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Exercises about chapter 1

Exercise 0.1. (1) Consider f ∈ L1(Rd) such that divf ∈ L1(Rd). Show that∫
Rd

divf dx = 0.

[Hint. That is true for f ∈ C1
c (Rd). For f ∈ L1(Rd) we introduce a mollifier (ρε), a truncation fiunction

χM and ρε ∗ (fχM ) ∈ C1
c (Rd).]

(2) Deduce that for f ∈ H1(Rd) such that ∆f ∈ L2(Rd) and g ∈ H1(Rd), there holds∫
Rd

g∆f = −
∫
Rd

∇g · ∇f.

Exercise 0.2. Let (ρε) be a mollifer on the real line, namely 0 ≤ ρε ∈ C∞
c (R) such that ∥ρε∥L1 = 1 and

(for instance) supp ρε ⊂ (−ε, ε). For f ∈ L1
loc(U), U := (0, T )× Rd, we define fε := ρε ∗t f .

(1) For f ∈ C([0, T ];L2(Rd)), prove that fε ∈ C1((0, T );L2(Rd)) and fε → f in C((0, T );L2(Rd)).
(2) For f ∈ L2(U), prove that fε ∈ C1((0, T );L2(Rd)) and fε → f in L2(U). [Hint. Use that for any

η > 0 there exists g ∈ Cc(U) such that ∥g − f∥L2(U) < η.]
(3) For any f ∈ XT , prove that fε ∈ C1((0, T );H1(Rd)) and fε → f in XT .

Exercise 0.3. (1) For f ∈ L2(U) prove that f±, |f | ∈ L2(U). For f ∈ L2(0, T ;H1(Rd)) prove that
f±, |f | ∈ L2(0, T ;H1(Rd)) and ∇f+ = ∇f1f>0 [Hint. Consider βε(f) with βε(s) := s2+(ε

2 + s2)−1/2].
What about f ∈ XT ?

(2) For f ∈ H1(Ω) prove that ∇f = 0 on {f = c} for any c ∈ R. [Hint. Consider βε(f) and γε(f) with
βε(s) := (s+ ε)2+(ε

2 + s2)−1/2 and γε(s) := (s− ε)2+(ε
2 + s2)−1/2].

Exercise 0.4. Prove that

L2(0, T ;H−1(Rd)) = {F0 +

d∑
i=1

∂xi
Fi, Fi ∈ L2(U), 0 ≤ i ≤ d}.

[Hint. Consider the mapping A : H := L2(0, T ;H1) → E := (L2(U))d+1, f 7→ (f,∇f), F := RA and
B := A−1 : F → L2(0, T ;H1). For a linear form T ∈ L2(0, T ;H−1(Rd)) = H ′, define the linear form
S : F → R, G ∈ F 7→ S(G) := ⟨T,BG⟩ and prove that there exists S̄ ∈ E ′ and thus Fi ∈ L2(U) such
that S̄|F = S and S̄(G) =

∑
i(Fi, Gi)L2(U) for any G ∈ E . Deduce that ⟨T, f⟩ = S(Af) and conclude].

Exercise 0.5. Consider a sequence (fn) such that fn → f in L2(U) and, for some k > d/2,

fn ∈ Z := {g ∈ L2(U); g ≥ 0, ∥g(t)∥L1 ≤ A(t), ∥g(t)∥L2
k
≤ B(t)}.

(1) Prove that f ≥ 0. [Hint. Prove that for g ∈ L1(U), we have g ≥ 0 if and only if ⟨g, φ⟩ ≥ 0 for any
φ ∈ L∞(U).]

(2) Prove that ∥f∥L1(Rd) ≤ A a.e. on (0, T ). [Hint. Prove that ∥fn(t, ·)∥L1 → ∥f(t, ·)∥L1 in L1(0, T )
by using the Cauchy-Schwartz inequality and conclude by using the reverse sense of the dominated
convergence Lebesgue theorem.]

(3) Prove that ∥f∥L2
k(Rd) ≤ B a.e. on (0, T ). [Hint. For any k′ ∈ [0, k), prove that fn⟨x⟩k

′ → f⟨x⟩k′

strongly L2(U) and that ∥fn∥L2
k′

→ ∥fn∥L2
k′

a.e. on (0, T ). Next deduce that ∥f(t, ·)∥L2
k′

≤ B a.e. on
(0, T ) for any k′ ∈ (0, k) and conclude.]
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Exercise 0.6. Consider a sequence (fn) such that fn⇀f in L2(U) and fn ∈ Z, for some k > d/2.
(1) Prove that f ≥ 0. [Hint. Prove that for g ∈ L1(U), we have g ≥ 0 if and only if ⟨g, φ⟩ ≥ 0 for any

φ ∈ D(U).]
(2) Prove that ∥f∥L1(Rd)) ≤ A a.e. on (0, T ). [Hint. Prove that fn⇀f in L2(0, T ;L2

k′) for any
k′ ∈ [0, k) and there exists a sequence (gn) such that gn is a convex combination of f1, . . . , fn and gn → f
in L2(0, T ;L2

k′). Conclude with the help of Exercise 5.]
(3) - Prove that f2n⇀g weakly and g ≥ f2. [Hint. Consider the family A of real affine functions such

that ℓ ∈ A iff ℓ(s) ≤ s2 for any s ∈ R and observe that ℓ(fn)⇀ℓ(f) weakly.]
- We define Gn(t) := ∥fn(t, ·)∥2L2

k
. Prove that, up to the extraction of a subsequence, Gn⇀G weakly

and G(t) ≥ ⟨g(t, ·)⟩ a.e. on (0, T ). [Hint. Take ψ(t)χR(x) as a test function].
- Conclude that ∥f∥L2

k(Rd) ≤ B a.e. on (0, T ).

(4) - For 0 ≤ F ∈ L2(U) such that∫
Fφ ≤ C∥φ∥L1(0,T ;L2), ∀φ,

establish that ∥F∥L∞(0,T ;L2) ≤ C by proving first∫
(F ∧ n)2ψ ≤ C∥ψ∥L1(0,T ), ∀ψ, ∀n.

- Establish that ∥f(t, ·)∥L2
k
≤ C = B(T ) a.e. on (0, T ).

(5) For 0 ≤ F ∈ L1(U) such that ∫
Fψ ≤ C∥ψ∥L1(0,T )), ∀ψ,

establish that ∥F∥L∞(0,T ;L1) ≤ C. [Hint. Consider ψ := 1F≥C+ε, ε > 0]. Recover (2).

Exercise 0.7. Consider a parabolic equation where the operator L incloses a kernel term

Lf := ∆f + b · ∇f + cf +Kf, (Kf)(x) :=
∫
Rd

k(x, y)f(y)dy

with coefficients satisfying
b, c ∈ L∞(Rd), k ∈ L2(Rd × Rd),

and establish the existence of a variational solution in the usual XT space.
[Hint. Observe that K : L2(Rd) → L2(Rd).]

Exercise 0.8. Consider the parabolic equation with coefficients b ∈ L∞+Ld and c ∈ L1
loc, c+ ∈ L∞+Ld/2

with d ≥ 3. Establish the existence of a variational solution in the space XT associated to H := L2 and
V := {g ∈ H1;

√
c−g ∈ L2}.

[Hint. Observe that f(|b|1|b|>M +
√
c+1c+>M ) → 0 in L2 when M → ∞ and that 2/d+ 2/2∗ = 1, where

2∗ denotes the Sobolev exponent.]

Exercise 0.9. (Lp estimates). For b, c ∈ L∞(Rd), (div b)− ∈ L∞(Rd), f0 ∈ Lp(Rd), 1 ≤ p ≤ ∞, we
consider the linear parabolic equation

(0.1) ∂tf = Λf := ∆f + b · ∇f + cf, f(0) = f0.

We introduce the usual notations H := L2, V := H1 and XT the associated space for some given T > 0.
1) Consider a convex function β ∈ C2(R) such that β(0) = β′(0) = 0 and β′′ ∈ L∞. Prove that any

variational solution f ∈ XT to the above linear parabolic equation satisfies∫
Rd

β(ft) dx ≤
∫
Rd

β(f0) dx+

∫ t

0

∫
Rd

{c f β′(f)− (div b)β(f)} dxds,

for any t ≥ 0.
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2) Assuming moreover that β ≥ 0 and there exists a constantK ∈ (0,∞) such that 0 ≤ s β′(s) ≤ Kβ(s)
for any s ∈ R, deduce that for some constant C := C(b, c,K), there holds∫

Rd

β(ft) dx ≤ eCt

∫
Rd

β(f0) dx, ∀ t ≥ 0.

3) Prove that for any p ∈ [1, 2], for some constant C := C(b, c) and for any f0 ∈ L2 ∩ Lp, there holds

∥f(t)∥Lp ≤ eCt∥f0∥Lp , ∀ t ≥ 0.

[Hint. For p ∈ (1, 2], define β ≃ sp on R+ and extend it to R by symmetry. More precisely, define
β′′
α(s) = 2θ1s≤α + p(p − 1)sp−21s>α, with 2θ = p(p − 1)αp−2, and then the primitives which vanish

at the origin, which are thus defined by β′
α(s) = 2θs1s≤α + (psp−1 + p(p − 2)αp−1)1s>α, βα(s) =

θs21s≤α+(sp+ p(p− 2)αp−1s+Aαp)1s>α, A := p(p− 1)/2− 1− p(p− 2). Observe that sβ′
α(s) ≤ 2βα(s)

because sβ′′
α(s) ≤ β′

α(s) and βα(s) ≤ β(s) because β′′
α(s) ≤ β′′(s). Pass to the limit p → 1 in order to

deal with the case p = 1.]
4) Prove that for any p ∈ [2,∞] and for some constant C := C(a, c, p) there holds

∥f(t)∥Lp ≤ eCt∥f0∥Lp , ∀ t ≥ 0.

[Hint. Define β′′
R(s) = p(p − 1)sp−21s≤R + 2θ1s>R, with 2θ = p(p − 1)Rp−2, and then the primitives

which vanish in the origin and which are thus defined by β′
R(s) = psp−11s≤R+(pRp−1+2θ(s−R))1s>R,

βR(s) = sp1s≤R + (Rp + pRp−1(s − R) + θ(s − R)2)1s>R. Observe that sβ′
R(s) ≤ pβR(s) because

sβ′′
R(s) ≤ (p − 1)β′

R(s) and βR(s) ≤ β(s) because β′′
R(s) ≤ β′′(s). Pass to the limit p → ∞ in order to

deal with the case p = ∞.]
5) Prove that for any f0 ∈ Lp(Rd), 1 ≤ p ≤ ∞, there exists at least one weak (in the sense of

distributions) solution to the linear parabolic equation (0.1). [Hint: Consider f0,n ∈ L1 ∩ L∞ such that
f0,n → f0 in Lp, 1 ≤ p < ∞, and prove that the associate variational solution fn ∈ XT is a Cauchy
sequence in C([0, T ];Lp). Conclude the proof by passing to the limit p → ∞.] Prove that f ≥ 0 if
furthermore f0 ≥ 0.

Exercise 0.10. (McKean-Vlasov equation) Consider the linear parabolic equation

(0.2) ∂tf = Lgf := ∆f + div(agf), f(0) = f0,

with

(0.3) ag := a ∗ g, a ∈ L∞(Rd)d,

associated to the nonlinear McKean-Vlasov equation. We prove the existence and uniqueness of the
solution to this equation by using directly the J.-L. Lions theorem in the flat L2 and associated Sobolev
spaces.

1) Defining F := f⟨x⟩2k, establish that F is a solution to the linear parabolic equation

(0.4) ∂tF = MgF := ∆F + div(agF ) + b · ∇F + cgF,

with b and cg to be determined. [Hint. b := −4kx/⟨x⟩2, cg := ⟨x⟩−2k(8|∇⟨x⟩k|2 −∆⟨x⟩2k) + 1
2ag · b.]

2) Establish that for any F0 ∈ L2 and g ∈ L∞(0, T ;L1), there exists a unique variational solution
F ∈ XT to the parabolic equation (0.4).

3) Establish that for f0 ∈ L2
k and g ∈ L∞(0, T ;L1), there exists a unique variational solution f ∈ YT

to the parabolic equation (0.2) with YT = C([0, T ];H) ∩ L2(0, T ;V ) ∩H1(0, T ;V ′), H := L2
k, V := H1

k .

Exercise 0.11. (McKean-Vlasov equation again) We consider the same linear parabolic equation
as in Exercise 10 and the associated nonlinear McKean-Vlasov equation. We extend the existence of
solutions to a larger class of initial data.

1) Prove that for f0 ∈ L2
k, k > d/2, and g ∈ L1(U), the solution f ∈ XT to the linear parabolic

equation satisfies

(0.5) ∥f(t, ·)∥L1 ≤ ∥f0∥L1 , ∀ t ≥ 0.
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[Hint. Define f± the solutions associated to the initial data f0± ≥ 0. Prove that f = f+ − f− and
conclude.]

2) When diva ∈ L∞, recover (0.5) by using a convenient family of renormalizing functions.
3) Prove the existence and uniqueness of a solution to the nonlinear McKean-Vlasov equation for any

f0 ∈ L2
k, k > d/2.

4) Prove the existence of a weak solution to the nonlinear McKean-Vlasov equation (0.2) for any initial
datum f0 ∈ L1 ∩ L2

k, k > 0.

Exercise 0.12. Consider the Fokker-Planck equation

(0.6) ∂tf = ∆f + div(xf) in (0, T )× Rd, f(0, ·) = f0 in Rd.

Under convenient assumptions on f0 show the existence and uniqueness of a variational solution to the
Fokker-Planck equation (0.6) by using Lions’ theorem.
[Hint. Choose H = L2

ω with a convenient weight ω : Rd → (0,∞). We may accept and use the functional
inequality

1

4

∫
Rd

h2Mdx ≤
∫

|∇h|2Mdx+
d

2

∫
h2Mdx,

for any h ∈W 1,∞(Rd) and M is the standard gaussian function. For the proof of that last inequality one
may write h := gM−1.2 and compute ∥M1/2∇h∥2L2 as a function of g and ∇g.]

Exercise 0.13. (The viscosity method) Consider the transport equation

(0.7) ∂tf = b · ∇f + cf in (0, T )× Rd, f(0, ·) = f0 ∈ L2(Rd),

and its small viscosity regularized version

(0.8) ∂tf = ε∆f + b · ∇f + cf in (0, T )× Rd, f(0, ·) = f0 ∈ L2(Rd),

with ε > 0.
(1) Under convenient assumptions on a, b show the existence of a weak solution to the transport

equation (0.7) by using Lions’ variant of the Lax-Milgram theorem.
(2) Establish the same result by proving first the existence of a solution to the parabolic equation (0.8)

with ε > 0 and next passing to the limit ε→ 0.
[Hint for (1). Define H := L2(U),

E(f, φ) :=
∫
U
f(div(bφ)− cφ+ λφ− ∂tφ)

for λ ∈ R such that divb/2− c+ λ ≥ 1 and use J.-L. Lions’ variant of the Lax-Milgram theorem.]

Exercise 0.14. (Semigroup). For any f0 ∈ L2(Rd), consider (for instance) the parabolic equation

∂tf = ∆f + b · ∇f + cf, f(0) = f0

with time independent coefficients b, c ∈ L∞(Rd) and denote by f ∈ XT the unique variational solution.
Defining S by S(t)f0 := f(t) for any t ≥ 0, establish that S is a continuous semigroup of bounded
operators in H := L2(Rd), and more precisely

(i) f0 7→ S(t)f0 is a linear and continuous mapping in H for any t ≥ 0;
(ii) t 7→ S(t)f0 ∈ C(R+;H) for any f0 ∈ H;
(iii) S(0) = I and S(t+ s) = S(t)S(s) for any t, s ≥ 0.
The only property which has to be proved is the semigroup property in (iii) which is a consequence of

the fact that the operator L does not depend of time and of the uniqueness of solutions.
[Hint. The only real thing to prove is the semigroup property St1+t2 = St2St1 for any ti ≥ 0. For that

purpose, defining f̃(t) := f(t+ t1), establish that f̃ is a variational solution to the equation associated to
the initial datum f̃(0). Conclude thanks to the uniqueness result.]


