An introduction to evolution PDEs

October 4, 2024

Exercises about chapter 1

Exercise 0.1. (1) Consider $f \in L^1(\mathbb{R}^d)$ such that $\operatorname{div} f \in L^1(\mathbb{R}^d)$. Show that

$$\int_{\mathbb{R}^d} \operatorname{div} f \, dx = 0.$$

[Hint. That is true for $f \in C_c^1(\mathbb{R}^d)$. For $f \in L^1(\mathbb{R}^d)$ we introduce a mollifier (ρ_{ε}) , a truncation function χ_M and $\rho_{\varepsilon} * (f\chi_M) \in C_c^1(\mathbb{R}^d)$.]

(2) Deduce that for $f \in H^1(\mathbb{R}^d)$ such that $\Delta f \in L^2(\mathbb{R}^d)$ and $g \in H^1(\mathbb{R}^d)$, there holds

$$\int_{\mathbb{R}^d} g \, \Delta f = - \int_{\mathbb{R}^d} \nabla g \cdot \nabla f$$

Exercise 0.2. Let (ρ_{ε}) be a mollifer on the real line, namely $0 \leq \rho_{\varepsilon} \in C_{c}^{\infty}(\mathbb{R})$ such that $\|\rho_{\varepsilon}\|_{L^{1}} = 1$ and (for instance) supp $\rho_{\varepsilon} \subset (-\varepsilon, \varepsilon)$. For $f \in L^{1}_{loc}(\mathcal{U}), \mathcal{U} := (0, T) \times \mathbb{R}^{d}$, we define $f_{\varepsilon} := \rho_{\varepsilon} *_{t} f$.

(1) For $f \in C([0,T]; L^2(\mathbb{R}^d))$, prove that $f_{\varepsilon} \in C^1((0,T); L^2(\mathbb{R}^d))$ and $f_{\varepsilon} \to f$ in $C((0,T); L^2(\mathbb{R}^d))$.

(2) For $f \in L^2(\mathcal{U})$, prove that $f_{\varepsilon} \in C^1((0,T); L^2(\mathbb{R}^d))$ and $f_{\varepsilon} \to f$ in $L^2(\mathcal{U})$. [Hint. Use that for any $\eta > 0$ there exists $g \in C_c(\mathcal{U})$ such that $\|g - f\|_{L^2(\mathcal{U})} < \eta$.]

(3) For any $f \in X_T$, prove that $f_{\varepsilon} \in C^1((0,T); H^1(\mathbb{R}^d))$ and $f_{\varepsilon} \to f$ in X_T .

Exercise 0.3. (1) For $f \in L^2(\mathcal{U})$ prove that $f_{\pm}, |f| \in L^2(\mathcal{U})$. For $f \in L^2(0,T; H^1(\mathbb{R}^d))$ prove that $f_{\pm}, |f| \in L^2(0,T; H^1(\mathbb{R}^d))$ and $\nabla f_+ = \nabla f \mathbf{1}_{f>0}$ [Hint. Consider $\beta_{\varepsilon}(f)$ with $\beta_{\varepsilon}(s) := s_+^2(\varepsilon^2 + s^2)^{-1/2}$]. What about $f \in X_T$?

(2) For $f \in H^1(\Omega)$ prove that $\nabla f = 0$ on $\{f = c\}$ for any $c \in \mathbb{R}$. [Hint. Consider $\beta_{\varepsilon}(f)$ and $\gamma_{\varepsilon}(f)$ with $\beta_{\varepsilon}(s) := (s + \varepsilon)^2_+ (\varepsilon^2 + s^2)^{-1/2}$ and $\gamma_{\varepsilon}(s) := (s - \varepsilon)^2_+ (\varepsilon^2 + s^2)^{-1/2}$].

Exercise 0.4. Prove that

$$L^{2}(0,T; H^{-1}(\mathbb{R}^{d})) = \{F_{0} + \sum_{i=1}^{d} \partial_{x_{i}} F_{i}, F_{i} \in L^{2}(\mathcal{U}), 0 \le i \le d\}.$$

[Hint. Consider the mapping $A: \mathscr{H} := L^2(0,T;H^1) \to \mathscr{E} := (L^2(\mathcal{U}))^{d+1}, f \mapsto (f, \nabla f), \mathscr{F} := RA$ and $B := A^{-1}: \mathscr{F} \to L^2(0,T;H^1)$. For a linear form $T \in L^2(0,T;H^{-1}(\mathbb{R}^d)) = \mathscr{H}'$, define the linear form $S: \mathscr{F} \to \mathbb{R}, G \in \mathscr{F} \mapsto S(G) := \langle T, BG \rangle$ and prove that there exists $\overline{S} \in \mathscr{E}'$ and thus $F_i \in L^2(\mathcal{U})$ such that $\overline{S}_{|\mathscr{F}} = S$ and $\overline{S}(G) = \sum_i (F_i, G_i)_{L^2(\mathcal{U})}$ for any $G \in \mathscr{E}$. Deduce that $\langle T, f \rangle = S(Af)$ and conclude].

Exercise 0.5. Consider a sequence (f_n) such that $f_n \to f$ in $L^2(\mathcal{U})$ and, for some k > d/2,

$$f_n \in \mathcal{Z} := \{ g \in L^2(\mathcal{U}); \ g \ge 0, \ \|g(t)\|_{L^1} \le A(t), \ \|g(t)\|_{L^2_h} \le B(t) \}.$$

(1) Prove that $f \ge 0$. [Hint. Prove that for $g \in L^1(\mathcal{U})$, we have $g \ge 0$ if and only if $\langle g, \varphi \rangle \ge 0$ for any $\varphi \in L^{\infty}(\mathcal{U})$.]

(2) Prove that $||f||_{L^1(\mathbb{R}^d)} \leq A$ a.e. on (0,T). [Hint. Prove that $||f_n(t,\cdot)||_{L^1} \to ||f(t,\cdot)||_{L^1}$ in $L^1(0,T)$ by using the Cauchy-Schwartz inequality and conclude by using the reverse sense of the dominated convergence Lebesgue theorem.]

(3) Prove that $||f||_{L^2_k(\mathbb{R}^d)} \leq B$ a.e. on (0,T). [Hint. For any $k' \in [0,k)$, prove that $f_n \langle x \rangle^{k'} \to f \langle x \rangle^{k'}$ strongly $L^2(\mathcal{U})$ and that $||f_n||_{L^2_{k'}} \to ||f_n||_{L^2_{k'}}$ a.e. on (0,T). Next deduce that $||f(t,\cdot)||_{L^2_{k'}} \leq B$ a.e. on (0,T) for any $k' \in (0,k)$ and conclude.] **Exercise 0.6.** Consider a sequence (f_n) such that $f_n \rightharpoonup f$ in $L^2(\mathcal{U})$ and $f_n \in \mathbb{Z}$, for some k > d/2.

(1) Prove that $f \ge 0$. [Hint. Prove that for $g \in L^1(\mathcal{U})$, we have $g \ge 0$ if and only if $\langle g, \varphi \rangle \ge 0$ for any $\varphi \in \mathcal{D}(\mathcal{U})$.]

(2) Prove that $||f||_{L^1(\mathbb{R}^d)} \leq A$ a.e. on (0,T). [Hint. Prove that $f_n \rightarrow f$ in $L^2(0,T; L^2_{k'})$ for any $k' \in [0,k)$ and there exists a sequence (g_n) such that g_n is a convex combination of f_1, \ldots, f_n and $g_n \rightarrow f$ in $L^2(0,T; L^2_{k'})$. Conclude with the help of Exercise 5.]

(3) - Prove that $f_n^2 \rightharpoonup g$ weakly and $g \ge f^2$. [Hint. Consider the family \mathscr{A} of real affine functions such that $\ell \in \mathscr{A}$ iff $\ell(s) \le s^2$ for any $s \in \mathbb{R}$ and observe that $\ell(f_n) \rightharpoonup \ell(f)$ weakly.]

- We define $G_n(t) := \|f_n(t, \cdot)\|_{L^2_k}^2$. Prove that, up to the extraction of a subsequence, $G_n \to G$ weakly and $G(t) \ge \langle g(t, \cdot) \rangle$ a.e. on (0, T). [Hint. Take $\psi(t)\chi_R(x)$ as a test function].

- Conclude that $||f||_{L^2_t(\mathbb{R}^d)} \leq B$ a.e. on (0,T).

(4) - For $0 \le F \in L^2(\mathcal{U})$ such that

$$\int F\varphi \leq C \|\varphi\|_{L^1(0,T;L^2)}, \quad \forall \varphi$$

establish that $||F||_{L^{\infty}(0,T;L^2)} \leq C$ by proving first

$$\int (F \wedge n)^2 \psi \le C \|\psi\|_{L^1(0,T)}, \quad \forall \psi, \forall n.$$

- Establish that $\|f(t,\cdot)\|_{L^2_k} \leq C = B(T)$ a.e. on (0,T).
- (5) For $0 \leq F \in L^1(\mathcal{U})$ such that

$$\int F\psi \le C \|\psi\|_{L^1(0,T)}, \quad \forall \psi,$$

establish that $||F||_{L^{\infty}(0,T;L^1)} \leq C$. [Hint. Consider $\psi := \mathbf{1}_{F \geq C+\varepsilon}, \varepsilon > 0$]. Recover (2).

Exercise 0.7. Consider a parabolic equation where the operator \mathcal{L} incloses a kernel term

$$\mathcal{L}f := \Delta f + b \cdot \nabla f + cf + \mathcal{K}f, \quad (\mathcal{K}f)(x) := \int_{\mathbb{R}^d} k(x,y)f(y)dy$$

with coefficients satisfying

$$b,c\in L^\infty(\mathbb{R}^d),\quad k\in L^2(\mathbb{R}^d\times\mathbb{R}^d),$$

and establish the existence of a variational solution in the usual X_T space. [Hint. Observe that $\mathcal{K}: L^2(\mathbb{R}^d) \to L^2(\mathbb{R}^d).$]

Exercise 0.8. Consider the parabolic equation with coefficients $b \in L^{\infty} + L^{d}$ and $c \in L^{1}_{loc}$, $c_{+} \in L^{\infty} + L^{d/2}$ with $d \geq 3$. Establish the existence of a variational solution in the space X_{T} associated to $H := L^{2}$ and $V := \{g \in H^{1}; \sqrt{c_{-}g} \in L^{2}\}.$

[Hint. Observe that $f(|b|\mathbf{1}_{|b|>M} + \sqrt{c_+}\mathbf{1}_{c_+>M}) \to 0$ in L^2 when $M \to \infty$ and that $2/d + 2/2^* = 1$, where 2^* denotes the Sobolev exponent.]

Exercise 0.9. (L^p estimates). For $b, c \in L^{\infty}(\mathbb{R}^d)$, $(\operatorname{div} b)_- \in L^{\infty}(\mathbb{R}^d)$, $f_0 \in L^p(\mathbb{R}^d)$, $1 \leq p \leq \infty$, we consider the linear parabolic equation

(0.1)
$$\partial_t f = \Lambda f := \Delta f + b \cdot \nabla f + cf, \quad f(0) = f_0.$$

We introduce the usual notations $H := L^2$, $V := H^1$ and X_T the associated space for some given T > 0.

1) Consider a convex function $\beta \in C^2(\mathbb{R})$ such that $\beta(0) = \beta'(0) = 0$ and $\beta'' \in L^{\infty}$. Prove that any variational solution $f \in X_T$ to the above linear parabolic equation satisfies

$$\int_{\mathbb{R}^d} \beta(f_t) \, dx \le \int_{\mathbb{R}^d} \beta(f_0) \, dx + \int_0^t \int_{\mathbb{R}^d} \{ c f \, \beta'(f) - (\operatorname{div} b) \, \beta(f) \} \, dx ds,$$

for any $t \geq 0$.

2) Assuming moreover that $\beta \ge 0$ and there exists a constant $K \in (0, \infty)$ such that $0 \le s \beta'(s) \le K\beta(s)$ for any $s \in \mathbb{R}$, deduce that for some constant C := C(b, c, K), there holds

$$\int_{\mathbb{R}^d} \beta(f_t) \, dx \le e^{Ct} \int_{\mathbb{R}^d} \beta(f_0) \, dx, \quad \forall t \ge 0.$$

3) Prove that for any $p \in [1,2]$, for some constant C := C(b,c) and for any $f_0 \in L^2 \cap L^p$, there holds

$$||f(t)||_{L^p} \le e^{Ct} ||f_0||_{L^p}, \quad \forall t \ge 0.$$

[Hint. For $p \in (1,2]$, define $\beta \simeq s^p$ on \mathbb{R}_+ and extend it to \mathbb{R} by symmetry. More precisely, define $\beta''_{\alpha}(s) = 2\theta \mathbf{1}_{s \leq \alpha} + p(p-1)s^{p-2}\mathbf{1}_{s > \alpha}$, with $2\theta = p(p-1)\alpha^{p-2}$, and then the primitives which vanish at the origin, which are thus defined by $\beta'_{\alpha}(s) = 2\theta s \mathbf{1}_{s \leq \alpha} + (ps^{p-1} + p(p-2)\alpha^{p-1})\mathbf{1}_{s > \alpha}$, $\beta_{\alpha}(s) = \theta s^2 \mathbf{1}_{s \leq \alpha} + (s^p + p(p-2)\alpha^{p-1}s + A\alpha^p)\mathbf{1}_{s > \alpha}$, A := p(p-1)/2 - 1 - p(p-2). Observe that $s\beta'_{\alpha}(s) \leq 2\beta_{\alpha}(s)$ because $s\beta''_{\alpha}(s) \leq \beta'_{\alpha}(s)$ and $\beta_{\alpha}(s) \leq \beta(s)$ because $\beta''_{\alpha}(s) \leq \beta''(s)$. Pass to the limit $p \to 1$ in order to deal with the case p = 1.]

4) Prove that for any $p \in [2, \infty]$ and for some constant C := C(a, c, p) there holds

$$||f(t)||_{L^p} \le e^{Ct} ||f_0||_{L^p}, \quad \forall t \ge 0.$$

[Hint. Define $\beta_R''(s) = p(p-1)s^{p-2}\mathbf{1}_{s \leq R} + 2\theta\mathbf{1}_{s > R}$, with $2\theta = p(p-1)R^{p-2}$, and then the primitives which vanish in the origin and which are thus defined by $\beta_R'(s) = ps^{p-1}\mathbf{1}_{s \leq R} + (pR^{p-1} + 2\theta(s-R))\mathbf{1}_{s > R}$, $\beta_R(s) = s^p\mathbf{1}_{s \leq R} + (R^p + pR^{p-1}(s-R) + \theta(s-R)^2)\mathbf{1}_{s > R}$. Observe that $s\beta_R'(s) \leq p\beta_R(s)$ because $s\beta_R''(s) \leq (p-1)\beta_R'(s)$ and $\beta_R(s) \leq \beta(s)$ because $\beta_R''(s) \leq \beta''(s)$. Pass to the limit $p \to \infty$ in order to deal with the case $p = \infty$.]

5) Prove that for any $f_0 \in L^p(\mathbb{R}^d)$, $1 \leq p \leq \infty$, there exists at least one weak (in the sense of distributions) solution to the linear parabolic equation (0.1). [Hint: Consider $f_{0,n} \in L^1 \cap L^\infty$ such that $f_{0,n} \to f_0$ in L^p , $1 \leq p < \infty$, and prove that the associate variational solution $f_n \in X_T$ is a Cauchy sequence in $C([0,T];L^p)$. Conclude the proof by passing to the limit $p \to \infty$.] Prove that $f \geq 0$ if furthermore $f_0 \geq 0$.

Exercise 0.10. (McKean-Vlasov equation) Consider the linear parabolic equation

(0.2)
$$\partial_t f = \mathcal{L}_g f := \Delta f + \operatorname{div}(a_g f), \quad f(0) = f_0,$$

with

(0.3)
$$a_g := a * g, \quad a \in L^{\infty}(\mathbb{R}^d)^d,$$

associated to the nonlinear McKean-Vlasov equation. We prove the existence and uniqueness of the solution to this equation by using directly the J.-L. Lions theorem in the flat L^2 and associated Sobolev spaces.

1) Defining $F := f \langle x \rangle^{2k}$, establish that F is a solution to the linear parabolic equation

(0.4)
$$\partial_t F = \mathcal{M}_g F := \Delta F + \operatorname{div}(a_g F) + b \cdot \nabla F + c_g F$$

with b and c_g to be determined. [Hint. $b := -4kx/\langle x \rangle^2$, $c_g := \langle x \rangle^{-2k} (8|\nabla \langle x \rangle^k|^2 - \Delta \langle x \rangle^{2k}) + \frac{1}{2}a_g \cdot b$.]

2) Establish that for any $F_0 \in L^2$ and $g \in L^{\infty}(0,T;L^1)$, there exists a unique variational solution $F \in X_T$ to the parabolic equation (0.4).

3) Establish that for $f_0 \in L^2_k$ and $g \in L^{\infty}(0,T;L^1)$, there exists a unique variational solution $f \in Y_T$ to the parabolic equation (0.2) with $Y_T = C([0,T];H) \cap L^2(0,T;V) \cap H^1(0,T;V')$, $H := L^2_k$, $V := H^1_k$.

Exercise 0.11. (McKean-Vlasov equation again) We consider the same linear parabolic equation as in Exercise 10 and the associated nonlinear McKean-Vlasov equation. We extend the existence of solutions to a larger class of initial data.

1) Prove that for $f_0 \in L^2_k$, k > d/2, and $g \in L^1(\mathcal{U})$, the solution $f \in X_T$ to the linear parabolic equation satisfies

(0.5)
$$||f(t,\cdot)||_{L^1} \le ||f_0||_{L^1}, \quad \forall t \ge 0.$$

[Hint. Define f^{\pm} the solutions associated to the initial data $f_{0\pm} \ge 0$. Prove that $f = f^+ - f^-$ and conclude.]

2) When div $a \in L^{\infty}$, recover (0.5) by using a convenient family of renormalizing functions.

3) Prove the existence and uniqueness of a solution to the nonlinear McKean-Vlasov equation for any $f_0 \in L^2_k$, k > d/2.

4) Prove the existence of a weak solution to the nonlinear McKean-Vlasov equation (0.2) for any initial datum $f_0 \in L^1 \cap L^2_k$, k > 0.

Exercise 0.12. Consider the Fokker-Planck equation

(0.6)
$$\partial_t f = \Delta f + \operatorname{div}(xf) \quad \text{in} \quad (0,T) \times \mathbb{R}^d, \quad f(0,\cdot) = f_0 \quad \text{in} \quad \mathbb{R}^d$$

Under convenient assumptions on f_0 show the existence and uniqueness of a variational solution to the Fokker-Planck equation (0.6) by using Lions' theorem.

[Hint. Choose $H = L^2_{\omega}$ with a convenient weight $\omega : \mathbb{R}^d \to (0, \infty)$. We may accept and use the functional inequality

$$\frac{1}{4} \int_{\mathbb{R}^d} h^2 M dx \leq \int |\nabla h|^2 M dx + \frac{d}{2} \int h^2 M dx$$

for any $h \in W^{1,\infty}(\mathbb{R}^d)$ and M is the standard gaussian function. For the proof of that last inequality one may write $h := gM^{-1.2}$ and compute $\|M^{1/2}\nabla h\|_{L^2}^2$ as a function of g and ∇g .]

Exercise 0.13. (The viscosity method) Consider the transport equation

(0.7)
$$\partial_t f = b \cdot \nabla f + cf \quad \text{in} \quad (0,T) \times \mathbb{R}^d, \quad f(0,\cdot) = f_0 \in L^2(\mathbb{R}^d),$$

and its small viscosity regularized version

(0.8)
$$\partial_t f = \varepsilon \Delta f + b \cdot \nabla f + cf \quad \text{in} \quad (0,T) \times \mathbb{R}^d, \quad f(0,\cdot) = f_0 \in L^2(\mathbb{R}^d),$$

with $\varepsilon > 0$.

(1) Under convenient assumptions on a, b show the existence of a weak solution to the transport equation (0.7) by using Lions' variant of the Lax-Milgram theorem.

(2) Establish the same result by proving first the existence of a solution to the parabolic equation (0.8) with $\varepsilon > 0$ and next passing to the limit $\varepsilon \to 0$.

[Hint for (1). Define $H := L^2(\mathcal{U})$,

$$\mathcal{E}(f,\varphi) := \int_{\mathcal{U}} f(\operatorname{div}(b\varphi) - c\varphi + \lambda\varphi - \partial_t\varphi)$$

for $\lambda \in \mathbb{R}$ such that $divb/2 - c + \lambda \ge 1$ and use J.-L. Lions' variant of the Lax-Milgram theorem.]

Exercise 0.14. (Semigroup). For any $f_0 \in L^2(\mathbb{R}^d)$, consider (for instance) the parabolic equation

$$\partial_t f = \Delta f + b \cdot \nabla f + cf, \quad f(0) = f_0$$

with time independent coefficients $b, c \in L^{\infty}(\mathbb{R}^d)$ and denote by $f \in X_T$ the unique variational solution. Defining S by $S(t)f_0 := f(t)$ for any $t \ge 0$, establish that S is a continuous semigroup of bounded operators in $H := L^2(\mathbb{R}^d)$, and more precisely

(i) $f_0 \mapsto S(t)f_0$ is a linear and continuous mapping in H for any $t \ge 0$;

(ii) $t \mapsto S(t)f_0 \in C(\mathbb{R}_+; H)$ for any $f_0 \in H$;

(iii) S(0) = I and S(t+s) = S(t)S(s) for any $t, s \ge 0$.

The only property which has to be proved is the semigroup property in (iii) which is a consequence of the fact that the operator \mathcal{L} does not depend of time and of the uniqueness of solutions.

[Hint. The only real thing to prove is the semigroup property $S_{t_1+t_2} = S_{t_2}S_{t_1}$ for any $t_i \ge 0$. For that purpose, defining $\tilde{f}(t) := f(t+t_1)$, establish that \tilde{f} is a variational solution to the equation associated to the initial datum $\tilde{f}(0)$. Conclude thanks to the uniqueness result.]