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Exercises about chapter 2

Exercise 0.1. (Representation formulas) We are concerned with the heat equation

(0.1) ∂tf =
1

2
∆f + g

with either an initial datum f0 or a source term g ̸= 0.
(1) Show that γt provides a fundamental solution to the heat equation (0.1) and that γt+s = γt ∗ γs

for any t, s > 0.
(2) Show that ft := γt ∗f0 provides a solution to the heat equation (0.1) for any initial datum f0 ∈ Lq,

q ∈ [1,∞].
(3) Show that

(0.2) ∥∇xγt∥Lr =
Cd,r

t
d
2 (1−

1
r )+

1
2

and recover the estimate ∥∇ft∥L2 ≲ t−1∥f0∥L2 .
(4) We denote U := (0, T )× Rd. For g : U → R (smooth and rapidly decaying) show that

(0.3) f := γ ∗t,x g =

∫ t

0

γt−s ∗x g(s, ·)ds

provides a solution to the heat equation with source term g and vanishing initial datum.
(5) For g ∈ L1(U) establish that the solution f to the heat equation with source term given by (0.3)

satisfies f ∈ Lp(U) for any 1 < p < 1 + 2/d. More generally and more precisely, establish that

∥f∥Lp(U) ≲ CT 1−(1+ d
2 )(

1
q−

1
p−1)∥g∥Lq(U), C :=

Cr,d

(1− d
2 (

1
q − 1

p )r)
1/r

,

under the condition 1 ≤ q < p, (1 + d
2 )(

1
q − 1

p ) < 1 and where Cr,d and r are defined in (0.2).

Exercise 0.2. (Fourier transform) We consider the heat equation with source term

∂tf = ∆f + divG,

with f,G ∈ L2(Rd+1). Prove that there exists p > 2 such that f ∈ Lp(Rd+1).

Exercise 0.3. (Variant proofs of Nash inequality using the Sobolev inequality)
1. Give another proof of the Nash inequality by using the Sobolev inequality in dimension d ≥ 3.

(Hint. Write the interpolation estimate

∥f∥L2 ≤ ∥f∥θL1 ∥f∥1−θ
L2∗

and then use the Sobolev inequality associated to the Lebesgue exponent p = 2).
2. Give another proof of the Nash inequality by using the Sobolev inequality in dimension d = 2.

(Hint. Prove the interpolation estimate

∥f∥L2 ≤ ∥f∥1/4L1 ∥f3/2∥1/2L2 ,

then use the Sobolev inequality associated to the Lebesgue exponent p = 1 and p∗ := 2 and finally the
Cauchy-Schwartz inequality in order to bound the second term).

3. Give another proof of the Nash inequality by using the Sobolev inequality in dimension d = 1.
(Hint. Prove the interpolation estimate

∥f∥L2 ≤ ∥f∥1/2L1 ∥f3/2∥1/3L∞ ,
1



2

then use the Sobolev inequality associated to the Lebesgue exponent p = 1 and p∗ := ∞ and finally the
Cauchy-Schwartz inequality in order to bound the second term).

Exercise 0.4. (A variant proof of Nash inequality using the Poincaré-Wirtinger inequality)
1) Prove the Poincaré-Wirtinger inequality

∥f − fr∥L2 ≤ C r∥∇f∥L2 , fr(x) :=
1

|B(x, r)|

∫
B(x,r)

f(y) dy,

for any r > 0 and some constant C = C(d) > 0.
2) Recover the Nash inequality in any dimension d ≥ 1. (Hint. Write that ∥f∥2L2 = (f, f −fr)+(f, fr)

and deduce that ∥f∥2L2 ≤ C1 r ∥f∥L2 ∥∇f∥L2 + C2 r
−d ∥f∥2L1 , for any r > 0).

Exercise 0.5. (Nash using the representation formula)
Let us consider a solution f to the usual parabolic equation.
(1) Repeating the first above argument, establish that

ν

∫ T

0

φ2

∫
|∇f |2 ≤

∫ T

0

φ′
+
φ

∫
f2,

for any 0 ≤ φ ∈ D(0, T ).
(2) Establish that fφ satisfies

∂t(fφ)−∆(fφ) = div((A− I)∇fφ) + fφ′.

Using Exercice 1, prove that

∥fφ∥Lp ≤ C∥(A− I)∇fφ∥L2 + C∥fφ′∥L2 ,

for some exponent p = p(d) > 2 and a constant C = C(d) > 0.
(3) Recover the ultracontractivity estimate by combining (1) and (2).

Exercise 0.6. (Interpolation inequality) (1) For any 1 ≤ p, q ≤ ∞, θ ∈ (0, 1) and f ∈ Lp ∩Lq, prove
that f ∈ Lr and

∥f∥Lr ≤ ∥f∥θLp∥f∥1−θ
Lq , with

1

r
=

θ

p
+

1− θ

q
.

(2) For any 1 ≤ pi, qi ≤ ∞, θ ∈ (0, 1) and f ∈ Lp1Lp2 ∩ Lq1Lq2 , prove that f ∈ Lr1Lr2 and

∥f∥Lr1Lr2 ≤ ∥f∥θLp1Lp2∥f∥1−θ
Lq1Lq2 , with

1

ri
=

θ

pi
+

1− θ

qi
.

Hint. For (1), write fr = frθfr(1−θ) and use the Holder inequality with s := p/(θr) and
t := q/((1− θ)r). Verify that s and t are conjugate exponents.

For (2), start applying the interpolation inequality from (1) to ∥f∥Lr2 and then the
Holder inequality with s := p1/(θr1) and t := q1/((1− θ)r1).

Exercise 0.7.
(1) Establish the ultracontractivity estimate for a variational solution to the heat equation starting

from its very definition.
(2) Establish the ultracontractivity estimate for a solution to the heat equation set on a bounded

domain with a Dirichlet or a Neumann boundary condition.
(3) Establish the ultracontractivity estimate for a solution to the parabolic equation

(0.4)
∂f

∂t
= div(A∇f) in (0,∞)× Rd

for a measurable, bounded and strictly elliptic matrix A by using Nash’s method.
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(4) Establish the ultracontractivity estimate for a solution to the parabolic equation

(0.5)
∂f

∂t
= div(A∇f + af) + b · ∇f in (0,∞)× Rd,

for a bounded strictly elliptic matrix A and bounded vector fields a, b by using Moser’s method. What
about Nash’s method?

Exercise 0.8. (Moser estimate) Consider q ∈ (0,∞) and two cylinders q ⊂⊂ Q. Establish that
there exists p > q such that for any nonnegative solution f to the parabolic equation (0.4), there holds

∥f∥Lp(q) ≲ ∥f∥Lq(Q),

by just considering the equation satisfied by fq. Generalize the argument for dealing with supersolution
and subsolution depending of the value of q.

Exercise 0.9. Consider a variational solution f to the parabolic equation (0.5) in the cylinder Cr,
r > 0, and define fr(t, x) := f(r2t, rx) on C1. Show that fr is the variational solution to the parabolic
equation (0.5) with coefficients Ar(t, x) = A(r2t, rx), ar(t, x) = ra(r2t, rx) and br(t, x) = rb(r2t, rx).
(Hint. Prove the result for smooth coefficients and then use an regularization argument or make all the
job on the variational formulation.)


