An introduction to evolution PDEs October 4, 2024

Exercises about chapter 1

Exercise 0.1. (1) Consider f € L!'(R?) such that divf € L'(R?). Show that

divf dzr = 0.
Rd
[Hint. That is true for f € C}(R?). For f € L*(R?) we introduce a mollifier (p.), a truncation fiunction
xar and pe * (fxar) € CH(R?).]
(2) Deduce that for f € H'(R) such that Af € L%(R%) and g € H'(R?), there holds

/RdgAf:—/RdVg~Vf.

Exercise 0.2. Let (p:) be a mollifer on the real line, namely 0 < p. € C°(R) such that ||pc|/: =1 and
(for instance) supp p. C (—¢,¢). For f € LL _(U), U := (0,T) x R?, we define f. := p. *; f.

(1) For f € C([0,T); L?(R%)), prove that f. € C*((0,T); L*(R?)) and f. — f in C((0,T); L?(R%)).

(2) For f € L*(U), prove that f. € C1((0,T); L2(R%)) and f. — f in L?*(U). [Hint. Use that for any
n > 0 there exists g € C.(U) such that ||g — fllr2@w) < n./

(3) For any f € Xr, prove that f. € C*((0,7); H*(R%)) and f. — f in Xr.

Exercise 0.3. (1) For f € L?(U) prove that fy,|f| € L?*(Ud). For f € L*(0,T; H'(R?)) prove that
fe.|f] € L*0,T; HY(RY)) and Vfi = Vfly~o [Hint. Consider B-(f) with B-(s) := s2 (e2 + s2)71/2].
What about f e Xp ?

(2) For f € H'(Q2) prove that Vf =0 on {f = ¢} for any ¢ € R. [Hint. Consider 3.(f) and ~.(f) with
Be(s) i= (s +)2(e? + s2) 712 and v (s) := (s — )2 (e2 + %) 71/2].

Exercise 0.4. Prove that

d

L*(0,T; HY(RY) = {Fo+ Y | 0x, Fi, Fi € L*U), 0<i <d}.

i=1
[Hint. Consider the mapping A : s := L*(0,T; H') — & := (L*(U))%*!, f = (f,Vf), F := RA and
B:=A"': . — L*(0,T; H"). For a linear form T € L*(0,T; H~*(R?)) = #”, define the linear form
S:.7 =R, GeZF— S(G):= (T,BG) and prove that there exists S € &' and thus F; € L*(U) such
that S|z = S and S(G) = >,(F;,Gi) L2y for any G € &. Deduce that (T, f) = S(Af) and conclude].

Exercise 0.5. Consider a sequence (f,,) such that f, — f in L?*(U) and, for some k > d/2,
fo€ Z:={ge L*U); 9 >0, llg®)|rr < A®), llg®)lcz < B(t)}-

(1) Prove that f > 0. [Hint. Prove that for g € L*(U), we have g > 0 if and only if (g, ) > 0 for any
peL>U)]

(2) Prove that ||f||1rae) < A a.e. on (0,T). [Hint. Prove that || fn(t,-)||pr — || f(¢,)]lr in L*(0,T)
by using the Cauchy-Schwartz inequality and conclude by using the reverse sense of the dominated
convergence Lebesgue theorem.]

(3) Prove that [|f||z2gae) < B a.e. on (0,T). [Hint. For any k' € [0, k), prove that Falz) — flx)¥
strongly L?(U) and that ”f"HLi/ — ”f"”Li, a.e. on (0,T). Next deduce that ”f(ta‘)”Li, < B a.e. on
(0,T) for any k' € (0,k) and conclude.|
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Exercise 0.6. Consider a sequence (f,,) such that f, — f in L?({) and f,, € Z, for some k > d/2.

(1) Prove that f > 0. [Hint. Prove that for g € L*(U), we have g > 0 if and only if (g, ¢) > 0 for any
peDU).]

(2) Prove that | f||1(rey) < A ae. on (0,T). [Hint. Prove that f,— f in L*(0,T;L3,) for any
k' € [0,k) and there exists a sequence (g,,) such that g, is a convex combination of f1,..., f, and g, — f
in L?(0,T;L?,). Conclude with the help of Exercise 5.]

(3) - Prove that f2 — g weakly and g > f2. [Hint. Consider the family < of real affine functions such
that ( € o iff {(s) < s? for any s € R and observe that ((f,) —{(f) weakly.]

- We define G,,(t) := || fu(t, ") Hif Prove that, up to the extraction of a subsequence, G,, = G weakly
and G(t) > (g(¢,-)) a.e. on (0,T). [Hint. Take ¥(t)xr(z) as a test function].
- Conclude that || f||12(re) < B a.e. on (0,T).
(4) - For 0 < F € L*(U) such that

/ Fo < Clellnoris, Ve,

establish that || F|| e (o,7;z2) < C by proving first
JE Ao < Clollon, Vo vn

- Establish that [|f(t,-)[|z2 < C = B(T) a.e. on (0,T).
(5) For 0 < F € L'(U) such that

/F¢ < COlYlleio,ry, Vo,
establish that || F|| pe(o,r;z1) < C. [Hint. Consider 1 := 1p>cye, € > 0. Recover (2).

Exercise 0.7. Consider a parabolic equation where the operator £ incloses a kernel term

£f = Af+0-Vf +of +KF (KP@) = [ Ko fwiy
with coefficients satisfying
b,ce L*°(RY), ke L*(R?x RY),
and establish the existence of a variational solution in the usual X7 space.
[Hint. Observe that K : L?(R%) — L?(R?).]

Exercise 0.8. Consider the parabolic equation with coefficients b € L>°+L% and ¢ € L, cy€ Lo+ L4/2
with d > 3. Establish the existence of a variational solution in the space X associated to H := L2 and

V:={g€ H'; Je_ge L*}.
[Hint. Observe that f(|b|1y>n + /c3Lc,>n) — 0 in L? when M — oo and that 2/d +2/2* = 1, where
2* denotes the Sobolev exponent.|

Exercise 0.9. (L? estimates). For b,c € L>®(R%), (divh)_ € L®(R%), fo € LP(R%), 1 < p < o0, we
consider the linear parabolic equation

(0.1) Of=Af=Af+b-Vf+cf, f(0)=fo

We introduce the usual notations H := L?, V := H' and Xr the associated space for some given T > 0.

1) Consider a convex function 8 € C?(R) such that 3(0) = 8/(0) = 0 and 8" € L*°. Prove that any
variational solution f € Xr to the above linear parabolic equation satisfies

[ stass [ stdes [ [ 1ers - ivn s dsas,

for any t > 0.
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2) Assuming moreover that 8 > 0 and there exists a constant K € (0, 00) such that 0 < s 8'(s) < Kj3(s)
for any s € R, deduce that for some constant C := C(b, ¢, K), there holds

/ﬁ(ft)dxge“/ B(fo)dr, ¥t>0.
R4 R4

3) Prove that for any p € [1,2], for some constant C := C(b, ¢) and for any fo € L? N LP, there holds
£ Ol < el follLs, VE>0.

[Hint. For p € (1,2], define § ~ s? on Ry and extend it to R by symmetry. More precisely, define
Bl(s) = 2015<4 + p(p — 1)sP 21554, with 20 = p(p — 1)aP~2, and then the primitives which vanish
at the origin, which are thus defined by f3.(s) = 20sls<s + (psP™ + p(p — 2)aP ) 1ssa, Bals) =
05*Ls<o + (8P +p(p—2)aP s+ AaP)1ss0, A:=p(p—1)/2—1—p(p—2). Observe that sf3,(s) < 2834(s)
because sf/(s) < BL(s) and B,(s) < B(s) because l(s) < "(s). Pass to the limit p — 1 in order to
deal with the case p =1.]

4) Prove that for any p € [2, 00] and for some constant C' := C(a, ¢, p) there holds
1F@)llze < el follze, VE20.

[Hint. Define B4 (s) = p(p — 1)sP21s<p + 20145 g, with 20 = p(p — 1)RP~2, and then the primitives
which vanish in the origin and which are thus defined by (s) = ps?P " '1,<r+ (pRP~1 4+ 20(s — R)) 15> g,
Br(s) = sPls<p + (R? + pRP~'(s — R) + 0(s — R)*)14-r. Observe that sBi(s) < pBr(s) because
sB%(s) < (p— 1)BR(s) and Br(s) < B(s) because B} (s) < B”(s). Pass to the limit p — oo in order to
deal with the case p = cc.|

5) Prove that for any fo € LP(R?), 1 < p < oo, there exists at least one weak (in the sense of
distributions) solution to the linear parabolic equation (0.1). [Hint: Consider fo, € L* N L> such that
fom = fo in LP,; 1 < p < oo, and prove that the associate variational solution f, € Xr is a Cauchy
sequence in C([0,T]; LP). Conclude the proof by passing to the limit p — oo.] Prove that f > 0 if
furthermore fy > 0.

Exercise 0.10. (McKean-Vlasov equation) Consider the linear parabolic equation

(0.2) Ocf =Lyf :==Af +div(agf), f(0)= fo,
with
(0.3) ag:=axg, a€c LR

associated to the nonlinear McKean-Vlasov equation. We prove the existence and uniqueness of the
solution to this equation by using directly the J.-L. Lions theorem in the flat L? and associated Sobolev
spaces.

1) Defining F := f(x)?*, establish that F is a solution to the linear parabolic equation
(0.4) O F = MyF = AF +div(agF) +b- VF + ¢4 F,
with b and ¢, to be determined. [Hint. b:= —4kz/(z)?, cg := (x)72*(8|V(z)*|? — A(x)?*) + 1a, - b.]

2) Establish that for any Fy € L? and g € L*(0,T; L"), there exists a unique variational solution
F € X7 to the parabolic equation (0.4).

3) Establish that for fo € L? and g € L>°(0,T; L'), there exists a unique variational solution f € Yr
to the parabolic equation (0.2) with Y, = C([0,T]; H) N L?(0,T; V)N H(0,T; V'), H := L}, V := H}.

Exercise 0.11. (McKean-Vlasov equation again) We consider the same linear parabolic equation
as in Exercise 10 and the associated nonlinear McKean-Vlasov equation. We extend the existence of
solutions to a larger class of initial data.

1) Prove that for fo € L%, k > d/2, and g € L'(U), the solution f € Xr to the linear parabolic
equation satisfies

(0.5) 1£ (&)l < llfoller,  VE=0.



[Hint. Define f* the solutions associated to the initial data fo+ > 0. Prove that f = f+ — f~ and
conclude.]

2) When diva € L*, recover (0.5) by using a convenient family of renormalizing functions.

3) Prove the existence and uniqueness of a solution to the nonlinear McKean-Vlasov equation for any
fo € L%, k> d/2

4) Prove the existence of a weak solution to the nonlinear McKean-Vlasov equation (0.2) for any initial
datum fo € L' N L3, k> 0.

Exercise 0.12. Consider the Fokker-Planck equation

(0.6) of = Af +div(zf) in (0,7) xR%,  £(0,-) = fo in R%

Under convenient assumptions on f show the existence and uniqueness of a variational solution to the
Fokker-Planck equation (0.6) by using Lions’ theorem.

[Hint. Choose H = L2 with a convenient weight w : RY — (0,00). We may accept and use the functional
inequality

E / h*Mdx < / \Vh|?> Mdz + d / h*Mdz,
4 Jpa 2
for any h € W1>°(R%) and M is the standard gaussian function. For the proof of that last inequality one
may write h := gM 2 and compute || M'/2Vh|?, as a function of g and Vg.|

Exercise 0.13. (The viscosity method) Consider the transport equation

(0.7) Ohf=0b-Vf+ecf in (0,7)xRY,  £(0,-) = fo € L2(RY),
and its small viscosity regularized version

(0.8) Ohf=eAf+b-Vf4cf in (0,7)xRE  £(0,-) = fo € L*(R?),
with € > 0.

(1) Under convenient assumptions on a,b show the existence of a weak solution to the transport
equation (0.7) by using Lions’ variant of the Lax-Milgram theorem.

(2) Establish the same result by proving first the existence of a solution to the parabolic equation (0.8)
with £ > 0 and next passing to the limit € — 0.

[Hint for (1). Define H := L*(U),

E(f ) = /u Fdiv(be) = co + Ap — Drp)
for A € R such that divb/2 — ¢+ A > 1 and use J.-L. Lions’ variant of the Lax-Milgram theorem.|

Exercise 0.14. (Semigroup). For any fy € L?(R%), consider (for instance) the parabolic equation

Wf=Af+b-Vi+cf, [(0)=fo
with time independent coefficients b, ¢ € L>(R%) and denote by f € X7 the unique variational solution.
Defining S by S(t)fo := f(t) for any ¢t > 0, establish that S is a continuous semigroup of bounded
operators in H := L?(R%), and more precisely

(i) fo — S(t)fo is a linear and continuous mapping in H for any ¢t > 0;

(ii) t = S(t)fo € C(Ry; H) for any fy € H;

(iii) S(0) = I and S(t +s) = S(t)S(s) for any t,s > 0.

The only property which has to be proved is the semigroup property in (iii) which is a consequence of
the fact that the operator £ does not depend of time and of the uniqueness of solutions.

[Hint. The only real thing to prove is the semigroup property Si, i, = S, S, for any t; > 0. For that
purpose, defining Jf(t) := f(t+t1), establish that f is a variational solution to the equation associated to
the initial datum f(0). Conclude thanks to the uniqueness result.]



