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Exercises about chapter 2

Exercise 0.1. (Representation formulas) We are concerned with the heat equation

(0.1) of= %Af +9

with either an initial datum fj or a source term g # 0.

(1) Show that ¢ provides a fundamental solution to the heat equation (0.1) and that v = 73 * s
for any t,s > 0.

(2) Show that f; := v * fo provides a solution to the heat equation (0.1) for any initial datum f, € LY,
q € [1,00].

(3) Show that
Cdﬂ‘
(0.2) [Vayellr = PrITEES Y
and recover the estimate ||V f¢||z2 <t follLz-

(4) We denote U := (0,T) x R%. For g : i/ — R (smooth and rapidly decaying) show that

t
(0-3) f=vxa9= / Vi—s *a g(s,)ds
0

provides a solution to the heat equation with source term g and vanishing initial datum.
(5) For g € L' (U) establish that the solution f to the heat equation with source term given by (0.3)
satisfies f € LP(U) for any 1 < p < 1+ 2/d. More generally and more precisely, establish that
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under the condition 1 < ¢ < p, (1+ g)( ) < 1 and where C,. 4 and r are defined in (0.2).
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Exercise 0.2. (Fourier transform) We consider the heat equation with source term
o f = Af +divG,
with f,G € L?(R%*1). Prove that there exists p > 2 such that f € LP(RI*1),

Exercise 0.3. (Variant proofs of Nash inequality using the Sobolev inequality)
1. Give another proof of the Nash inequality by using the Sobolev inequality in dimension d > 3.
(Hint. Write the interpolation estimate

1z < WA 1127

and then use the Sobolev inequality associated to the Lebesgue exponent p = 2).
2. Give another proof of the Nash inequality by using the Sobolev inequality in dimension d = 2.
(Hint. Prove the interpolation estimate

1l < IALAS 122122
then use the Sobolev inequality associated to the Lebesgue exponent p = 1 and p* := 2 and finally the
Cauchy-Schwartz inequality in order to bound the second term).
3. Give another proof of the Nash inequality by using the Sobolev inequality in dimension d = 1.
(Hint. Prove the interpolation estimate
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then use the Sobolev inequality associated to the Lebesgue exponent p = 1 and p* := co and finally the
Cauchy-Schwartz inequality in order to bound the second term).

Exercise 0.4. (A variant proof of Nash inequality using the Poincaré-Wirtinger inequality)
1) Prove the Poincaré-Wirtinger inequality

1
f=Fellez < Cr[Vfllpz,  fole) = 75— fy) dy,
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for any r > 0 and some constant C' = C(d) > 0.

2) Recover the Nash inequality in any dimension d > 1. (Hint. Write that | f||2. = (f, f— f»)+ (f, fr)
and deduce that || f||2. < Cir | fllz2 [V fllzz + Cor= || f||2:, for any r > 0).

Exercise 0.5. (Nash using the representation formula)
Let us consider a solution f to the usual parabolic equation.

(1) Repeating the first above argument, establish that
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for any 0 < ¢ € D(0,T).
(2) Establish that f¢ satisfies
0i(fp) — Alfp) = div((A = D)V fe) + f¢.
Using Exercice 1, prove that
Ifelle < CI(A =DV fellLz + Cllf¢ || L2,
for some exponent p = p(d) > 2 and a constant C' = C(d) > 0.

(3) Recover the ultracontractivity estimate by combining (1) and (2).

Exercise 0.6. (Interpolation inequality) (1) For any 1 < p,q < o0, 6 € (0,1) and f € LP N LY, prove
that f € L" and
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(2) For any 1 < p;,q; < o0, 8 € (0,1) and f € LP*LP2 N L™ L2, prove that f € L™ L™ and
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Hint. For (1), write f" = ff"1=9 and use the Holder inequality with s := p/(0r) and
t:=q/((1—-0)r). Verify that s and t are conjugate exponents.

For (2), start applying the interpolation inequality from (1) to ||f|lz= and then the
Holder inequality with s:=p1/(0r1) and ¢t:=q/((1—6)r1).

Exercise 0.7.

(1) Establish the ultracontractivity estimate for a variational solution to the heat equation starting
from its very definition.

(2) Establish the ultracontractivity estimate for a solution to the heat equation set on a bounded
domain with a Dirichlet or a Neumann boundary condition.

(3) Establish the ultracontractivity estimate for a solution to the parabolic equation

(0.4) %{ = div(AVf) in (0,00) x R?

for a measurable, bounded and strictly elliptic matrix A by using Nash’s method.



(4) Establish the ultracontractivity estimate for a solution to the parabolic equation

0
(0.5) 57{ =div(AVf +af)+b-Vf in (0,00) x R?,
for a bounded strictly elliptic matrix A and bounded vector fields a,b by using Moser’s method. What

about Nash’s method?

Exercise 0.8. (Moser estimate) Consider ¢ € (0,00) and two cylinders g CC Q. Establish that
there exists p > ¢ such that for any nonnegative solution f to the parabolic equation (0.4), there holds
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by just considering the equation satisfied by f9. Generalize the argument for dealing with supersolution
and subsolution depending of the value of q.

Exercise 0.9. Consider a variational solution f to the parabolic equation (0.5) in the cylinder €,
r > 0, and define f,.(t,z) := f(r*,rz) on €;. Show that f, is the variational solution to the parabolic
equation (0.5) with coefficients A, (t,z) = A(r?t,rxz), a.(t,z) = ra(r®t,rx) and b.(t,z) = rb(r’t,rz).
(Hint. Prove the result for smooth coefficients and then use an regularization argument or make all the
job on the variational formulation.)



