We know from (4.7)-(4.8) that Γ is a variational solution on
(t0, T )× Rd, and we may thus write

ˆ
Rd

ψTΓT +

ˆ T

t0

ˆ
Rd

(−Γ∂tψ +∇ψ ·A∇Γ) =

ˆ
Rd

ψt0Γt0 ,

for any ψ ∈W 1,∞([0, T ]×Rd). For ϕ ∈ L1 ∩L∞, we define the solution φ ∈ XT to
the backward problem

(4.13) −∂tφ = div(AT∇φ) in (0, T )× Rd, φ(T, ·) = ϕ in Rd.
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We define φε = φ ∗x ρε for a mollifier (ρε). Observing that

φε, ∇φε, ∂tφε = (−div(AT∇φ)) ∗ ρε ∈ L∞(U),
we may take ψ = φε in the above variational formulation and we get[ˆ

Rd

φεΓ
]T
t0

=

ˆ T

t0

ˆ
Rd

({Γ(−div(AT∇φ)) ∗ ρε −∇φε ·A∇Γ)

=

ˆ T

t0

ˆ
Rd

(∇Γε ·AT∇φ+∇φε ·A∇Γ),

with Γε := Γ ∗ ρ̌ε, ρ̌ε(x) := ρε(−x). Using that ∇Γε → ∇Γ and ∇φε → ∇φ in
L2((t0, T ) × Rd), as well as φεs → φs in L2(Rd) for s = t0, T , we may pass to the
limit ε→ 0 in the previous equation and we conclude thatˆ

Rd

ϕΓT =

ˆ
Rd

φt0Γt0 , ∀ t0 > 0.

From (4.6) and the De Giorgi-Nash regularity estimate φ ∈ Cb([0, T/2]× Rd) pro-
vided by Theorem 3.11, we may pass to the limit t0 → 0 and we obtainˆ

Rd

ϕΓT = lim
t→0

ˆ
Rd

φtft = φ(t0, 0).

Let us consider now another fundamental solution Γ′ to the parabolic equation (4.1)
associated to the same initial datum δ0. For the same reasons, the function Γ′

satisfies the same equation as above and thus the difference Υ := Γ− Γ′ satisfiesˆ
Rd

ϕΥT = 0.

Because ϕ ∈ L1 ∩ L∞ is arbitrary, we deduce that ΥT = 0 for any T > 0, and that
concludes the uniqueness of the fundamental solution. □
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