An introduction to evolution PDEs Cotober 4, 2024

Exercises about chapter 1

Exercise 0.1. (1) Consider $f \in L^1(\mathbb{R}^d)$ such that div $f \in L^1(\mathbb{R}^d)$. Show that

$$
\int_{\mathbb{R}^d} \operatorname{div} f \, dx = 0.
$$

[Hint. That is true for $f \in C_c^1(\mathbb{R}^d)$. For $f \in L^1(\mathbb{R}^d)$ we introduce a mollifier (ρ_{ε}) , a truncation fiunction χ_M and $\rho_{\varepsilon} * (f\chi_M) \in C_c^1(\mathbb{R}^d)$.

(2) Deduce that for $f \in H^1(\mathbb{R}^d)$ such that $\Delta f \in L^2(\mathbb{R}^d)$ and $g \in H^1(\mathbb{R}^d)$, there holds

$$
\int_{\mathbb{R}^d} g \, \Delta f = - \int_{\mathbb{R}^d} \nabla g \cdot \nabla f.
$$

Exercise 0.2. Let (ρ_{ε}) be a mollifer on the real line, namely $0 \leq \rho_{\varepsilon} \in C_c^{\infty}(\mathbb{R})$ such that $\|\rho_{\varepsilon}\|_{L^1} = 1$ and (for instance) supp $\rho_{\varepsilon} \subset (-\varepsilon, \varepsilon)$. For $f \in L^1_{loc}(\mathcal{U}), \mathcal{U} := (0, T) \times \mathbb{R}^d$, we define $f_{\varepsilon} := \rho_{\varepsilon} *_{t} \tilde{f}$.

(1) For $f \in C([0,T]; L^2(\mathbb{R}^d))$, prove that $f_\varepsilon \in C^1((0,T); L^2(\mathbb{R}^d))$ and $f_\varepsilon \to f$ in $C((0,T); L^2(\mathbb{R}^d))$.

(2) For $f \in L^2(\mathcal{U})$, prove that $f_\varepsilon \in C^1((0,T); L^2(\mathbb{R}^d))$ and $f_\varepsilon \to f$ in $L^2(\mathcal{U})$. [Hint. Use that for any $\eta > 0$ there exists $g \in C_c(\mathcal{U})$ such that $||g - f||_{L^2(\mathcal{U})} < \eta$.

(3) For any $f \in X_T$, prove that $f_\varepsilon \in C^1((0,T); H^1(\mathbb{R}^d))$ and $f_\varepsilon \to f$ in X_T .

Exercise 0.3. (1) For $f \in L^2(\mathcal{U})$ prove that $f_{\pm}, |f| \in L^2(\mathcal{U})$. For $f \in L^2(0,T;H^1(\mathbb{R}^d))$ prove that $f_{\pm}, |f| \in L^2(0,T; H^1(\mathbb{R}^d))$ and $\nabla f_{+} = \nabla f \mathbf{1}_{f>0}$ [Hint. Consider $\beta_{\varepsilon}(f)$ with $\beta_{\varepsilon}(s) := s^2_{+}(\varepsilon^2 + s^2)^{-1/2}$]. What about $f \in X_T$?

(2) For $f \in H^1(\Omega)$ prove that $\nabla f = 0$ on $\{f = c\}$ for any $c \in \mathbb{R}$. [Hint. Consider $\beta_{\varepsilon}(f)$ and $\gamma_{\varepsilon}(f)$ with $\beta_{\varepsilon}(s) := (s + \varepsilon)_{+}^{2}(\varepsilon^{2} + s^{2})^{-1/2}$ and $\gamma_{\varepsilon}(s) := (s - \varepsilon)_{+}^{2}(\varepsilon^{2} + s^{2})^{-1/2}$.

Exercise 0.4. Prove that

$$
L^{2}(0,T; H^{-1}(\mathbb{R}^{d})) = \{ F_{0} + \sum_{i=1}^{d} \partial_{x_{i}} F_{i}, F_{i} \in L^{2}(\mathcal{U}), 0 \leq i \leq d \}.
$$

[Hint. Consider the mapping $A: \mathscr{H} := L^2(0,T;H^1) \to \mathscr{E} := (L^2(\mathcal{U}))^{d+1}, f \mapsto (f, \nabla f), \mathscr{F} := RA$ and $B := A^{-1} : \mathscr{F} \to L^2(0,T;H^1)$. For a linear form $T \in L^2(0,T;H^{-1}(\mathbb{R}^d)) = \mathscr{H}'$, define the linear form $S: \mathscr{F} \to \mathbb{R}, G \in \mathscr{F} \mapsto S(G) := \langle T, BG \rangle$ and prove that there exists $\overline{S} \in \mathscr{E}'$ and thus $F_i \in L^2(\mathcal{U})$ such that $\bar{S}_{|\mathscr{F}} = S$ and $\bar{S}(G) = \sum_{i} (F_i, G_i)_{L^2(\mathcal{U})}$ for any $G \in \mathscr{E}$. Deduce that $\langle T, f \rangle = S(Af)$ and conclude].

Exercise 0.5. Consider a sequence (f_n) such that $f_n \to f$ in $L^2(\mathcal{U})$ and, for some $k > d/2$,

$$
f_n\in \mathcal{Z}:=\{g\in L^2(\mathcal{U});\,g\geq 0,\,\, \|g(t)\|_{L^1}\leq A(t),\,\, \|g(t)\|_{L^2_k}\leq B(t)\}.
$$

(1) Prove that $f \ge 0$. [Hint. Prove that for $g \in L^1(\mathcal{U})$, we have $g \ge 0$ if and only if $\langle g, \varphi \rangle \ge 0$ for any $\varphi \in L^{\infty}(\mathcal{U}).$

(2) Prove that $||f||_{L^1(\mathbb{R}^d)} \leq A$ a.e. on $(0,T)$. [Hint. Prove that $||f_n(t,\cdot)||_{L^1} \to ||f(t,\cdot)||_{L^1}$ in $L^1(0,T)$ by using the Cauchy-Schwartz inequality and conclude by using the reverse sense of the dominated convergence Lebesgue theorem.]

(3) Prove that $||f||_{L^2_k(\mathbb{R}^d)} \leq B$ a.e. on $(0,T)$. [Hint. For any $k' \in [0,k)$, prove that $f_n \langle x \rangle^{k'} \to f \langle x \rangle^{k'}$ strongly $L^2(\mathcal{U})$ and that $||f_n||_{L^2_{k'}} \to ||f_n||_{L^2_{k'}}$ a.e. on $(0,T)$. Next deduce that $||f(t, \cdot)||_{L^2_{k'}} \leq B$ a.e. on $(0, T)$ for any $k' \in (0, k)$ and conclude.

Exercise 0.6. Consider a sequence (f_n) such that $f_n \to f$ in $L^2(\mathcal{U})$ and $f_n \in \mathcal{Z}$, for some $k > d/2$.

(1) Prove that $f \ge 0$. [Hint. Prove that for $g \in L^1(\mathcal{U})$, we have $g \ge 0$ if and only if $\langle g, \varphi \rangle \ge 0$ for any $\varphi \in \mathcal{D}(\mathcal{U}).$

(2) Prove that $||f||_{L^1(\mathbb{R}^d)} \leq A$ a.e. on $(0,T)$. [Hint. Prove that $f_n \to f$ in $L^2(0,T; L^2_{k'})$ for any $k' \in [0, k)$ and there exists a sequence (g_n) such that g_n is a convex combination of f_1, \ldots, f_n and $g_n \to f$ in $L^2(0,T; L^2_{k'})$. Conclude with the help of Exercise 5.]

(3) - Prove that $f_n^2 \to g$ weakly and $g \geq f^2$. [Hint. Consider the family $\mathscr A$ of real affine functions such that $\ell \in \mathscr{A}$ iff $\ell(s) \leq s^2$ for any $s \in \mathbb{R}$ and observe that $\ell(f_n) \to \ell(f)$ weakly.

- We define $G_n(t) := ||f_n(t, \cdot)||_{L^2_{\mu}}^2$. Prove that, up to the extraction of a subsequence, $G_n \to G$ weakly and $G(t) \ge \langle g(t, \cdot) \rangle$ a.e. on $(0, T)$. [Hint. Take $\psi(t)\chi_R(x)$ as a test function].

- Conclude that $||f||_{L^2_k(\mathbb{R}^d)} \leq B$ a.e. on $(0, T)$.

(4) - For $0 \leq F \in L^2(\mathcal{U})$ such that

$$
\int F\varphi \leq C \|\varphi\|_{L^1(0,T;L^2)}, \quad \forall \varphi,
$$

establish that $||F||_{L^{\infty}(0,T;L^2)} \leq C$ by proving first

$$
\int (F \wedge n)^2 \psi \le C ||\psi||_{L^1(0,T)}, \quad \forall \psi, \forall n.
$$

- Establish that $|| f(t, \cdot) ||_{L^2_k} \leq C = B(T)$ a.e. on $(0, T)$.
- (5) For $0 \leq F \in L^1(\mathcal{U})$ such that

$$
\int F\psi \le C \|\psi\|_{L^1(0,T)}, \quad \forall \psi,
$$

establish that $||F||_{L^{\infty}(0,T;L^1)} \leq C$. [Hint. Consider $\psi := \mathbf{1}_{F > C+\varepsilon}$, $\varepsilon > 0$]. Recover (2).

Exercise 0.7. Consider a parabolic equation where the operator \mathcal{L} incloses a kernel term

$$
\mathcal{L}f := \Delta f + b \cdot \nabla f + cf + \mathcal{K}f, \quad (\mathcal{K}f)(x) := \int_{\mathbb{R}^d} k(x, y) f(y) dy
$$

with coefficients satisfying

$$
b,c\in L^\infty(\mathbb{R}^d),\quad k\in L^2(\mathbb{R}^d\times\mathbb{R}^d),
$$

and establish the existence of a variational solution in the usual X_T space. [Hint. Observe that $\mathcal{K}: L^2(\mathbb{R}^d) \to L^2(\mathbb{R}^d)$.]

Exercise 0.8. Consider the parabolic equation with coefficients $b \in L^{\infty}+L^d$ and $c \in L^1_{loc}$, $c_+ \in L^{\infty}+L^{d/2}$ with $d \geq 3$. Establish the existence of a variational solution in the space X_T associated to $H := L^2$ and WITH $a \ge 3$. Establish the CX
 $V := \{ g \in H^1; \sqrt{c_2} g \in L^2 \}.$

[Hint. Observe that $f(|b|\mathbf{1}_{|b|>M}+\sqrt{c+1}c_{+}>M) \to 0$ in L^2 when $M \to \infty$ and that $2/d+2/2^* = 1$, where 2 [∗] denotes the Sobolev exponent.]

Exercise 0.9. (L^p estimates). For $b, c \in L^{\infty}(\mathbb{R}^d)$, $(\text{div } b)_{-} \in L^{\infty}(\mathbb{R}^d)$, $f_0 \in L^p(\mathbb{R}^d)$, $1 \leq p \leq \infty$, we consider the linear parabolic equation

(0.1)
$$
\partial_t f = \Lambda f := \Delta f + b \cdot \nabla f + cf, \quad f(0) = f_0.
$$

We introduce the usual notations $H := L^2$, $V := H^1$ and X_T the associated space for some given $T > 0$.

1) Consider a convex function $\beta \in C^2(\mathbb{R})$ such that $\beta(0) = \beta'(0) = 0$ and $\beta'' \in L^{\infty}$. Prove that any variational solution $f \in X_T$ to the above linear parabolic equation satisfies

$$
\int_{\mathbb{R}^d} \beta(f_t) dx \leq \int_{\mathbb{R}^d} \beta(f_0) dx + \int_0^t \int_{\mathbb{R}^d} \{c f \beta'(f) - (\text{div } b) \beta(f) \} dx ds,
$$

for any $t > 0$.

2) Assuming moreover that $\beta \ge 0$ and there exists a constant $K \in (0, \infty)$ such that $0 \le s\beta'(s) \le K\beta(s)$ for any $s \in \mathbb{R}$, deduce that for some constant $C := C(b, c, K)$, there holds

$$
\int_{\mathbb{R}^d} \beta(f_t) dx \le e^{Ct} \int_{\mathbb{R}^d} \beta(f_0) dx, \quad \forall t \ge 0.
$$

3) Prove that for any $p \in [1,2]$, for some constant $C := C(b,c)$ and for any $f_0 \in L^2 \cap L^p$, there holds

$$
||f(t)||_{L^p} \le e^{Ct} ||f_0||_{L^p}, \quad \forall t \ge 0.
$$

[Hint. For $p \in (1,2]$, define $\beta \simeq s^p$ on \mathbb{R}_+ and extend it to $\mathbb R$ by symmetry. More precisely, define $\beta''_{\alpha}(s) = 2\theta \mathbf{1}_{s \leq \alpha} + p(p-1)s^{p-2} \mathbf{1}_{s > \alpha}$, with $2\theta = p(p-1)\alpha^{p-2}$, and then the primitives which vanish at the origin, which are thus defined by $\beta'_{\alpha}(s) = 2\theta s\mathbf{1}_{s\leq \alpha} + (ps^{p-1} + p(p-2)\alpha^{p-1})\mathbf{1}_{s>\alpha}, \ \beta_{\alpha}(s) =$ $\theta s^2 \mathbf{1}_{s \leq \alpha} + (s^p + p(p-2)\alpha^{p-1}s + A\alpha^p)\mathbf{1}_{s>\alpha}, A := p(p-1)/2 - 1 - p(p-2)$. Observe that $s\beta'_{\alpha}(s) \leq 2\beta_{\alpha}(s)$ because $s\beta''_{\alpha}(s) \leq \beta'_{\alpha}(s)$ and $\beta_{\alpha}(s) \leq \beta(s)$ because $\beta''_{\alpha}(s) \leq \beta''(s)$. Pass to the limit $p \to 1$ in order to deal with the case $p = 1$.

4) Prove that for any $p \in [2,\infty]$ and for some constant $C := C(a,c,p)$ there holds

$$
||f(t)||_{L^p} \le e^{Ct} ||f_0||_{L^p}, \quad \forall t \ge 0.
$$

[Hint. Define $\beta_R''(s) = p(p-1)s^{p-2}\mathbf{1}_{s\leq R} + 2\theta\mathbf{1}_{s>R}$, with $2\theta = p(p-1)R^{p-2}$, and then the primitives which vanish in the origin and which are thus defined by $\beta'_R(s) = ps^{p-1}\mathbf{1}_{s \leq R} + (pR^{p-1} + 2\theta(s-R))\mathbf{1}_{s > R}$, $\beta_R(s) = s^p \mathbf{1}_{s \leq R} + (R^p + pR^{p-1}(s - R) + \theta(s - R)^2)\mathbf{1}_{s > R}$. Observe that $s\beta'_R(s) \leq p\beta_R(s)$ because $s\beta''_R(s) \le (p-1)\beta'_R(s)$ and $\beta_R(s) \le \beta(s)$ because $\beta''_R(s) \le \beta''(s)$. Pass to the limit $p \to \infty$ in order to deal with the case $p = \infty$.

5) Prove that for any $f_0 \in L^p(\mathbb{R}^d)$, $1 \leq p \leq \infty$, there exists at least one weak (in the sense of distributions) solution to the linear parabolic equation (0.1). [Hint: Consider $f_{0,n} \in L^1 \cap L^{\infty}$ such that $f_{0,n} \to f_0$ in L^p , $1 \leq p < \infty$, and prove that the associate variational solution $f_n \in X_T$ is a Cauchy sequence in $C([0,T]; L^p)$. Conclude the proof by passing to the limit $p \to \infty$. Prove that $f \geq 0$ if furthermore $f_0 \geq 0$.

Exercise 0.10. (McKean-Vlasov equation) Consider the linear parabolic equation

(0.2)
$$
\partial_t f = \mathcal{L}_g f := \Delta f + \text{div}(a_g f), \quad f(0) = f_0,
$$

with

(0.3)
$$
a_g := a * g, \quad a \in L^{\infty}(\mathbb{R}^d)^d,
$$

associated to the nonlinear McKean-Vlasov equation. We prove the existence and uniqueness of the solution to this equation by using directly the J.-L. Lions theorem in the flat L^2 and associated Sobolev spaces.

1) Defining $F := f\langle x \rangle^{2k}$, establish that F is a solution to the linear parabolic equation

(0.4)
$$
\partial_t F = \mathcal{M}_g F := \Delta F + \text{div}(a_g F) + b \cdot \nabla F + c_g F,
$$

with b and c_g to be determined. [Hint. $b := -4kx/\langle x \rangle^2$, $c_g := \langle x \rangle^{-2k} (8|\nabla \langle x \rangle^k|^2 - \Delta \langle x \rangle^{2k}) + \frac{1}{2}a_g \cdot b$.]

2) Establish that for any $F_0 \in L^2$ and $g \in L^{\infty}(0,T;L^1)$, there exists a unique variational solution $F \in X_T$ to the parabolic equation (0.4).

3) Establish that for $f_0 \in L_k^2$ and $g \in L^{\infty}(0,T; L^1)$, there exists a unique variational solution $f \in Y_T$ to the parabolic equation (0.2) with $Y_T = C([0, T]; H) \cap L^2(0, T; V) \cap H^1(0, T; V'), H := L_k^2$, $V := H_k^1$.

Exercise 0.11. (McKean-Vlasov equation again) We consider the same linear parabolic equation as in Exercise 10 and the associated nonlinear McKean-Vlasov equation. We extend the existence of solutions to a larger class of initial data.

1) Prove that for $f_0 \in L_k^2$, $k > d/2$, and $g \in L^1(\mathcal{U})$, the solution $f \in X_T$ to the linear parabolic equation satisfies

(0.5)
$$
||f(t, \cdot)||_{L^1} \le ||f_0||_{L^1}, \quad \forall t \ge 0.
$$

[Hint. Define f^{\pm} the solutions associated to the initial data $f_{0\pm} \geq 0$. Prove that $f = f^+ - f^-$ and conclude.]

2) When diva $\in L^{\infty}$, recover (0.5) by using a convenient family of renormalizing functions.

3) Prove the existence and uniqueness of a solution to the nonlinear McKean-Vlasov equation for any $f_0 \in L_k^2$, $k > d/2$.

4) Prove the existence of a weak solution to the nonlinear McKean-Vlasov equation (0.2) for any initial datum $f_0 \in L^1 \cap L^2_k, k > 0.$

Exercise 0.12. Consider the Fokker-Planck equation

(0.6)
$$
\partial_t f = \Delta f + \text{div}(xf) \text{ in } (0,T) \times \mathbb{R}^d, \quad f(0,\cdot) = f_0 \text{ in } \mathbb{R}^d
$$

Under convenient assumptions on f_0 show the existence and uniqueness of a variational solution to the Fokker-Planck equation (0.6) by using Lions' theorem.

.

[Hint. Choose $H = L^2_{\omega}$ with a convenient weight $\omega : \mathbb{R}^d \to (0, \infty)$. We may accept and use the functional inequality

$$
\frac{1}{4} \int_{\mathbb{R}^d} h^2 M dx \le \int |\nabla h|^2 M dx + \frac{d}{2} \int h^2 M dx,
$$

for any $h \in W^{1,\infty}(\mathbb{R}^d)$ and M is the standard gaussian function. For the proof of that last inequality one may write $h := gM^{-1.2}$ and compute $||M^{1/2} \nabla h||_{L^2}^2$ as a function of g and ∇g .

Exercise 0.13. (The viscosity method) Consider the transport equation

(0.7)
$$
\partial_t f = b \cdot \nabla f + cf \text{ in } (0, T) \times \mathbb{R}^d, \quad f(0, \cdot) = f_0 \in L^2(\mathbb{R}^d),
$$

and its small viscosity regularized version

(0.8)
$$
\partial_t f = \varepsilon \Delta f + b \cdot \nabla f + cf \text{ in } (0,T) \times \mathbb{R}^d, \quad f(0,\cdot) = f_0 \in L^2(\mathbb{R}^d),
$$

with $\varepsilon > 0$.

(1) Under convenient assumptions on a, b show the existence of a weak solution to the transport equation (0.7) by using Lions' variant of the Lax-Milgram theorem.

(2) Establish the same result by proving first the existence of a solution to the parabolic equation (0.8) with $\varepsilon > 0$ and next passing to the limit $\varepsilon \to 0$. [Hint for (1). Define $H := L^2(\mathcal{U}),$

$$
\mathcal{E}(f,\varphi) := \int_{\mathcal{U}} f(\text{div}(b\varphi) - c\varphi + \lambda\varphi - \partial_t\varphi)
$$

for $\lambda \in \mathbb{R}$ such that $\text{div}b/2 - c + \lambda \ge 1$ and use J.-L. Lions' variant of the Lax-Milgram theorem.]

Exercise 0.14. (Semigroup). For any $f_0 \in L^2(\mathbb{R}^d)$, consider (for instance) the parabolic equation

$$
\partial_t f = \Delta f + b \cdot \nabla f + cf, \quad f(0) = f_0
$$

with time independent coefficients $b, c \in L^{\infty}(\mathbb{R}^d)$ and denote by $f \in X_T$ the unique variational solution. Defining S by $S(t)f_0 := f(t)$ for any $t \geq 0$, establish that S is a continuous semigroup of bounded operators in $H := L^2(\mathbb{R}^d)$, and more precisely

(i) $f_0 \mapsto S(t) f_0$ is a linear and continuous mapping in H for any $t \geq 0$;

(ii) $t \mapsto S(t)f_0 \in C(\mathbb{R}_+; H)$ for any $f_0 \in H;$

(iii) $S(0) = I$ and $S(t + s) = S(t)S(s)$ for any $t, s \ge 0$.

The only property which has to be proved is the semigroup property in (iii) which is a consequence of the fact that the operator $\mathcal L$ does not depend of time and of the uniqueness of solutions.

[Hint. The only real thing to prove is the semigroup property $S_{t_1+t_2} = S_{t_2} S_{t_1}$ for any $t_i \geq 0$. For that purpose, defining $\tilde{f}(t) := f(t+t_1)$, establish that \tilde{f} is a variational solution to the equation associated to the initial datum $f(0)$. Conclude thanks to the uniqueness result.