A $C^{0,1}$-Itô's Formula for Flows of Semimartingale Distributions

B. Bouchard
CEREMADE, Université Paris Dauphine - PSL

Motivation

\square Replace $C^{1,2}$-regularity by $C^{0,1}$ when applying Itô's lemma in situations where regularity is difficult to obtain :

- Path-dependent functionals : see Xiaolu's talk.
- McKean-Vlasov optimal control problems.

Motivation

\square Replace $C^{1,2}$-regularity by $C^{0,1}$ when applying Itô's lemma in situations where regularity is difficult to obtain :

- Path-dependent functionals : see Xiaolu's talk.
- McKean-Vlasov optimal control problems.
\square We know that it is possible for functionals on $[0, T] \times \mathbb{R}^{d}$ associated to classical Markovian problems.

The classical Markovian situation

Weak Dirichlet processes

\square In the Markovian case : works by Russo and his co-authors, using the concept of weak Dirichlet processes and the stochastic calculus by regularization. See in particular Gozzi and Russo [4].

Weak Dirichlet processes

\square In the Markovian case : works by Russo and his co-authors, using the concept of weak Dirichlet processes and the stochastic calculus by regularization. See in particular Gozzi and Russo [4].

Definitions:

- Let X and Y be two real valued càdlàg processes. The co-quadractic variation $[X, Y$] is defined by

$$
[X, Y]_{t}:=\lim _{\varepsilon \searrow 0} \frac{1}{\varepsilon} \int_{0}^{t}\left(X_{(s+\varepsilon) \wedge t}-X_{s}\right)\left(Y_{(s+\varepsilon) \wedge t}-Y_{s}\right) d s
$$

whenever the limit exists in the sense of u.c.p.

Weak Dirichlet processes

\square In the Markovian case : works by Russo and his co-authors, using the concept of weak Dirichlet processes and the stochastic calculus by regularization. See in particular Gozzi and Russo [4].

Definitions:

- Let X and Y be two real valued càdlàg processes. The co-quadractic variation $[X, Y$] is defined by

$$
[X, Y]_{t}:=\lim _{\varepsilon \searrow 0} \frac{1}{\varepsilon} \int_{0}^{t}\left(X_{(s+\varepsilon) \wedge t}-X_{s}\right)\left(Y_{(s+\varepsilon) \wedge t}-Y_{s}\right) d s
$$

whenever the limit exists in the sense of u.c.p.

- X has finite quadratic variation, if $[X]:=[X, X]$, exists and is finite a.s.

Weak Dirichlet processes

\square In the Markovian case : works by Russo and his co-authors, using the concept of weak Dirichlet processes and the stochastic calculus by regularization. See in particular Gozzi and Russo [4].

Definitions:

- Let X and Y be two real valued càdlàg processes. The co-quadractic variation $[X, Y]$ is defined by

$$
[X, Y]_{t}:=\lim _{\varepsilon \searrow 0} \frac{1}{\varepsilon} \int_{0}^{t}\left(X_{(s+\varepsilon) \wedge t}-X_{s}\right)\left(Y_{(s+\varepsilon) \wedge t}-Y_{s}\right) d s
$$

whenever the limit exists in the sense of u.c.p.

- X has finite quadratic variation, if $[X]:=[X, X]$, exists and is finite a.s.
- A is orthogonal if $[A, N]=0$ for any real valued continuous local martingale N.

Weak Dirichlet processes

\square In the Markovian case : works by Russo and his co-authors, using the concept of weak Dirichlet processes and the stochastic calculus by regularization. See in particular Gozzi and Russo [4].

Definitions:

- Let X and Y be two real valued càdlàg processes. The co-quadractic variation $[X, Y]$ is defined by

$$
[X, Y]_{t}:=\lim _{\varepsilon \searrow 0} \frac{1}{\varepsilon} \int_{0}^{t}\left(X_{(s+\varepsilon) \wedge t}-X_{s}\right)\left(Y_{(s+\varepsilon) \wedge t}-Y_{s}\right) d s
$$

whenever the limit exists in the sense of u.c.p.

- X has finite quadratic variation, if $[X]:=[X, X]$, exists and is finite a.s.
- A is orthogonal if $[A, N]=0$ for any real valued continuous local martingale N.
- X is a weak Dirichlet process if $X=X_{0}+M+A$, where M is a local martingale and A is orthogonal such that $M_{0}=A_{0}=0$.

$\mathbb{C}^{0,1}$-Itô's formula

Theorem (Gozzi and Russo [4]) : Let $X=X_{0}+M+A$ be a continuous weak Dirichlet process with finite quadratic variation, $v \in C^{0,1}\left([0, T) \times \mathbb{R}^{d}\right)$. Then,$$
v\left(t, X_{t}\right)=v(0, X)+\int_{0}^{t} \partial_{x} v\left(s, X_{s}\right) d M_{s}+\Gamma_{t}, \quad t \in[0, T)
$$

where Γ is a continuous orthogonal process.

$\mathbb{C}^{0,1}$-Itô's formula

Theorem (Gozzi and Russo [4]) : Let $X=X_{0}+M+A$ be a continuous weak Dirichlet process with finite quadratic variation, $v \in C^{0,1}\left([0, T) \times \mathbb{R}^{d}\right)$. Then,$$
v\left(t, X_{t}\right)=v(0, X)+\int_{0}^{t} \partial_{x} v\left(s, X_{s}\right) d M_{s}+\Gamma_{t}, \quad t \in[0, T)
$$

where Γ is a continuous orthogonal process.
\square Remark :

- A version is available for processes with jumps, see Bandini and Russo [1].

$\mathbb{C}^{0,1}$-Itô's formula

\square Theorem (Gozzi and Russo [4]) : Let $X=X_{0}+M+A$ be a continuous weak Dirichlet process with finite quadratic variation, $v \in C^{0,1}\left([0, T) \times \mathbb{R}^{d}\right)$. Then,

$$
v\left(t, X_{t}\right)=v(0, X)+\int_{0}^{t} \partial_{x} v\left(s, X_{s}\right) d M_{s}+\Gamma_{t}, \quad t \in[0, T)
$$

where Γ is a continuous orthogonal process.
\square Remark :

- A version is available for processes with jumps, see Bandini and Russo [1].
- If $v(\cdot, X)$ is a martingale, then $\Gamma \equiv 0$ (e.g. replication price in finance, value function of an optimal control problem along the optimal path,...)

$\mathbb{C}^{0,1}$-Itô's formula

\square Theorem (Gozzi and Russo [4]) : Let $X=X_{0}+M+A$ be a continuous weak Dirichlet process with finite quadratic variation, $v \in C^{0,1}\left([0, T) \times \mathbb{R}^{d}\right)$. Then,

$$
v\left(t, X_{t}\right)=v(0, X)+\int_{0}^{t} \partial_{x} v\left(s, X_{s}\right) d M_{s}+\Gamma_{t}, \quad t \in[0, T)
$$

where Γ is a continuous orthogonal process.
\square Remark :

- A version is available for processes with jumps, see Bandini and Russo [1].
- If $v(\cdot, X)$ is a martingale, then $\Gamma \equiv 0$ (e.g. replication price in finance, value function of an optimal control problem along the optimal path,...)
- Can be extended to path-dependent functionals using the notion of Dupire's derivatives, see B., Loeper and Tan [2].
C^{1}-Itô's formula for flows of semimartingale distributions

The setting

\square Consider a continuous semimartingale on a complete probability space $\left(\Omega, \mathcal{F}, \mathbb{F}=\left(\mathcal{F}_{t}\right)_{t \geq 0}, \mathbb{P}\right)$, satisfying the usual conditions,

$$
X=X_{0}+A+M^{X}, \text { with } M^{X}=M+\int_{0} \sigma_{s}^{\circ} d M_{s}^{\circ}
$$

Define $\mathcal{G}^{\circ}=\left(\mathcal{G}_{t}^{\circ}\right)_{t \geq 0}$, where $\mathcal{G}_{t}^{\circ}:=\sigma\left(M_{s}^{\circ}, 0 \leq s \leq t\right)$ and

$$
\mathbb{E}^{\circ}[\xi]:=\mathbb{E}\left[\xi \mid \mathcal{G}^{\circ}\right]
$$

The setting

\square Consider a continuous semimartingale on a complete probability space $\left(\Omega, \mathcal{F}, \mathbb{F}=\left(\mathcal{F}_{t}\right)_{t \geq 0}, \mathbb{P}\right)$, satisfying the usual conditions,

$$
X=X_{0}+A+M^{X}, \text { with } M^{X}=M+\int_{0} \sigma_{s}^{\circ} d M_{s}^{\circ}
$$

Define $\mathcal{G}^{\circ}=\left(\mathcal{G}_{t}^{\circ}\right)_{t \geq 0}$, where $\mathcal{G}_{t}^{\circ}:=\sigma\left(M_{s}^{\circ}, 0 \leq s \leq t\right)$ and

$$
\mathbb{E}^{\circ}[\xi]:=\mathbb{E}\left[\xi \mid \mathcal{G}^{\circ}\right]
$$

\square Consider a continuous weak Dirichlet process

$$
Y=Y_{0}+A^{Y}+M^{Y}
$$

with $[Y, Y]_{T}<\infty$.

The setting

Assumption :

(i) σ° is \mathbb{F}-progressively measurable, and \exists sequence of stopping times $\left(\tau_{n}\right)_{n \geq 1}$ w.r.t. \mathcal{G}° s.t. $\tau_{n} \uparrow \infty$ a.s. and

$$
\mathbb{E}\left[[M]_{\tau_{n} \wedge t}+|A|_{\tau_{n} \wedge t}^{2}+\int_{0}^{\tau_{n} \wedge t}\left|\sigma_{s}^{0}\right|^{2} d\left[M^{\circ}\right]_{s}\right]<+\infty, \text { for all } t \geq 0 \text { and } n \geq 1 .
$$

(ii) M is orthogonal to N (i.e. $[M, N]=0$), for all \mathcal{G}°-martingales N.
(iii) (H)-hypothesis condition :

$$
\mathbb{E}\left[1_{D} \mid \mathcal{G}_{t}^{\circ}\right]=\mathbb{E}\left[1_{D} \mid \mathcal{G}^{\circ}\right], \text { a.s., for all } D \in \mathcal{F}_{t}, t \geq 0
$$

Define the $\mathcal{P}\left(\mathbb{R}^{d}\right)$-valued process

$$
m_{t}:=\mathcal{L}\left(X_{t} \mid \mathcal{G}_{t}^{\circ}\right)=\mathcal{L}\left(X_{t} \mid \mathcal{G}^{\circ}\right), \quad t \geq 0
$$

Derivative with respect to the measure

Given $F: \mathcal{P}_{2}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{R}$, let $\delta F / \delta m: \mathcal{P}_{2}\left(\mathbb{R}^{d}\right) \times \mathbb{R}^{d} \rightarrow \mathbb{R}$, be s.t.

$$
F\left(m^{\prime}\right)-F(m)=\int_{0}^{1} \int_{\mathbb{R}^{d}} \frac{\delta F}{\delta m}\left(t m^{\prime}+(1-t) m, x\right)\left[m^{\prime}-m\right](d x) d t
$$

and set

$$
D_{m} F(m, x):=\partial_{x} \frac{\delta F}{\delta m}(m, x)
$$

Main result

\square We consider $F \in C^{0,1,1}\left(\mathbb{R}_{+} \times \mathbb{R}^{d} \times \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)\right)$ such that the following holds

Main result

\square We consider $F \in C^{0,1,1}\left(\mathbb{R}_{+} \times \mathbb{R}^{d} \times \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)\right)$ such that the following holds

Assumption: $\forall n \geq 1, T>0$ and compact $K \subset \mathbb{R}^{d}, \exists C>0$ s.t.

$$
\begin{aligned}
& \mathbb{E}^{\circ}\left[\left(D_{m} F\left(r, y, m_{s}^{n, \lambda, t}, X_{s}^{n, \eta, t}\right)\right)^{2}\right] \leq C, \text { a.s., } \\
& \forall(r, s, t) \in[0,2 T] \times[0, t] \times[0, T],(\lambda, \eta, y) \in[0,1]^{2} \times K,
\end{aligned}
$$

where $m_{s}^{n, \lambda, t}:=(1-\lambda) m_{\tau_{n} \wedge s}+\lambda m_{\tau_{n} \wedge t}, X_{s}^{n, \eta, t}:=(1-\eta) X_{\tau_{n} \wedge s}+\eta X_{\tau_{n} \wedge t}$.

Main result

\square We consider $F \in C^{0,1,1}\left(\mathbb{R}_{+} \times \mathbb{R}^{d} \times \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)\right)$ such that the following holds
\square Assumption : $\forall n \geq 1, T>0$ and compact $K \subset \mathbb{R}^{d}, \exists C>0$ s.t.

$$
\begin{aligned}
& \mathbb{E}^{\circ}\left[\left(D_{m} F\left(r, y, m_{s}^{n, \lambda, t}, X_{s}^{n, \eta, t}\right)\right)^{2}\right] \leq C, \text { a.s. } \\
& \forall(r, s, t) \in[0,2 T] \times[0, t] \times[0, T],(\lambda, \eta, y) \in[0,1]^{2} \times K,
\end{aligned}
$$

where $m_{s}^{n, \lambda, t}:=(1-\lambda) m_{\tau_{n} \wedge s}+\lambda m_{\tau_{n} \wedge t}, X_{s}^{n, \eta, t}:=(1-\eta) X_{\tau_{n} \wedge s}+\eta X_{\tau_{n} \wedge t}$.
\square Theorem : \exists a continuous orthogonal process Γ such that

$$
\begin{aligned}
F\left(t, Y_{t}, m_{t}\right)= & F\left(0, Y_{0}, m_{0}\right)+\int_{0}^{t} \partial_{y} F\left(s, Y_{s}, m_{s}\right) d M_{s}^{Y} \\
& +\int_{0}^{t} \mathbb{E}^{\circ}\left[D_{m} F\left(s, \cdot, m_{s}, X_{s}\right) \sigma_{s}^{\circ}\right]\left(Y_{s}\right) d M_{s}^{\circ}+\Gamma_{t}, t \geq 0 .
\end{aligned}
$$

Sketch of proof

\square We restrict to $F(t, m, y)=F(m)$.

Sketch of proof

\square We restrict to $F(t, m, y)=F(m)$.
\square Define

$$
\Gamma_{t}:=F\left(m_{t}\right)-\int_{0}^{t} \mathbb{E}^{\circ}\left[D_{m} F\left(m_{s}, X_{s}\right) \sigma_{s}^{\circ}\right] d M_{s}^{\circ} .
$$

Sketch of proof

We restrict to $F(t, m, y)=F(m)$.Define

$$
\Gamma_{t}:=F\left(m_{t}\right)-\int_{0}^{t} \mathbb{E}^{\circ}\left[D_{m} F\left(m_{s}, X_{s}\right) \sigma_{s}^{\circ}\right] d M_{s}^{\circ}
$$

We need to show that, for any continuous martingale N,

$$
\frac{1}{\varepsilon} \int_{0}^{t}\left[\Gamma_{s+\varepsilon}-\Gamma_{s}\right]\left(N_{s+\varepsilon}-N_{s}\right) d s \longrightarrow 0
$$

Sketch of proof

We restrict to $F(t, m, y)=F(m)$.
\square Define

$$
\Gamma_{t}:=F\left(m_{t}\right)-\int_{0}^{t} \mathbb{E}^{\circ}\left[D_{m} F\left(m_{s}, X_{s}\right) \sigma_{s}^{\circ}\right] d M_{s}^{\circ}
$$

We need to show that, for any continuous martingale N,

$$
\frac{1}{\varepsilon} \int_{0}^{t}\left[\Gamma_{s+\varepsilon}-\Gamma_{s}\right]\left(N_{s+\varepsilon}-N_{s}\right) d s \longrightarrow 0
$$

or equivalently

$$
I_{t}^{\varepsilon}:=\frac{1}{\varepsilon} \int_{0}^{t}\left[F\left(m_{s+\varepsilon}\right)-F\left(m_{s}\right)\right]\left(N_{s+\varepsilon}-N_{s}\right) d s \longrightarrow I_{t}
$$

where

$$
I_{t}:=\int_{0}^{t} \mathbb{E}^{\circ}\left[D_{m} F\left(m_{s}, X_{s}\right) \sigma_{s}^{\circ}\right] d\left[M^{\circ}, N\right]_{s}
$$

By definition of $D_{m} F$,

$$
\begin{aligned}
& \int_{0}^{t}\left[F\left(m_{s+\varepsilon}\right)-F\left(m_{s}\right)\right] \frac{N_{s+\varepsilon}-N_{s}}{\varepsilon} d s \\
= & \int_{0}^{t} \int_{0}^{1} \int_{0}^{1} \mathbb{E}^{\circ}\left[D_{m} F\left(m_{s}^{\lambda, \varepsilon}, X_{s}^{\eta, \varepsilon}\right)\left(X_{s+\varepsilon}-X_{s}\right)\right] \frac{N_{s+\varepsilon}-N_{s}}{\varepsilon} d \eta d \lambda d s,
\end{aligned}
$$

where $m_{s}^{\lambda, \varepsilon}:=m_{s}+\lambda\left(m_{s+\varepsilon}-m_{s}\right)$ and $X_{s}^{\eta, \varepsilon}:=X_{s}+\eta\left(X_{s+\varepsilon}-X_{s}\right)$.

By definition of $D_{m} F$,

$$
\begin{aligned}
& \int_{0}^{t}\left[F\left(m_{s+\varepsilon}\right)-F\left(m_{s}\right)\right] \frac{N_{s+\varepsilon}-N_{s}}{\varepsilon} d s \\
= & \int_{0}^{t} \int_{0}^{1} \int_{0}^{1} \mathbb{E}^{\circ}\left[D_{m} F\left(m_{s}^{\lambda, \varepsilon}, X_{s}^{\eta, \varepsilon}\right)\left(X_{s+\varepsilon}-X_{s}\right)\right] \frac{N_{s+\varepsilon}-N_{s}}{\varepsilon} d \eta d \lambda d s,
\end{aligned}
$$

where $m_{s}^{\lambda, \varepsilon}:=m_{s}+\lambda\left(m_{s+\varepsilon}-m_{s}\right)$ and $X_{s}^{\eta, \varepsilon}:=X_{s}+\eta\left(X_{s+\varepsilon}-X_{s}\right)$.
We can show that $\lim _{\varepsilon \rightarrow 0} I_{t}^{\varepsilon}=\lim _{\varepsilon \rightarrow 0} J_{t}^{\varepsilon}$, where

$$
J_{t}^{\varepsilon}:=\int_{0}^{t} \mathbb{E}^{\circ}\left[D_{m} F\left(m_{s}, X_{s}\right)\left(X_{s+\varepsilon}-X_{s}\right)\right] \frac{N_{s+\varepsilon}-N_{s}}{\varepsilon} d s
$$

We then write

$$
J_{t}^{\varepsilon}=J_{t}^{1, \varepsilon}+J_{t}^{2, \varepsilon}+J_{t}^{3, \varepsilon}
$$

where

$$
\begin{aligned}
J_{t}^{1, \varepsilon} & :=\int_{0}^{t} \mathbb{E}^{\circ}\left[D_{m} F\left(m_{s}, X_{s}\right)\left(A_{s+\varepsilon}-A_{s}\right)\right] \frac{N_{s+\varepsilon}-N_{s}}{\varepsilon} d s \\
J_{t}^{2, \varepsilon} & :=\int_{0}^{t} \mathbb{E}^{\circ}\left[D_{m} F\left(m_{s}, X_{s}\right)\left(M_{s+\varepsilon}-M_{s}\right)\right] \frac{N_{s+\varepsilon}-N_{s}}{\varepsilon} d s \\
J_{t}^{3, \varepsilon} & :=\int_{0}^{t} \mathbb{E}^{\circ}\left[D_{m} F\left(m_{s}, X_{s}\right) \int_{s}^{s+\varepsilon} \sigma_{r}^{\circ} d M_{r}^{\circ}\right] \frac{N_{s+\varepsilon}-N_{s}}{\varepsilon} d s .
\end{aligned}
$$

We then write

$$
J_{t}^{\varepsilon}=J_{t}^{1, \varepsilon}+J_{t}^{2, \varepsilon}+J_{t}^{3, \varepsilon}
$$

where

$$
\begin{aligned}
J_{t}^{1, \varepsilon} & :=\int_{0}^{t} \mathbb{E}^{\circ}\left[D_{m} F\left(m_{s}, X_{s}\right)\left(A_{s+\varepsilon}-A_{s}\right)\right] \frac{N_{s+\varepsilon}-N_{s}}{\varepsilon} d s \\
J_{t}^{2, \varepsilon} & :=\int_{0}^{t} \mathbb{E}^{\circ}\left[D_{m} F\left(m_{s}, X_{s}\right)\left(M_{s+\varepsilon}-M_{s}\right)\right] \frac{N_{s+\varepsilon}-N_{s}}{\varepsilon} d s \\
J_{t}^{3, \varepsilon} & :=\int_{0}^{t} \mathbb{E}^{\circ}\left[D_{m} F\left(m_{s}, X_{s}\right) \int_{s}^{s+\varepsilon} \sigma_{r}^{\circ} d M_{r}^{\circ}\right] \frac{N_{s+\varepsilon}-N_{s}}{\varepsilon} d s .
\end{aligned}
$$

Then $J_{t}^{1, \varepsilon} \longrightarrow 0, J_{t}^{2, \varepsilon} \longrightarrow 0$, u.c.p.,

We then write

$$
J_{t}^{\varepsilon}=J_{t}^{1, \varepsilon}+J_{t}^{2, \varepsilon}+J_{t}^{3, \varepsilon}
$$

where

$$
\begin{aligned}
J_{t}^{1, \varepsilon} & :=\int_{0}^{t} \mathbb{E}^{\circ}\left[D_{m} F\left(m_{s}, X_{s}\right)\left(A_{s+\varepsilon}-A_{s}\right)\right] \frac{N_{s+\varepsilon}-N_{s}}{\varepsilon} d s \\
J_{t}^{2, \varepsilon} & :=\int_{0}^{t} \mathbb{E}^{\circ}\left[D_{m} F\left(m_{s}, X_{s}\right)\left(M_{s+\varepsilon}-M_{s}\right)\right] \frac{N_{s+\varepsilon}-N_{s}}{\varepsilon} d s \\
J_{t}^{3, \varepsilon} & :=\int_{0}^{t} \mathbb{E}^{\circ}\left[D_{m} F\left(m_{s}, X_{s}\right) \int_{s}^{s+\varepsilon} \sigma_{r}^{\circ} d M_{r}^{\circ}\right] \frac{N_{s+\varepsilon}-N_{s}}{\varepsilon} d s .
\end{aligned}
$$

Then $J_{t}^{1, \varepsilon} \longrightarrow 0, J_{t}^{2, \varepsilon} \longrightarrow 0$, u.c.p., and

$$
\begin{aligned}
\lim _{\varepsilon \rightarrow 0} J_{t}^{3, \varepsilon} & =\lim _{\varepsilon \rightarrow 0} \int_{0}^{t} \int_{s}^{s+\varepsilon} \mathbb{E}^{\circ}\left[D_{m} F\left(m_{r}, X_{r}\right) \sigma_{r}^{\circ}\right] d M_{r}^{\circ} \frac{N_{s+\varepsilon}-N_{s}}{\varepsilon} d s \\
& =\int_{0}^{t} \mathbb{E}^{\circ}\left[D_{m} F\left(m_{r}, X_{r}\right) \sigma_{r}^{\circ}\right] d\left[M^{\circ}, N\right]_{r} .
\end{aligned}
$$

A verification theorem for a class of McKean-Vlasov optimal control problems

A class of McKean-Vlasov optimal control problems

\square Let $\Omega^{0}=\Omega^{1}:=\mathcal{C}\left([0, T], \mathbb{R}^{d}\right)$ with canonical process X^{0} and W, canonical filtrations \mathbb{F}^{0} and \mathbb{F}^{1}, and Wiener measures \mathbb{P}_{0}^{0} and \mathbb{P}_{0}^{1}.

A class of McKean-Vlasov optimal control problems

\square Let $\Omega^{0}=\Omega^{1}:=\mathcal{C}\left([0, T], \mathbb{R}^{d}\right)$ with canonical process X^{0} and W, canonical filtrations \mathbb{F}^{0} and \mathbb{F}^{1}, and Wiener measures \mathbb{P}_{0}^{0} and \mathbb{P}_{0}^{1}.
\square Let \mathcal{A}^{0} denote the collection of \mathbb{F}^{0}-progressively measurable process $\alpha:[0, T] \times \Omega^{0} \longrightarrow \mathrm{~A}$, bounded.

A class of McKean-Vlasov optimal control problems

\square Let $\Omega^{0}=\Omega^{1}:=\mathcal{C}\left([0, T], \mathbb{R}^{d}\right)$ with canonical process X^{0} and W, canonical filtrations \mathbb{F}^{0} and \mathbb{F}^{1}, and Wiener measures \mathbb{P}_{0}^{0} and \mathbb{P}_{0}^{1}.
\square Let \mathcal{A}^{0} denote the collection of \mathbb{F}^{0}-progressively measurable process $\alpha:[0, T] \times \Omega^{0} \longrightarrow \mathrm{~A}$, bounded.
\square Define

$$
\begin{aligned}
& \mathcal{P}_{W}^{0}\left(t, x^{0}\right):=\left\{\mathbb{P}^{0} \in \mathcal{P}\left(\Omega^{0}\right):\right. X^{0}=x_{t}^{0}+\int_{t} \alpha_{r}^{\mathbb{P}^{0}} d r+\int_{t} d W_{r}^{\mathbb{P}^{0}}, \mathbb{P}^{0} \text {-a.s. } \\
& \mathbb{P}^{0}\left[X_{t \wedge .}^{0}=x_{t \wedge \wedge}^{0}\right]=1, \text { where } \alpha^{\mathbb{P}^{0}} \in \mathcal{A}^{0} \\
&\text { and } \left.W^{\mathbb{P}^{0}} \text { is a }\left(\mathbb{P}^{0}, \mathbb{F}^{0}\right) \text {-Brownian motion }\right\} .
\end{aligned}
$$

A class of McKean-Vlasov optimal control problems

\square Let $\Omega^{0}=\Omega^{1}:=\mathcal{C}\left([0, T], \mathbb{R}^{d}\right)$ with canonical process X^{0} and W, canonical filtrations \mathbb{F}^{0} and \mathbb{F}^{1}, and Wiener measures \mathbb{P}_{0}^{0} and \mathbb{P}_{0}^{1}.
\square Let \mathcal{A}^{0} denote the collection of \mathbb{F}^{0}-progressively measurable process $\alpha:[0, T] \times \Omega^{0} \longrightarrow \mathrm{~A}$, bounded.
\square Define

$$
\begin{aligned}
& \mathcal{P}_{W}^{0}\left(t, x^{0}\right):=\left\{\mathbb{P}^{0} \in \mathcal{P}\left(\Omega^{0}\right):\right. X^{0}=x_{t}^{0}+\int_{t} \alpha_{r}^{\mathbb{P}^{0}} d r+\int_{t} d W_{r}^{\mathbb{P}^{0}}, \mathbb{P}^{0} \text {-a.s. } \\
& \mathbb{P}^{0}\left[X_{t \wedge .}^{0}=x_{t \wedge}^{0}\right]=1, \text { where } \alpha^{\mathbb{P}^{0}} \in \mathcal{A}^{0} \\
&\text { and } \left.W^{\mathbb{P}^{0}} \text { is a }\left(\mathbb{P}^{0}, \mathbb{F}^{0}\right) \text {-Brownian motion }\right\} .
\end{aligned}
$$

and

$$
\mathcal{P}_{W}\left(t, x^{0}\right):=\left\{\mathbb{P}=\mathbb{P}^{0} \times \mathbb{P}_{0}^{1}: \mathbb{P}^{0} \in \mathcal{P}_{W}^{0}\left(t, x^{0}\right)\right\} .
$$

For $t \in[0, T], m \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$ and $\mathbb{P} \in \mathcal{P}_{W}\left(t, x^{0}\right)$, we consider the McKean-Vlasov SDE :

$$
\begin{aligned}
& X_{s}^{t, \mathbb{P}}=\xi+\int_{t}^{s} \sigma_{0}\left(r, X_{r}^{t, \mathbb{P}}, \rho_{r}^{t, m, \mathbb{P}}\right) d X_{r}^{0}+\int_{t}^{s} \sigma\left(r, X_{r}^{t, \mathbb{P}}, \rho_{r}^{t, m, \mathbb{P}}\right) d W_{r}, m \times \mathbb{P} \text {-a.s. } \\
& \text { with } \rho_{r}^{t, m, \mathbb{P}}:=\mathcal{L}^{m \times \mathbb{P}}\left(X_{r}^{t, \mathbb{P}} \mid \mathcal{F}_{r}^{X^{0}}\right) .
\end{aligned}
$$

For $t \in[0, T], m \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$ and $\mathbb{P} \in \mathcal{P}_{W}\left(t, x^{0}\right)$, we consider the McKean-Vlasov SDE :
$X_{s}^{t, \mathbb{P}}=\xi+\int_{t}^{s} \sigma_{0}\left(r, X_{r}^{t, \mathbb{P}}, \rho_{r}^{t, m, \mathbb{P}}\right) d X_{r}^{0}+\int_{t}^{s} \sigma\left(r, X_{r}^{t, \mathbb{P}}, \rho_{r}^{t, m, \mathbb{P}}\right) d W_{r}, m \times \mathbb{P}$-a.s.
with $\rho_{r}^{t, m, \mathbb{P}}:=\mathcal{L}^{m \times \mathbb{P}}\left(X_{r}^{t, \mathbb{P}} \mid \mathcal{F}_{r}^{X^{0}}\right)$.
\square Controlled laws of the canonical process $\left(X^{0}, W, X, \rho\right)$ are in
$\overline{\mathcal{P}}_{W}(t, m):=\left\{(m \times \mathbb{P}) \circ\left(X^{0}, W, X^{t, \mathbb{P}}, \rho^{t, m, \mathbb{P}}\right)^{-1}: \mathbb{P} \in \mathcal{P}_{W}\left(t, x^{0}\right), x^{0} \in \Omega^{0}\right\}$.
\square The value function of the McKean-Vlasov control problem is :

$$
V(t, m):=\sup _{\overline{\mathbb{P}} \in \overline{\mathcal{P}}_{w}(t, m)} J(t, \overline{\mathbb{P}}) \text {, with } J(t, \overline{\mathbb{P}}):=\mathbb{E}^{\overline{\mathbb{P}}}\left[\int_{t}^{T} L\left(s, \rho_{s}, \alpha_{s}^{\overline{\mathbb{P}}}\right) d s+g\left(\rho_{T}\right)\right] \text {. }
$$

\square The value function of the McKean-Vlasov control problem is :

$$
V(t, m):=\sup _{\overline{\mathbb{P}} \in \overline{\mathcal{P}}_{w}(t, m)} J(t, \overline{\mathbb{P}}) \text {, with } J(t, \overline{\mathbb{P}}):=\mathbb{E}^{\overline{\mathbb{P}}}\left[\int_{t}^{T} L\left(s, \rho_{s}, \alpha_{s}^{\overline{\mathbb{P}}}\right) d s+g\left(\rho_{T}\right)\right] \text {. }
$$

\square Define
$\mathcal{K}:=\left\{\phi:[0, T] \times \mathcal{P}_{2}\left(\mathbb{R}^{d}\right) \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}: \phi\right.$ is bounded and Borel measurable $\}$ and $H:[0, T] \times \mathcal{P}_{2}\left(\mathbb{R}^{d}\right) \times \mathcal{K} \longrightarrow \mathbb{R}$, the Hamiltonian, defined by

$$
\begin{aligned}
H(t, m, p) & :=\max _{a \in \mathrm{~A}} h(t, m, p, a), \\
h(t, m, p, a) & :=L(t, m, a)+a \int\left(\sigma_{0} p\right)(t, m, y) m(d y) .
\end{aligned}
$$

Dual problems

From now on, we fix the initial law to be m_{0}.

Dual problems

\square From now on, we fix the initial law to be m_{0}.We introduce the dual problems :
(i) D_{1} is the infimum over v_{1} s.t.
$v_{1}+\int_{0}^{T} \int\left(\sigma_{0} \phi\right)\left(t, \rho_{t}, y\right) \rho_{t}(d y) d X_{t}^{0} \geq g\left(\rho_{T}\right)+\int_{0}^{T} h\left(t, \rho_{t}, \phi, \alpha_{t}^{\bar{P}}\right) d t, \overline{\mathbb{P}}$-a.s.
for all $\overline{\mathbb{P}} \in \overline{\mathcal{P}}_{W}\left(0, m_{0}\right)$, for some $\phi \in \mathcal{K}$.

Dual problems

From now on, we fix the initial law to be m_{0}.We introduce the dual problems :(i) D_{1} is the infimum over v_{1} s.t.
$v_{1}+\int_{0}^{T} \int\left(\sigma_{0} \phi\right)\left(t, \rho_{t}, y\right) \rho_{t}(d y) d X_{t}^{0} \geq g\left(\rho_{T}\right)+\int_{0}^{T} h\left(t, \rho_{t}, \phi, \alpha_{t}^{\bar{P}}\right) d t, \overline{\mathbb{P}}$-a.s.
for all $\overline{\mathbb{P}} \in \overline{\mathcal{P}}_{W}\left(0, m_{0}\right)$, for some $\phi \in \mathcal{K}$.
(ii) D_{2} is the infimum over v_{2} s.t.
$v_{2}+\int_{0}^{T} \int\left(\sigma_{0} \phi\right)\left(t, \rho_{t}, y\right) \rho_{t}(d y) d X_{t}^{0} \geq g\left(\rho_{T}\right)+\int_{0}^{T} H\left(t, \rho_{t}, \phi\right) d t, \overline{\mathbb{P}}_{0}$-a.s.
for some $\phi \in \mathcal{K}$, where $\overline{\mathbb{P}}_{0}$ is a probability measure under which the canonical process X^{0} is a Brownian motion.

Dual problems

\square From now on, we fix the initial law to be m_{0}.We introduce the dual problems:
(i) D_{1} is the infimum over v_{1} s.t.
$v_{1}+\int_{0}^{T} \int\left(\sigma_{0} \phi\right)\left(t, \rho_{t}, y\right) \rho_{t}(d y) d X_{t}^{0} \geq g\left(\rho_{T}\right)+\int_{0}^{T} h\left(t, \rho_{t}, \phi, \alpha_{t}^{\bar{P}}\right) d t, \overline{\mathbb{P}}-$ a.s.
for all $\overline{\mathbb{P}} \in \overline{\mathcal{P}}_{W}\left(0, m_{0}\right)$, for some $\phi \in \mathcal{K}$.
(ii) D_{2} is the infimum over v_{2} s.t.
$v_{2}+\int_{0}^{T} \int\left(\sigma_{0} \phi\right)\left(t, \rho_{t}, y\right) \rho_{t}(d y) d X_{t}^{0} \geq g\left(\rho_{T}\right)+\int_{0}^{T} H\left(t, \rho_{t}, \phi\right) d t, \overline{\mathbb{P}}_{0}$-a.s.
for some $\phi \in \mathcal{K}$, where $\overline{\mathbb{P}}_{0}$ is a probability measure under which the canonical process X^{0} is a Brownian motion.
\square It is similar in spirit to B. and Dang [4] : stochastic target formulation of the optimal control problem.
\square We have $D_{2} \geq D_{1}$ by definition.We have $D_{2} \geq D_{1}$ by definition.Since

$$
X^{0}=x_{0}^{0}+\int_{0} \alpha_{r}^{\mathbb{P}^{0}} d r+\int_{0} d W_{r}^{\mathbb{P}^{0}}
$$

the inequality

$$
v_{1}+\int_{0}^{T} \int\left(\sigma_{0} \phi\right)\left(t, \rho_{t}, y\right) \rho_{t}(d y) d X_{t}^{0} \geq g\left(\rho_{T}\right)+\int_{0}^{T} h\left(t, \rho_{t}, \phi, \alpha_{t}^{\bar{P}}\right) d t
$$

implies

$$
v_{1} \geq \mathbb{E}^{\overline{\mathbb{P}}}\left[g\left(\rho_{T}\right)+\int_{0}^{T} L\left(t, \rho_{t}, \alpha_{t}^{\overline{\mathbb{P}}}\right)\right], \text { for } \overline{\mathbb{P}} \in \overline{\mathcal{P}}_{w}\left(0, m_{0}\right)
$$We have $D_{2} \geq D_{1}$ by definition.

\square Since

$$
X^{0}=x_{0}^{0}+\int_{0} \alpha_{r}^{\mathbb{P}^{0}} d r+\int_{0} d W_{r}^{\mathbb{P}^{0}}
$$

the inequality

$$
v_{1}+\int_{0}^{T} \int\left(\sigma_{0} \phi\right)\left(t, \rho_{t}, y\right) \rho_{t}(d y) d X_{t}^{0} \geq g\left(\rho_{T}\right)+\int_{0}^{T} h\left(t, \rho_{t}, \phi, \alpha_{t}^{\bar{P}}\right) d t
$$

implies

$$
v_{1} \geq \mathbb{E}^{\overline{\mathbb{P}}}\left[g\left(\rho_{T}\right)+\int_{0}^{T} L\left(t, \rho_{t}, \alpha_{t}^{\overline{\mathbb{P}}}\right)\right], \text { for } \overline{\mathbb{P}} \in \overline{\mathcal{P}}_{w}\left(0, m_{0}\right)
$$

and therefore

$$
D_{2} \geq D_{1} \geq V\left(t, m_{0}\right)
$$

Duality and verification

\square Theorem : Assume that $V \in C^{0,1}\left([0, T], \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)\right)$ and that $D_{m} V$ is uniformly bounded (or locally as above). Then,

$$
V\left(0, m_{0}\right)=D_{1}=D_{2} .
$$

If in addition \exists a Borel measurable function $\hat{a}:[0, T) \times \mathcal{P}_{2}\left(\mathbb{R}^{d}\right) \longrightarrow \mathrm{A}$ s.t.

$$
H\left(\cdot, m, D_{m} V\right)=h\left(\cdot, m, D_{m} V, \hat{a}(\cdot, m)\right),
$$

for all $m \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$. Then, $\exists \widehat{\mathbb{P}} \in \overline{\mathcal{P}}_{W}\left(0, m_{0}\right)$ s.t. $\alpha^{\widehat{\mathbb{P}}}=\hat{a}(\cdot, \rho),. d \widehat{\mathbb{P}} \times d t$ a.e. and $\widehat{\mathbb{P}}$ is optimal for $V\left(0, m_{0}\right)$.

Duality and verification

\square Theorem : Assume that $V \in C^{0,1}\left([0, T], \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)\right)$ and that $D_{m} V$ is uniformly bounded (or locally as above). Then,

$$
V\left(0, m_{0}\right)=D_{1}=D_{2} .
$$

If in addition \exists a Borel measurable function $\hat{a}:[0, T) \times \mathcal{P}_{2}\left(\mathbb{R}^{d}\right) \longrightarrow \mathrm{A}$ s.t.

$$
H\left(\cdot, m, D_{m} V\right)=h\left(\cdot, m, D_{m} V, \hat{a}(\cdot, m)\right),
$$

for all $m \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$. Then, $\exists \widehat{\mathbb{P}} \in \overline{\mathcal{P}} w\left(0, m_{0}\right)$ s.t. $\alpha^{\widehat{\mathbb{P}}}=\hat{a}(\cdot, \rho),. d \widehat{\mathbb{P}} \times d t$ a.e. and $\widehat{\mathbb{P}}$ is optimal for $V\left(0, m_{0}\right)$.

Remark : If A is compact, existence of â holds if L is upper-semicontinuous.

Proof of $D_{2} \leq V\left(t, m_{0}\right)$

(a) We know that $S^{\overline{\mathbb{P}}}:=V(\cdot, \rho)+.\int_{0} L\left(s, \rho_{s}, \alpha_{s}^{\overline{\mathbb{P}}}\right) d s$ is a super-martingale under any $\overline{\mathbb{P}} \in \overline{\mathcal{P}}_{W}\left(0, m_{0}\right)$.

Proof of $D_{2} \leq V\left(t, m_{0}\right)$

(a) We know that $S^{\overline{\mathbb{P}}}:=V(\cdot, \rho)+.\int_{0} L\left(s, \rho_{s}, \alpha_{s}^{\overline{\mathbb{P}}}\right) d s$ is a super-martingale under any $\overline{\mathbb{P}} \in \overline{\mathcal{P}}_{W}\left(0, m_{0}\right)$. Combined with our C^{1}-Itô's formula, we obtain :

$$
S^{\overline{\mathbb{P}}}=V\left(0, m_{0}\right)+\int_{0} \int\left(\sigma_{0} D_{m} V\right)\left(t, \rho_{t}, y\right) \rho_{t}(d y) d W_{t}^{\overline{\mathbb{P}}}-A^{\overline{\mathbb{P}}}
$$

in which $A^{\overline{\mathbb{P}}}$ is non-decreasing.

Proof of $D_{2} \leq V\left(t, m_{0}\right)$

(a) We know that $S^{\overline{\mathbb{P}}}:=V(\cdot, \rho)+.\int_{0} L\left(s, \rho_{s}, \alpha_{s}^{\overline{\mathbb{P}}}\right) d s$ is a super-martingale under any $\overline{\mathbb{P}} \in \overline{\mathcal{P}}_{W}\left(0, m_{0}\right)$. Combined with our C^{1}-Itô's formula, we obtain :

$$
S^{\overline{\mathbb{P}}}=V\left(0, m_{0}\right)+\int_{0}^{\cdot} \int\left(\sigma_{0} D_{m} V\right)\left(t, \rho_{t}, y\right) \rho_{t}(d y) d W_{t}^{\overline{\mathbb{P}}}-A^{\overline{\mathbb{P}}}
$$

in which $A^{\overline{\mathbb{P}}}$ is non-decreasing.
(b) Since $V\left(T, \rho_{T}\right)=g\left(\rho_{T}\right)$ and $A^{\overline{\mathbb{P}}}$ is non-decreasing,

$$
\begin{aligned}
& V\left(0, m_{0}\right)+\int_{0}^{T} \int\left(\sigma_{0} D_{m} V\right)\left(t, \rho_{t}, y\right) \rho_{t}(d y) d X_{t}^{0} \\
& \geq g\left(\rho_{T}\right)+\int_{0}^{T} h\left(t, \rho_{t}, D_{m} V, \alpha_{t}^{\overline{\mathbb{P}}}\right) d t .
\end{aligned}
$$

Hence, $V\left(0, m_{0}\right) \geq D_{2}$ by arbitrariness of $\overline{\mathbb{P}}$.

Proof of the verification argument

Set

$$
\ell(t, m):=\int\left(\sigma_{0} D_{m} V\right)(t, m, y) m(d y)
$$

and note that $\left(A^{\overline{\mathbb{P}}}\right)_{\overline{\mathbb{P}} \in \overline{\mathcal{P}}_{w}\left(0, m_{0}\right)}$ in the decomposition

$$
S^{\overline{\mathbb{P}}}=V\left(0, m_{0}\right)+\int_{0} \ell\left(t, \rho_{t}, y\right) d W_{t}^{\overline{\mathbb{P}}}-A^{\overline{\mathbb{P}}}
$$

satisfies

$$
\inf _{\overline{\mathbb{P}} \in \overline{\mathcal{P}}_{w}\left(0, m_{0}\right)} \mathbb{\mathbb { P }}^{\overline{\mathbb{P}}}\left[A_{T}^{\overline{\mathbb{P}}}\right]=0 .
$$

by classical arguments.

Moreover,

$$
\begin{aligned}
V\left(0, m_{0}\right) & =g\left(\rho_{T}\right)+\int_{0}^{T} h\left(t, \rho_{t}, \alpha_{t}^{\overline{\mathbb{P}}}\right) d t+A_{T}^{\overline{\mathbb{P}}}-\int_{0}^{T} \ell\left(t, \rho_{t}\right) d X_{t}^{0} \\
& =g\left(\rho_{T}\right)+\int_{0}^{T} h\left(t, \rho_{t}, \alpha_{t}^{\widehat{\mathbb{P}}}\right) d t+A_{T}^{\widehat{\mathbb{P}}}-\int_{0}^{T} \ell\left(t, \rho_{t}\right) d X_{t}^{0} \\
& \geq g\left(\rho_{T}\right)+\int_{0}^{T} h\left(t, \rho_{t}, \alpha_{t}^{\overline{\mathbb{P}}}\right) d t+A_{T}^{\widehat{\mathbb{P}}}-\int_{0}^{T} \ell\left(t, \rho_{t}\right) d X_{t}^{0}
\end{aligned}
$$

so that $0 \leq A_{T}^{\widehat{\mathbb{P}}} \leq A_{T}^{\overline{\mathbb{P}}}$ a.s. for $\overline{\mathbb{P}} \in \overline{\mathcal{P}}_{W}\left(0, m_{0}\right)$, and

$$
0=\inf _{\overline{\mathbb{P}} \in \overline{\mathcal{P}}_{w}\left(0, m_{0}\right)} \mathbb{E}^{\overline{\mathbb{P}}}\left[A_{T}^{\overline{\mathbb{P}}}\right] \geq \inf _{\overline{\mathbb{P}} \in \overline{\mathcal{P}}_{w}\left(0, m_{0}\right)} \mathbb{E}^{\overline{\mathbb{P}}}\left[A_{T}^{\widehat{\mathbb{P}}}\right]=0
$$

Moreover,

$$
\begin{aligned}
V\left(0, m_{0}\right) & =g\left(\rho_{T}\right)+\int_{0}^{T} h\left(t, \rho_{t}, \alpha_{t}^{\overline{\mathbb{P}}}\right) d t+A_{T}^{\overline{\mathbb{P}}}-\int_{0}^{T} \ell\left(t, \rho_{t}\right) d X_{t}^{0} \\
& =g\left(\rho_{T}\right)+\int_{0}^{T} h\left(t, \rho_{t}, \alpha_{t}^{\widehat{\mathbb{P}}}\right) d t+A_{T}^{\widehat{\mathbb{P}}}-\int_{0}^{T} \ell\left(t, \rho_{t}\right) d X_{t}^{0} \\
& \geq g\left(\rho_{T}\right)+\int_{0}^{T} h\left(t, \rho_{t}, \alpha_{t}^{\overline{\mathbb{P}}}\right) d t+A_{T}^{\widehat{\mathbb{P}}}-\int_{0}^{T} \ell\left(t, \rho_{t}\right) d X_{t}^{0}
\end{aligned}
$$

so that $0 \leq A_{T}^{\widehat{\mathbb{P}}} \leq A_{T}^{\overline{\mathbb{P}}}$ a.s. for $\overline{\mathbb{P}} \in \overline{\mathcal{P}}_{W}\left(0, m_{0}\right)$, and

$$
0=\inf _{\overline{\mathbb{P}} \in \overline{\mathcal{P}}_{w}\left(0, m_{0}\right)} \mathbb{E}^{\overline{\mathbb{P}}}\left[A_{T}^{\overline{\mathbb{P}}}\right] \geq \sum_{\overline{\mathbb{P}} \in \overline{\mathcal{P}}_{w}\left(0, m_{0}\right)} \mathbb{E}^{\overline{\mathbb{P}}}\left[A_{T}^{\widehat{\mathbb{P}}}\right]=0
$$

We indeed have (using the reverse Hölder's inequality)

$$
A_{T}^{\widehat{\mathbb{P}}}=0, \overline{\mathbb{P}}-\text { a.s. } \forall \overline{\mathbb{P}} \in \overline{\mathcal{P}}_{W}\left(0, m_{0}\right)
$$

Then,

$$
\begin{aligned}
V\left(0, m_{0}\right) & =\mathbb{E}^{\widehat{\mathbb{P}}}\left[g\left(\rho_{T}\right)+\int_{0}^{T} h\left(t, \rho_{t}, \alpha_{t}^{\widehat{\mathbb{P}}}\right) d t-\int_{0}^{T} \ell\left(t, \rho_{t}\right) \alpha_{t}^{\widehat{\mathbb{P}}} d t\right] \\
& =\mathbb{E}^{\widehat{\mathbb{P}}}\left[g\left(\rho_{T}\right)+\int_{0}^{T} L\left(t, \rho_{t}, \alpha_{t}^{\widehat{\mathbb{P}}}\right) d t\right] .
\end{aligned}
$$

Proof of the verification argument

Set

$$
\ell(t, m):=\int\left(\sigma_{0} D_{m} V\right)(t, m, y) m(d y)
$$

and note that $\left(A^{\overline{\mathbb{P}}}\right)_{\overline{\mathbb{P}} \in \overline{\mathcal{P}}_{w}\left(0, m_{0}\right)}$ in the decomposition

$$
S^{\overline{\mathbb{P}}}=V\left(0, m_{0}\right)+\int_{0} \ell\left(t, \rho_{t}, y\right) d W_{t}^{\overline{\mathbb{P}}}-A^{\overline{\mathbb{P}}}
$$

satisfies

$$
\inf _{\overline{\mathbb{P}} \in \overline{\mathcal{P}}_{w}\left(0, m_{0}\right)} \mathbb{\mathbb { P }}^{\overline{\mathbb{P}}}\left[A_{T}^{\overline{\mathbb{P}}}\right]=0 .
$$

by classical arguments.

Example

Assume that :

- $\sigma=\sigma_{0} \equiv 1$,
- A is a convex,
- $L(t, m, a)=\bar{L}(a)$ is strictly concave.
- $g(m)=\bar{g}\left(\int \phi(y) m(d y)\right)$ with $\bar{g}: \mathbb{R}^{d} \rightarrow \mathbb{R}$ convex and C_{b}^{1}, and $\phi: \mathbb{R} \longrightarrow \mathbb{R}^{d}$ that is C_{b}^{1}.

Example

Assume that :

- $\sigma=\sigma_{0} \equiv 1$,
- A is a convex,
- $L(t, m, a)=\bar{L}(a)$ is strictly concave.
- $g(m)=\bar{g}\left(\int \phi(y) m(d y)\right)$ with $\bar{g}: \mathbb{R}^{d} \rightarrow \mathbb{R}$ convex and C_{b}^{1}, and $\phi: \mathbb{R} \longrightarrow \mathbb{R}^{d}$ that is C_{b}^{1}.

Then, $V \in C^{0,1}\left([0, T], \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)\right)$.

Example

Assume that:

- $\sigma=\sigma_{0} \equiv 1$,
- A is a convex,
- $L(t, m, a)=\bar{L}(a)$ is strictly concave.
- $g(m)=\bar{g}\left(\int \phi(y) m(d y)\right)$ with $\bar{g}: \mathbb{R}^{d} \rightarrow \mathbb{R}$ convex and C_{b}^{1}, and $\phi: \mathbb{R} \longrightarrow \mathbb{R}^{d}$ that is C_{b}^{1}.

Then, $V \in C^{0,1}\left([0, T], \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)\right)$.
\square An optimal control $\widehat{\mathbb{P}}$ exists (is unique) and we have

$$
D_{m} V\left(0, m_{0}, x\right)=\mathbb{E}^{\widehat{\mathbb{P}}}\left[\bar{g}^{\prime}\left(\int_{\mathbb{R}^{d}} \bar{\phi}\left(y+X_{T}^{0}\right) m_{0}(d y)\right) \nabla \bar{\phi}\left(x+X_{T}^{0}\right)\right]
$$

where

$$
\bar{\phi}(y):=\mathbb{E}^{\mathbb{P}_{0}^{1}}\left[\phi\left(y+W_{T}\right)\right] .
$$

Thank you!

Elena Bandini and Francesco Russo.
Weak Dirichlet processes with jumps.
Stochastic Processes and their Applications, 127-12 : 4139-4189, 2017.
Bruno Bouchard, Grégoire Loeper and Xiaolu Tan.
A $C^{\mathbf{0}, 1}$-functional Itô's formula and its applications in mathematical finance.
Stochastic Processes and their Applications, 148, 299-323, 2022.
Bruno Bouchard, Grégoire Loeper and Xiaolu Tan.
Approximate viscosity solutions of path-dependent PDEs and Dupire's vertical differentiability. The Annals of Applied Probability, 33.6B:5781-5809, 2023.

Bruno Bouchard and Ngoc Minh Dang.
Optimal control versus stochastic target problems : an equivalence result.
Systems \& control letters, 61(2) : 343-346, 2012.
Bruno Bouchard and Xiaolu Tan.
Understanding the dual formulation for the hedging of path-dependent options with price impact. The Annals of Applied Probability, 32(3), 1705-1733, 2019.

Bruno Bouchard and Xiaolu Tan.
A quasi-sure optional decomposition and super-hedging result on the Skorokhod space.
Finance and Stochastics, 25(3), 505-528, 2021.
Bruno Bouchard and Maximilien Vallet.
Itô-Dupire's formula for $C^{\mathbf{0}, \mathbf{1}}$-functionals of cádlàg weak Dirichlet processes. arXiv preprint arXiv :2110.03406, 2021.

Jean-François Chassagneux, Dan Crisan, and François Delarue.
A probabilistic approach to classical solutions of the master equation for large population equilibria. American Mathematical Society, 280(1379), 2022.

Rama Cont and David-Antoine Fournié.
Functional itô calculus and stochastic integral representation of martingales.
The Annals of Probability, 41(1):109-133, 2013.

Bruno Dupire.
Functional Itô calculus.
Portfolio Research Paper, 04, 2009.

Fausto Gozzi and Francesco Russo.
Weak dirichlet processes with a stochastic control perspective.
Stochastic Processes and their Applications, 116(11) :1563-1583, 2006.

Xin Guo, Huyen Pham and Xiaoli Wei.
Itô's formula for flows of measures on semimartingales.
Stochastic Processes and their Applications, 159 :350-90, 2023.

Yuri F. Saporito.
The functional Meyer-Tanaka formula.
Stochastics and Dynamics, 18(04) :1850030, 2018.
Mehdi Talbi, Nizar Touzi and Jianfeng Zhang.
Dynamic programming equation for the mean field optimal stopping problem.
SIAM Journal on Control and Optimization, 61(4), 2140-2164, 2023.

